aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/btcsuite/btcd/btcec/gensecp256k1.go
blob: 1928702da84ffeb2240c15b4faa13b5255b83a3b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// Copyright (c) 2014-2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.

// This file is ignored during the regular build due to the following build tag.
// This build tag is set during go generate.
// +build gensecp256k1

package btcec

// References:
//   [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)

import (
    "encoding/binary"
    "math/big"
)

// secp256k1BytePoints are dummy points used so the code which generates the
// real values can compile.
var secp256k1BytePoints = ""

// getDoublingPoints returns all the possible G^(2^i) for i in
// 0..n-1 where n is the curve's bit size (256 in the case of secp256k1)
// the coordinates are recorded as Jacobian coordinates.
func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal {
    doublingPoints := make([][3]fieldVal, curve.BitSize)

    // initialize px, py, pz to the Jacobian coordinates for the base point
    px, py := curve.bigAffineToField(curve.Gx, curve.Gy)
    pz := new(fieldVal).SetInt(1)
    for i := 0; i < curve.BitSize; i++ {
        doublingPoints[i] = [3]fieldVal{*px, *py, *pz}
        // P = 2*P
        curve.doubleJacobian(px, py, pz, px, py, pz)
    }
    return doublingPoints
}

// SerializedBytePoints returns a serialized byte slice which contains all of
// the possible points per 8-bit window.  This is used to when generating
// secp256k1.go.
func (curve *KoblitzCurve) SerializedBytePoints() []byte {
    doublingPoints := curve.getDoublingPoints()

    // Segregate the bits into byte-sized windows
    serialized := make([]byte, curve.byteSize*256*3*10*4)
    offset := 0
    for byteNum := 0; byteNum < curve.byteSize; byteNum++ {
        // Grab the 8 bits that make up this byte from doublingPoints.
        startingBit := 8 * (curve.byteSize - byteNum - 1)
        computingPoints := doublingPoints[startingBit : startingBit+8]

        // Compute all points in this window and serialize them.
        for i := 0; i < 256; i++ {
            px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal)
            for j := 0; j < 8; j++ {
                if i>>uint(j)&1 == 1 {
                    curve.addJacobian(px, py, pz, &computingPoints[j][0],
                        &computingPoints[j][1], &computingPoints[j][2], px, py, pz)
                }
            }
            for i := 0; i < 10; i++ {
                binary.LittleEndian.PutUint32(serialized[offset:], px.n[i])
                offset += 4
            }
            for i := 0; i < 10; i++ {
                binary.LittleEndian.PutUint32(serialized[offset:], py.n[i])
                offset += 4
            }
            for i := 0; i < 10; i++ {
                binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i])
                offset += 4
            }
        }
    }

    return serialized
}

// sqrt returns the square root of the provided big integer using Newton's
// method.  It's only compiled and used during generation of pre-computed
// values, so speed is not a huge concern.
func sqrt(n *big.Int) *big.Int {
    // Initial guess = 2^(log_2(n)/2)
    guess := big.NewInt(2)
    guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil)

    // Now refine using Newton's method.
    big2 := big.NewInt(2)
    prevGuess := big.NewInt(0)
    for {
        prevGuess.Set(guess)
        guess.Add(guess, new(big.Int).Div(n, guess))
        guess.Div(guess, big2)
        if guess.Cmp(prevGuess) == 0 {
            break
        }
    }
    return guess
}

// EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to
// generate the linearly independent vectors needed to generate a balanced
// length-two representation of a multiplier such that k = k1 + k2λ (mod N) and
// returns them.  Since the values will always be the same given the fact that N
// and λ are fixed, the final results can be accelerated by storing the
// precomputed values with the curve.
func (curve *KoblitzCurve) EndomorphismVectors() (a1, b1, a2, b2 *big.Int) {
    bigMinus1 := big.NewInt(-1)

    // This section uses an extended Euclidean algorithm to generate a
    // sequence of equations:
    //  s[i] * N + t[i] * λ = r[i]

    nSqrt := sqrt(curve.N)
    u, v := new(big.Int).Set(curve.N), new(big.Int).Set(curve.lambda)
    x1, y1 := big.NewInt(1), big.NewInt(0)
    x2, y2 := big.NewInt(0), big.NewInt(1)
    q, r := new(big.Int), new(big.Int)
    qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int)
    s, t := new(big.Int), new(big.Int)
    ri, ti := new(big.Int), new(big.Int)
    a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int)
    found, oneMore := false, false
    for u.Sign() != 0 {
        // q = v/u
        q.Div(v, u)

        // r = v - q*u
        qu.Mul(q, u)
        r.Sub(v, qu)

        // s = x2 - q*x1
        qx1.Mul(q, x1)
        s.Sub(x2, qx1)

        // t = y2 - q*y1
        qy1.Mul(q, y1)
        t.Sub(y2, qy1)

        // v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t
        v.Set(u)
        u.Set(r)
        x2.Set(x1)
        x1.Set(s)
        y2.Set(y1)
        y1.Set(t)

        // As soon as the remainder is less than the sqrt of n, the
        // values of a1 and b1 are known.
        if !found && r.Cmp(nSqrt) < 0 {
            // When this condition executes ri and ti represent the
            // r[i] and t[i] values such that i is the greatest
            // index for which r >= sqrt(n).  Meanwhile, the current
            // r and t values are r[i+1] and t[i+1], respectively.

            // a1 = r[i+1], b1 = -t[i+1]
            a1.Set(r)
            b1.Mul(t, bigMinus1)
            found = true
            oneMore = true

            // Skip to the next iteration so ri and ti are not
            // modified.
            continue

        } else if oneMore {
            // When this condition executes ri and ti still
            // represent the r[i] and t[i] values while the current
            // r and t are r[i+2] and t[i+2], respectively.

            // sum1 = r[i]^2 + t[i]^2
            rSquared := new(big.Int).Mul(ri, ri)
            tSquared := new(big.Int).Mul(ti, ti)
            sum1 := new(big.Int).Add(rSquared, tSquared)

            // sum2 = r[i+2]^2 + t[i+2]^2
            r2Squared := new(big.Int).Mul(r, r)
            t2Squared := new(big.Int).Mul(t, t)
            sum2 := new(big.Int).Add(r2Squared, t2Squared)

            // if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2)
            if sum1.Cmp(sum2) <= 0 {
                // a2 = r[i], b2 = -t[i]
                a2.Set(ri)
                b2.Mul(ti, bigMinus1)
            } else {
                // a2 = r[i+2], b2 = -t[i+2]
                a2.Set(r)
                b2.Mul(t, bigMinus1)
            }

            // All done.
            break
        }

        ri.Set(r)
        ti.Set(t)
    }

    return a1, b1, a2, b2
}