aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/btcsuite/btcd/btcec/field.go
blob: c2c6a645d4454070c9fed9c6dad6fa18ad324630 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
// Copyright (c) 2013-2016 The btcsuite developers
// Copyright (c) 2013-2016 Dave Collins
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.

package btcec

// References:
//   [HAC]: Handbook of Applied Cryptography Menezes, van Oorschot, Vanstone.
//     http://cacr.uwaterloo.ca/hac/

// All elliptic curve operations for secp256k1 are done in a finite field
// characterized by a 256-bit prime.  Given this precision is larger than the
// biggest available native type, obviously some form of bignum math is needed.
// This package implements specialized fixed-precision field arithmetic rather
// than relying on an arbitrary-precision arithmetic package such as math/big
// for dealing with the field math since the size is known.  As a result, rather
// large performance gains are achieved by taking advantage of many
// optimizations not available to arbitrary-precision arithmetic and generic
// modular arithmetic algorithms.
//
// There are various ways to internally represent each finite field element.
// For example, the most obvious representation would be to use an array of 4
// uint64s (64 bits * 4 = 256 bits).  However, that representation suffers from
// a couple of issues.  First, there is no native Go type large enough to handle
// the intermediate results while adding or multiplying two 64-bit numbers, and
// second there is no space left for overflows when performing the intermediate
// arithmetic between each array element which would lead to expensive carry
// propagation.
//
// Given the above, this implementation represents the the field elements as
// 10 uint32s with each word (array entry) treated as base 2^26.  This was
// chosen for the following reasons:
// 1) Most systems at the current time are 64-bit (or at least have 64-bit
//    registers available for specialized purposes such as MMX) so the
//    intermediate results can typically be done using a native register (and
//    using uint64s to avoid the need for additional half-word arithmetic)
// 2) In order to allow addition of the internal words without having to
//    propagate the the carry, the max normalized value for each register must
//    be less than the number of bits available in the register
// 3) Since we're dealing with 32-bit values, 64-bits of overflow is a
//    reasonable choice for #2
// 4) Given the need for 256-bits of precision and the properties stated in #1,
//    #2, and #3, the representation which best accommodates this is 10 uint32s
//    with base 2^26 (26 bits * 10 = 260 bits, so the final word only needs 22
//    bits) which leaves the desired 64 bits (32 * 10 = 320, 320 - 256 = 64) for
//    overflow
//
// Since it is so important that the field arithmetic is extremely fast for
// high performance crypto, this package does not perform any validation where
// it ordinarily would.  For example, some functions only give the correct
// result is the field is normalized and there is no checking to ensure it is.
// While I typically prefer to ensure all state and input is valid for most
// packages, this code is really only used internally and every extra check
// counts.

import (
    "encoding/hex"
)

// Constants used to make the code more readable.
const (
    twoBitsMask   = 0x3
    fourBitsMask  = 0xf
    sixBitsMask   = 0x3f
    eightBitsMask = 0xff
)

// Constants related to the field representation.
const (
    // fieldWords is the number of words used to internally represent the
    // 256-bit value.
    fieldWords = 10

    // fieldBase is the exponent used to form the numeric base of each word.
    // 2^(fieldBase*i) where i is the word position.
    fieldBase = 26

    // fieldOverflowBits is the minimum number of "overflow" bits for each
    // word in the field value.
    fieldOverflowBits = 32 - fieldBase

    // fieldBaseMask is the mask for the bits in each word needed to
    // represent the numeric base of each word (except the most significant
    // word).
    fieldBaseMask = (1 << fieldBase) - 1

    // fieldMSBBits is the number of bits in the most significant word used
    // to represent the value.
    fieldMSBBits = 256 - (fieldBase * (fieldWords - 1))

    // fieldMSBMask is the mask for the bits in the most significant word
    // needed to represent the value.
    fieldMSBMask = (1 << fieldMSBBits) - 1

    // fieldPrimeWordZero is word zero of the secp256k1 prime in the
    // internal field representation.  It is used during negation.
    fieldPrimeWordZero = 0x3fffc2f

    // fieldPrimeWordOne is word one of the secp256k1 prime in the
    // internal field representation.  It is used during negation.
    fieldPrimeWordOne = 0x3ffffbf

    // primeLowBits is the lower 2*fieldBase bits of the secp256k1 prime in
    // its standard normalized form.  It is used during modular reduction.
    primeLowBits = 0xffffefffffc2f
)

// fieldVal implements optimized fixed-precision arithmetic over the
// secp256k1 finite field.  This means all arithmetic is performed modulo
// 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f.  It
// represents each 256-bit value as 10 32-bit integers in base 2^26.  This
// provides 6 bits of overflow in each word (10 bits in the most significant
// word) for a total of 64 bits of overflow (9*6 + 10 = 64).  It only implements
// the arithmetic needed for elliptic curve operations.
//
// The following depicts the internal representation:
//   -----------------------------------------------------------------
//  |        n[9]       |        n[8]       | ... |        n[0]       |
//  | 32 bits available | 32 bits available | ... | 32 bits available |
//  | 22 bits for value | 26 bits for value | ... | 26 bits for value |
//  | 10 bits overflow  |  6 bits overflow  | ... |  6 bits overflow  |
//  | Mult: 2^(26*9)    | Mult: 2^(26*8)    | ... | Mult: 2^(26*0)    |
//   -----------------------------------------------------------------
//
// For example, consider the number 2^49 + 1.  It would be represented as:
//  n[0] = 1
//  n[1] = 2^23
//  n[2..9] = 0
//
// The full 256-bit value is then calculated by looping i from 9..0 and
// doing sum(n[i] * 2^(26i)) like so:
//  n[9] * 2^(26*9) = 0    * 2^234 = 0
//  n[8] * 2^(26*8) = 0    * 2^208 = 0
//  ...
//  n[1] * 2^(26*1) = 2^23 * 2^26  = 2^49
//  n[0] * 2^(26*0) = 1    * 2^0   = 1
//  Sum: 0 + 0 + ... + 2^49 + 1 = 2^49 + 1
type fieldVal struct {
    n [10]uint32
}

// String returns the field value as a human-readable hex string.
func (f fieldVal) String() string {
    t := new(fieldVal).Set(&f).Normalize()
    return hex.EncodeToString(t.Bytes()[:])
}

// Zero sets the field value to zero.  A newly created field value is already
// set to zero.  This function can be useful to clear an existing field value
// for reuse.
func (f *fieldVal) Zero() {
    f.n[0] = 0
    f.n[1] = 0
    f.n[2] = 0
    f.n[3] = 0
    f.n[4] = 0
    f.n[5] = 0
    f.n[6] = 0
    f.n[7] = 0
    f.n[8] = 0
    f.n[9] = 0
}

// Set sets the field value equal to the passed value.
//
// The field value is returned to support chaining.  This enables syntax like:
// f := new(fieldVal).Set(f2).Add(1) so that f = f2 + 1 where f2 is not
// modified.
func (f *fieldVal) Set(val *fieldVal) *fieldVal {
    *f = *val
    return f
}

// SetInt sets the field value to the passed integer.  This is a convenience
// function since it is fairly common to perform some arithemetic with small
// native integers.
//
// The field value is returned to support chaining.  This enables syntax such
// as f := new(fieldVal).SetInt(2).Mul(f2) so that f = 2 * f2.
func (f *fieldVal) SetInt(ui uint) *fieldVal {
    f.Zero()
    f.n[0] = uint32(ui)
    return f
}

// SetBytes packs the passed 32-byte big-endian value into the internal field
// value representation.
//
// The field value is returned to support chaining.  This enables syntax like:
// f := new(fieldVal).SetBytes(byteArray).Mul(f2) so that f = ba * f2.
func (f *fieldVal) SetBytes(b *[32]byte) *fieldVal {
    // Pack the 256 total bits across the 10 uint32 words with a max of
    // 26-bits per word.  This could be done with a couple of for loops,
    // but this unrolled version is significantly faster.  Benchmarks show
    // this is about 34 times faster than the variant which uses loops.
    f.n[0] = uint32(b[31]) | uint32(b[30])<<8 | uint32(b[29])<<16 |
        (uint32(b[28])&twoBitsMask)<<24
    f.n[1] = uint32(b[28])>>2 | uint32(b[27])<<6 | uint32(b[26])<<14 |
        (uint32(b[25])&fourBitsMask)<<22
    f.n[2] = uint32(b[25])>>4 | uint32(b[24])<<4 | uint32(b[23])<<12 |
        (uint32(b[22])&sixBitsMask)<<20
    f.n[3] = uint32(b[22])>>6 | uint32(b[21])<<2 | uint32(b[20])<<10 |
        uint32(b[19])<<18
    f.n[4] = uint32(b[18]) | uint32(b[17])<<8 | uint32(b[16])<<16 |
        (uint32(b[15])&twoBitsMask)<<24
    f.n[5] = uint32(b[15])>>2 | uint32(b[14])<<6 | uint32(b[13])<<14 |
        (uint32(b[12])&fourBitsMask)<<22
    f.n[6] = uint32(b[12])>>4 | uint32(b[11])<<4 | uint32(b[10])<<12 |
        (uint32(b[9])&sixBitsMask)<<20
    f.n[7] = uint32(b[9])>>6 | uint32(b[8])<<2 | uint32(b[7])<<10 |
        uint32(b[6])<<18
    f.n[8] = uint32(b[5]) | uint32(b[4])<<8 | uint32(b[3])<<16 |
        (uint32(b[2])&twoBitsMask)<<24
    f.n[9] = uint32(b[2])>>2 | uint32(b[1])<<6 | uint32(b[0])<<14
    return f
}

// SetByteSlice packs the passed big-endian value into the internal field value
// representation.  Only the first 32-bytes are used.  As a result, it is up to
// the caller to ensure numbers of the appropriate size are used or the value
// will be truncated.
//
// The field value is returned to support chaining.  This enables syntax like:
// f := new(fieldVal).SetByteSlice(byteSlice)
func (f *fieldVal) SetByteSlice(b []byte) *fieldVal {
    var b32 [32]byte
    for i := 0; i < len(b); i++ {
        if i < 32 {
            b32[i+(32-len(b))] = b[i]
        }
    }
    return f.SetBytes(&b32)
}

// SetHex decodes the passed big-endian hex string into the internal field value
// representation.  Only the first 32-bytes are used.
//
// The field value is returned to support chaining.  This enables syntax like:
// f := new(fieldVal).SetHex("0abc").Add(1) so that f = 0x0abc + 1
func (f *fieldVal) SetHex(hexString string) *fieldVal {
    if len(hexString)%2 != 0 {
        hexString = "0" + hexString
    }
    bytes, _ := hex.DecodeString(hexString)
    return f.SetByteSlice(bytes)
}

// Normalize normalizes the internal field words into the desired range and
// performs fast modular reduction over the secp256k1 prime by making use of the
// special form of the prime.
func (f *fieldVal) Normalize() *fieldVal {
    // The field representation leaves 6 bits of overflow in each
    // word so intermediate calculations can be performed without needing
    // to propagate the carry to each higher word during the calculations.
    // In order to normalize, first we need to "compact" the full 256-bit
    // value to the right and treat the additional 64 leftmost bits as
    // the magnitude.
    m := f.n[0]
    t0 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[1]
    t1 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[2]
    t2 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[3]
    t3 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[4]
    t4 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[5]
    t5 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[6]
    t6 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[7]
    t7 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[8]
    t8 := m & fieldBaseMask
    m = (m >> fieldBase) + f.n[9]
    t9 := m & fieldMSBMask
    m = m >> fieldMSBBits

    // At this point, if the magnitude is greater than 0, the overall value
    // is greater than the max possible 256-bit value.  In particular, it is
    // "how many times larger" than the max value it is.  Since this field
    // is doing arithmetic modulo the secp256k1 prime, we need to perform
    // modular reduction over the prime.
    //
    // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
    // when the modulus is of the special form m = b^t - c, highly efficient
    // reduction can be achieved.
    //
    // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
    // this criteria.
    //
    // 4294968273 in field representation (base 2^26) is:
    // n[0] = 977
    // n[1] = 64
    // That is to say (2^26 * 64) + 977 = 4294968273
    //
    // The algorithm presented in the referenced section typically repeats
    // until the quotient is zero.  However, due to our field representation
    // we already know at least how many times we would need to repeat as
    // it's the value currently in m.  Thus we can simply multiply the
    // magnitude by the field representation of the prime and do a single
    // iteration.  Notice that nothing will be changed when the magnitude is
    // zero, so we could skip this in that case, however always running
    // regardless allows it to run in constant time.
    r := t0 + m*977
    t0 = r & fieldBaseMask
    r = (r >> fieldBase) + t1 + m*64
    t1 = r & fieldBaseMask
    r = (r >> fieldBase) + t2
    t2 = r & fieldBaseMask
    r = (r >> fieldBase) + t3
    t3 = r & fieldBaseMask
    r = (r >> fieldBase) + t4
    t4 = r & fieldBaseMask
    r = (r >> fieldBase) + t5
    t5 = r & fieldBaseMask
    r = (r >> fieldBase) + t6
    t6 = r & fieldBaseMask
    r = (r >> fieldBase) + t7
    t7 = r & fieldBaseMask
    r = (r >> fieldBase) + t8
    t8 = r & fieldBaseMask
    r = (r >> fieldBase) + t9
    t9 = r & fieldMSBMask

    // At this point, the result will be in the range 0 <= result <=
    // prime + (2^64 - c).  Therefore, one more subtraction of the prime
    // might be needed if the current result is greater than or equal to the
    // prime.  The following does the final reduction in constant time.
    // Note that the if/else here intentionally does the bitwise OR with
    // zero even though it won't change the value to ensure constant time
    // between the branches.
    var mask int32
    lowBits := uint64(t1)<<fieldBase | uint64(t0)
    if lowBits < primeLowBits {
        mask |= -1
    } else {
        mask |= 0
    }
    if t2 < fieldBaseMask {
        mask |= -1
    } else {
        mask |= 0
    }
    if t3 < fieldBaseMask {
        mask |= -1
    } else {
        mask |= 0
    }
    if t4 < fieldBaseMask {
        mask |= -1
    } else {
        mask |= 0
    }
    if t5 < fieldBaseMask {
        mask |= -1
    } else {
        mask |= 0
    }
    if t6 < fieldBaseMask {
        mask |= -1
    } else {
        mask |= 0
    }
    if t7 < fieldBaseMask {
        mask |= -1
    } else {
        mask |= 0
    }
    if t8 < fieldBaseMask {
        mask |= -1
    } else {
        mask |= 0
    }
    if t9 < fieldMSBMask {
        mask |= -1
    } else {
        mask |= 0
    }
    lowBits -= ^uint64(mask) & primeLowBits
    t0 = uint32(lowBits & fieldBaseMask)
    t1 = uint32((lowBits >> fieldBase) & fieldBaseMask)
    t2 = t2 & uint32(mask)
    t3 = t3 & uint32(mask)
    t4 = t4 & uint32(mask)
    t5 = t5 & uint32(mask)
    t6 = t6 & uint32(mask)
    t7 = t7 & uint32(mask)
    t8 = t8 & uint32(mask)
    t9 = t9 & uint32(mask)

    // Finally, set the normalized and reduced words.
    f.n[0] = t0
    f.n[1] = t1
    f.n[2] = t2
    f.n[3] = t3
    f.n[4] = t4
    f.n[5] = t5
    f.n[6] = t6
    f.n[7] = t7
    f.n[8] = t8
    f.n[9] = t9
    return f
}

// PutBytes unpacks the field value to a 32-byte big-endian value using the
// passed byte array.  There is a similar function, Bytes, which unpacks the
// field value into a new array and returns that.  This version is provided
// since it can be useful to cut down on the number of allocations by allowing
// the caller to reuse a buffer.
//
// The field value must be normalized for this function to return the correct
// result.
func (f *fieldVal) PutBytes(b *[32]byte) {
    // Unpack the 256 total bits from the 10 uint32 words with a max of
    // 26-bits per word.  This could be done with a couple of for loops,
    // but this unrolled version is a bit faster.  Benchmarks show this is
    // about 10 times faster than the variant which uses loops.
    b[31] = byte(f.n[0] & eightBitsMask)
    b[30] = byte((f.n[0] >> 8) & eightBitsMask)
    b[29] = byte((f.n[0] >> 16) & eightBitsMask)
    b[28] = byte((f.n[0]>>24)&twoBitsMask | (f.n[1]&sixBitsMask)<<2)
    b[27] = byte((f.n[1] >> 6) & eightBitsMask)
    b[26] = byte((f.n[1] >> 14) & eightBitsMask)
    b[25] = byte((f.n[1]>>22)&fourBitsMask | (f.n[2]&fourBitsMask)<<4)
    b[24] = byte((f.n[2] >> 4) & eightBitsMask)
    b[23] = byte((f.n[2] >> 12) & eightBitsMask)
    b[22] = byte((f.n[2]>>20)&sixBitsMask | (f.n[3]&twoBitsMask)<<6)
    b[21] = byte((f.n[3] >> 2) & eightBitsMask)
    b[20] = byte((f.n[3] >> 10) & eightBitsMask)
    b[19] = byte((f.n[3] >> 18) & eightBitsMask)
    b[18] = byte(f.n[4] & eightBitsMask)
    b[17] = byte((f.n[4] >> 8) & eightBitsMask)
    b[16] = byte((f.n[4] >> 16) & eightBitsMask)
    b[15] = byte((f.n[4]>>24)&twoBitsMask | (f.n[5]&sixBitsMask)<<2)
    b[14] = byte((f.n[5] >> 6) & eightBitsMask)
    b[13] = byte((f.n[5] >> 14) & eightBitsMask)
    b[12] = byte((f.n[5]>>22)&fourBitsMask | (f.n[6]&fourBitsMask)<<4)
    b[11] = byte((f.n[6] >> 4) & eightBitsMask)
    b[10] = byte((f.n[6] >> 12) & eightBitsMask)
    b[9] = byte((f.n[6]>>20)&sixBitsMask | (f.n[7]&twoBitsMask)<<6)
    b[8] = byte((f.n[7] >> 2) & eightBitsMask)
    b[7] = byte((f.n[7] >> 10) & eightBitsMask)
    b[6] = byte((f.n[7] >> 18) & eightBitsMask)
    b[5] = byte(f.n[8] & eightBitsMask)
    b[4] = byte((f.n[8] >> 8) & eightBitsMask)
    b[3] = byte((f.n[8] >> 16) & eightBitsMask)
    b[2] = byte((f.n[8]>>24)&twoBitsMask | (f.n[9]&sixBitsMask)<<2)
    b[1] = byte((f.n[9] >> 6) & eightBitsMask)
    b[0] = byte((f.n[9] >> 14) & eightBitsMask)
}

// Bytes unpacks the field value to a 32-byte big-endian value.  See PutBytes
// for a variant that allows the a buffer to be passed which can be useful to
// to cut down on the number of allocations by allowing the caller to reuse a
// buffer.
//
// The field value must be normalized for this function to return correct
// result.
func (f *fieldVal) Bytes() *[32]byte {
    b := new([32]byte)
    f.PutBytes(b)
    return b
}

// IsZero returns whether or not the field value is equal to zero.
func (f *fieldVal) IsZero() bool {
    // The value can only be zero if no bits are set in any of the words.
    // This is a constant time implementation.
    bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] |
        f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9]

    return bits == 0
}

// IsOdd returns whether or not the field value is an odd number.
//
// The field value must be normalized for this function to return correct
// result.
func (f *fieldVal) IsOdd() bool {
    // Only odd numbers have the bottom bit set.
    return f.n[0]&1 == 1
}

// Equals returns whether or not the two field values are the same.  Both
// field values being compared must be normalized for this function to return
// the correct result.
func (f *fieldVal) Equals(val *fieldVal) bool {
    // Xor only sets bits when they are different, so the two field values
    // can only be the same if no bits are set after xoring each word.
    // This is a constant time implementation.
    bits := (f.n[0] ^ val.n[0]) | (f.n[1] ^ val.n[1]) | (f.n[2] ^ val.n[2]) |
        (f.n[3] ^ val.n[3]) | (f.n[4] ^ val.n[4]) | (f.n[5] ^ val.n[5]) |
        (f.n[6] ^ val.n[6]) | (f.n[7] ^ val.n[7]) | (f.n[8] ^ val.n[8]) |
        (f.n[9] ^ val.n[9])

    return bits == 0
}

// NegateVal negates the passed value and stores the result in f.  The caller
// must provide the magnitude of the passed value for a correct result.
//
// The field value is returned to support chaining.  This enables syntax like:
// f.NegateVal(f2).AddInt(1) so that f = -f2 + 1.
func (f *fieldVal) NegateVal(val *fieldVal, magnitude uint32) *fieldVal {
    // Negation in the field is just the prime minus the value.  However,
    // in order to allow negation against a field value without having to
    // normalize/reduce it first, multiply by the magnitude (that is how
    // "far" away it is from the normalized value) to adjust.  Also, since
    // negating a value pushes it one more order of magnitude away from the
    // normalized range, add 1 to compensate.
    //
    // For some intuition here, imagine you're performing mod 12 arithmetic
    // (picture a clock) and you are negating the number 7.  So you start at
    // 12 (which is of course 0 under mod 12) and count backwards (left on
    // the clock) 7 times to arrive at 5.  Notice this is just 12-7 = 5.
    // Now, assume you're starting with 19, which is a number that is
    // already larger than the modulus and congruent to 7 (mod 12).  When a
    // value is already in the desired range, its magnitude is 1.  Since 19
    // is an additional "step", its magnitude (mod 12) is 2.  Since any
    // multiple of the modulus is conguent to zero (mod m), the answer can
    // be shortcut by simply mulplying the magnitude by the modulus and
    // subtracting.  Keeping with the example, this would be (2*12)-19 = 5.
    f.n[0] = (magnitude+1)*fieldPrimeWordZero - val.n[0]
    f.n[1] = (magnitude+1)*fieldPrimeWordOne - val.n[1]
    f.n[2] = (magnitude+1)*fieldBaseMask - val.n[2]
    f.n[3] = (magnitude+1)*fieldBaseMask - val.n[3]
    f.n[4] = (magnitude+1)*fieldBaseMask - val.n[4]
    f.n[5] = (magnitude+1)*fieldBaseMask - val.n[5]
    f.n[6] = (magnitude+1)*fieldBaseMask - val.n[6]
    f.n[7] = (magnitude+1)*fieldBaseMask - val.n[7]
    f.n[8] = (magnitude+1)*fieldBaseMask - val.n[8]
    f.n[9] = (magnitude+1)*fieldMSBMask - val.n[9]

    return f
}

// Negate negates the field value.  The existing field value is modified.  The
// caller must provide the magnitude of the field value for a correct result.
//
// The field value is returned to support chaining.  This enables syntax like:
// f.Negate().AddInt(1) so that f = -f + 1.
func (f *fieldVal) Negate(magnitude uint32) *fieldVal {
    return f.NegateVal(f, magnitude)
}

// AddInt adds the passed integer to the existing field value and stores the
// result in f.  This is a convenience function since it is fairly common to
// perform some arithemetic with small native integers.
//
// The field value is returned to support chaining.  This enables syntax like:
// f.AddInt(1).Add(f2) so that f = f + 1 + f2.
func (f *fieldVal) AddInt(ui uint) *fieldVal {
    // Since the field representation intentionally provides overflow bits,
    // it's ok to use carryless addition as the carry bit is safely part of
    // the word and will be normalized out.
    f.n[0] += uint32(ui)

    return f
}

// Add adds the passed value to the existing field value and stores the result
// in f.
//
// The field value is returned to support chaining.  This enables syntax like:
// f.Add(f2).AddInt(1) so that f = f + f2 + 1.
func (f *fieldVal) Add(val *fieldVal) *fieldVal {
    // Since the field representation intentionally provides overflow bits,
    // it's ok to use carryless addition as the carry bit is safely part of
    // each word and will be normalized out.  This could obviously be done
    // in a loop, but the unrolled version is faster.
    f.n[0] += val.n[0]
    f.n[1] += val.n[1]
    f.n[2] += val.n[2]
    f.n[3] += val.n[3]
    f.n[4] += val.n[4]
    f.n[5] += val.n[5]
    f.n[6] += val.n[6]
    f.n[7] += val.n[7]
    f.n[8] += val.n[8]
    f.n[9] += val.n[9]

    return f
}

// Add2 adds the passed two field values together and stores the result in f.
//
// The field value is returned to support chaining.  This enables syntax like:
// f3.Add2(f, f2).AddInt(1) so that f3 = f + f2 + 1.
func (f *fieldVal) Add2(val *fieldVal, val2 *fieldVal) *fieldVal {
    // Since the field representation intentionally provides overflow bits,
    // it's ok to use carryless addition as the carry bit is safely part of
    // each word and will be normalized out.  This could obviously be done
    // in a loop, but the unrolled version is faster.
    f.n[0] = val.n[0] + val2.n[0]
    f.n[1] = val.n[1] + val2.n[1]
    f.n[2] = val.n[2] + val2.n[2]
    f.n[3] = val.n[3] + val2.n[3]
    f.n[4] = val.n[4] + val2.n[4]
    f.n[5] = val.n[5] + val2.n[5]
    f.n[6] = val.n[6] + val2.n[6]
    f.n[7] = val.n[7] + val2.n[7]
    f.n[8] = val.n[8] + val2.n[8]
    f.n[9] = val.n[9] + val2.n[9]

    return f
}

// MulInt multiplies the field value by the passed int and stores the result in
// f.  Note that this function can overflow if multiplying the value by any of
// the individual words exceeds a max uint32.  Therefore it is important that
// the caller ensures no overflows will occur before using this function.
//
// The field value is returned to support chaining.  This enables syntax like:
// f.MulInt(2).Add(f2) so that f = 2 * f + f2.
func (f *fieldVal) MulInt(val uint) *fieldVal {
    // Since each word of the field representation can hold up to
    // fieldOverflowBits extra bits which will be normalized out, it's safe
    // to multiply each word without using a larger type or carry
    // propagation so long as the values won't overflow a uint32.  This
    // could obviously be done in a loop, but the unrolled version is
    // faster.
    ui := uint32(val)
    f.n[0] *= ui
    f.n[1] *= ui
    f.n[2] *= ui
    f.n[3] *= ui
    f.n[4] *= ui
    f.n[5] *= ui
    f.n[6] *= ui
    f.n[7] *= ui
    f.n[8] *= ui
    f.n[9] *= ui

    return f
}

// Mul multiplies the passed value to the existing field value and stores the
// result in f.  Note that this function can overflow if multiplying any
// of the individual words exceeds a max uint32.  In practice, this means the
// magnitude of either value involved in the multiplication must be a max of
// 8.
//
// The field value is returned to support chaining.  This enables syntax like:
// f.Mul(f2).AddInt(1) so that f = (f * f2) + 1.
func (f *fieldVal) Mul(val *fieldVal) *fieldVal {
    return f.Mul2(f, val)
}

// Mul2 multiplies the passed two field values together and stores the result
// result in f.  Note that this function can overflow if multiplying any of
// the individual words exceeds a max uint32.  In practice, this means the
// magnitude of either value involved in the multiplication must be a max of
// 8.
//
// The field value is returned to support chaining.  This enables syntax like:
// f3.Mul2(f, f2).AddInt(1) so that f3 = (f * f2) + 1.
func (f *fieldVal) Mul2(val *fieldVal, val2 *fieldVal) *fieldVal {
    // This could be done with a couple of for loops and an array to store
    // the intermediate terms, but this unrolled version is significantly
    // faster.

    // Terms for 2^(fieldBase*0).
    m := uint64(val.n[0]) * uint64(val2.n[0])
    t0 := m & fieldBaseMask

    // Terms for 2^(fieldBase*1).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[1]) +
        uint64(val.n[1])*uint64(val2.n[0])
    t1 := m & fieldBaseMask

    // Terms for 2^(fieldBase*2).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[2]) +
        uint64(val.n[1])*uint64(val2.n[1]) +
        uint64(val.n[2])*uint64(val2.n[0])
    t2 := m & fieldBaseMask

    // Terms for 2^(fieldBase*3).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[3]) +
        uint64(val.n[1])*uint64(val2.n[2]) +
        uint64(val.n[2])*uint64(val2.n[1]) +
        uint64(val.n[3])*uint64(val2.n[0])
    t3 := m & fieldBaseMask

    // Terms for 2^(fieldBase*4).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[4]) +
        uint64(val.n[1])*uint64(val2.n[3]) +
        uint64(val.n[2])*uint64(val2.n[2]) +
        uint64(val.n[3])*uint64(val2.n[1]) +
        uint64(val.n[4])*uint64(val2.n[0])
    t4 := m & fieldBaseMask

    // Terms for 2^(fieldBase*5).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[5]) +
        uint64(val.n[1])*uint64(val2.n[4]) +
        uint64(val.n[2])*uint64(val2.n[3]) +
        uint64(val.n[3])*uint64(val2.n[2]) +
        uint64(val.n[4])*uint64(val2.n[1]) +
        uint64(val.n[5])*uint64(val2.n[0])
    t5 := m & fieldBaseMask

    // Terms for 2^(fieldBase*6).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[6]) +
        uint64(val.n[1])*uint64(val2.n[5]) +
        uint64(val.n[2])*uint64(val2.n[4]) +
        uint64(val.n[3])*uint64(val2.n[3]) +
        uint64(val.n[4])*uint64(val2.n[2]) +
        uint64(val.n[5])*uint64(val2.n[1]) +
        uint64(val.n[6])*uint64(val2.n[0])
    t6 := m & fieldBaseMask

    // Terms for 2^(fieldBase*7).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[7]) +
        uint64(val.n[1])*uint64(val2.n[6]) +
        uint64(val.n[2])*uint64(val2.n[5]) +
        uint64(val.n[3])*uint64(val2.n[4]) +
        uint64(val.n[4])*uint64(val2.n[3]) +
        uint64(val.n[5])*uint64(val2.n[2]) +
        uint64(val.n[6])*uint64(val2.n[1]) +
        uint64(val.n[7])*uint64(val2.n[0])
    t7 := m & fieldBaseMask

    // Terms for 2^(fieldBase*8).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[8]) +
        uint64(val.n[1])*uint64(val2.n[7]) +
        uint64(val.n[2])*uint64(val2.n[6]) +
        uint64(val.n[3])*uint64(val2.n[5]) +
        uint64(val.n[4])*uint64(val2.n[4]) +
        uint64(val.n[5])*uint64(val2.n[3]) +
        uint64(val.n[6])*uint64(val2.n[2]) +
        uint64(val.n[7])*uint64(val2.n[1]) +
        uint64(val.n[8])*uint64(val2.n[0])
    t8 := m & fieldBaseMask

    // Terms for 2^(fieldBase*9).
    m = (m >> fieldBase) +
        uint64(val.n[0])*uint64(val2.n[9]) +
        uint64(val.n[1])*uint64(val2.n[8]) +
        uint64(val.n[2])*uint64(val2.n[7]) +
        uint64(val.n[3])*uint64(val2.n[6]) +
        uint64(val.n[4])*uint64(val2.n[5]) +
        uint64(val.n[5])*uint64(val2.n[4]) +
        uint64(val.n[6])*uint64(val2.n[3]) +
        uint64(val.n[7])*uint64(val2.n[2]) +
        uint64(val.n[8])*uint64(val2.n[1]) +
        uint64(val.n[9])*uint64(val2.n[0])
    t9 := m & fieldBaseMask

    // Terms for 2^(fieldBase*10).
    m = (m >> fieldBase) +
        uint64(val.n[1])*uint64(val2.n[9]) +
        uint64(val.n[2])*uint64(val2.n[8]) +
        uint64(val.n[3])*uint64(val2.n[7]) +
        uint64(val.n[4])*uint64(val2.n[6]) +
        uint64(val.n[5])*uint64(val2.n[5]) +
        uint64(val.n[6])*uint64(val2.n[4]) +
        uint64(val.n[7])*uint64(val2.n[3]) +
        uint64(val.n[8])*uint64(val2.n[2]) +
        uint64(val.n[9])*uint64(val2.n[1])
    t10 := m & fieldBaseMask

    // Terms for 2^(fieldBase*11).
    m = (m >> fieldBase) +
        uint64(val.n[2])*uint64(val2.n[9]) +
        uint64(val.n[3])*uint64(val2.n[8]) +
        uint64(val.n[4])*uint64(val2.n[7]) +
        uint64(val.n[5])*uint64(val2.n[6]) +
        uint64(val.n[6])*uint64(val2.n[5]) +
        uint64(val.n[7])*uint64(val2.n[4]) +
        uint64(val.n[8])*uint64(val2.n[3]) +
        uint64(val.n[9])*uint64(val2.n[2])
    t11 := m & fieldBaseMask

    // Terms for 2^(fieldBase*12).
    m = (m >> fieldBase) +
        uint64(val.n[3])*uint64(val2.n[9]) +
        uint64(val.n[4])*uint64(val2.n[8]) +
        uint64(val.n[5])*uint64(val2.n[7]) +
        uint64(val.n[6])*uint64(val2.n[6]) +
        uint64(val.n[7])*uint64(val2.n[5]) +
        uint64(val.n[8])*uint64(val2.n[4]) +
        uint64(val.n[9])*uint64(val2.n[3])
    t12 := m & fieldBaseMask

    // Terms for 2^(fieldBase*13).
    m = (m >> fieldBase) +
        uint64(val.n[4])*uint64(val2.n[9]) +
        uint64(val.n[5])*uint64(val2.n[8]) +
        uint64(val.n[6])*uint64(val2.n[7]) +
        uint64(val.n[7])*uint64(val2.n[6]) +
        uint64(val.n[8])*uint64(val2.n[5]) +
        uint64(val.n[9])*uint64(val2.n[4])
    t13 := m & fieldBaseMask

    // Terms for 2^(fieldBase*14).
    m = (m >> fieldBase) +
        uint64(val.n[5])*uint64(val2.n[9]) +
        uint64(val.n[6])*uint64(val2.n[8]) +
        uint64(val.n[7])*uint64(val2.n[7]) +
        uint64(val.n[8])*uint64(val2.n[6]) +
        uint64(val.n[9])*uint64(val2.n[5])
    t14 := m & fieldBaseMask

    // Terms for 2^(fieldBase*15).
    m = (m >> fieldBase) +
        uint64(val.n[6])*uint64(val2.n[9]) +
        uint64(val.n[7])*uint64(val2.n[8]) +
        uint64(val.n[8])*uint64(val2.n[7]) +
        uint64(val.n[9])*uint64(val2.n[6])
    t15 := m & fieldBaseMask

    // Terms for 2^(fieldBase*16).
    m = (m >> fieldBase) +
        uint64(val.n[7])*uint64(val2.n[9]) +
        uint64(val.n[8])*uint64(val2.n[8]) +
        uint64(val.n[9])*uint64(val2.n[7])
    t16 := m & fieldBaseMask

    // Terms for 2^(fieldBase*17).
    m = (m >> fieldBase) +
        uint64(val.n[8])*uint64(val2.n[9]) +
        uint64(val.n[9])*uint64(val2.n[8])
    t17 := m & fieldBaseMask

    // Terms for 2^(fieldBase*18).
    m = (m >> fieldBase) + uint64(val.n[9])*uint64(val2.n[9])
    t18 := m & fieldBaseMask

    // What's left is for 2^(fieldBase*19).
    t19 := m >> fieldBase

    // At this point, all of the terms are grouped into their respective
    // base.
    //
    // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
    // when the modulus is of the special form m = b^t - c, highly efficient
    // reduction can be achieved per the provided algorithm.
    //
    // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
    // this criteria.
    //
    // 4294968273 in field representation (base 2^26) is:
    // n[0] = 977
    // n[1] = 64
    // That is to say (2^26 * 64) + 977 = 4294968273
    //
    // Since each word is in base 26, the upper terms (t10 and up) start
    // at 260 bits (versus the final desired range of 256 bits), so the
    // field representation of 'c' from above needs to be adjusted for the
    // extra 4 bits by multiplying it by 2^4 = 16.  4294968273 * 16 =
    // 68719492368.  Thus, the adjusted field representation of 'c' is:
    // n[0] = 977 * 16 = 15632
    // n[1] = 64 * 16 = 1024
    // That is to say (2^26 * 1024) + 15632 = 68719492368
    //
    // To reduce the final term, t19, the entire 'c' value is needed instead
    // of only n[0] because there are no more terms left to handle n[1].
    // This means there might be some magnitude left in the upper bits that
    // is handled below.
    m = t0 + t10*15632
    t0 = m & fieldBaseMask
    m = (m >> fieldBase) + t1 + t10*1024 + t11*15632
    t1 = m & fieldBaseMask
    m = (m >> fieldBase) + t2 + t11*1024 + t12*15632
    t2 = m & fieldBaseMask
    m = (m >> fieldBase) + t3 + t12*1024 + t13*15632
    t3 = m & fieldBaseMask
    m = (m >> fieldBase) + t4 + t13*1024 + t14*15632
    t4 = m & fieldBaseMask
    m = (m >> fieldBase) + t5 + t14*1024 + t15*15632
    t5 = m & fieldBaseMask
    m = (m >> fieldBase) + t6 + t15*1024 + t16*15632
    t6 = m & fieldBaseMask
    m = (m >> fieldBase) + t7 + t16*1024 + t17*15632
    t7 = m & fieldBaseMask
    m = (m >> fieldBase) + t8 + t17*1024 + t18*15632
    t8 = m & fieldBaseMask
    m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368
    t9 = m & fieldMSBMask
    m = m >> fieldMSBBits

    // At this point, if the magnitude is greater than 0, the overall value
    // is greater than the max possible 256-bit value.  In particular, it is
    // "how many times larger" than the max value it is.
    //
    // The algorithm presented in [HAC] section 14.3.4 repeats until the
    // quotient is zero.  However, due to the above, we already know at
    // least how many times we would need to repeat as it's the value
    // currently in m.  Thus we can simply multiply the magnitude by the
    // field representation of the prime and do a single iteration.  Notice
    // that nothing will be changed when the magnitude is zero, so we could
    // skip this in that case, however always running regardless allows it
    // to run in constant time.  The final result will be in the range
    // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a
    // magnitude of 1, but it is denormalized.
    d := t0 + m*977
    f.n[0] = uint32(d & fieldBaseMask)
    d = (d >> fieldBase) + t1 + m*64
    f.n[1] = uint32(d & fieldBaseMask)
    f.n[2] = uint32((d >> fieldBase) + t2)
    f.n[3] = uint32(t3)
    f.n[4] = uint32(t4)
    f.n[5] = uint32(t5)
    f.n[6] = uint32(t6)
    f.n[7] = uint32(t7)
    f.n[8] = uint32(t8)
    f.n[9] = uint32(t9)

    return f
}

// Square squares the field value.  The existing field value is modified.  Note
// that this function can overflow if multiplying any of the individual words
// exceeds a max uint32.  In practice, this means the magnitude of the field
// must be a max of 8 to prevent overflow.
//
// The field value is returned to support chaining.  This enables syntax like:
// f.Square().Mul(f2) so that f = f^2 * f2.
func (f *fieldVal) Square() *fieldVal {
    return f.SquareVal(f)
}

// SquareVal squares the passed value and stores the result in f.  Note that
// this function can overflow if multiplying any of the individual words
// exceeds a max uint32.  In practice, this means the magnitude of the field
// being squred must be a max of 8 to prevent overflow.
//
// The field value is returned to support chaining.  This enables syntax like:
// f3.SquareVal(f).Mul(f) so that f3 = f^2 * f = f^3.
func (f *fieldVal) SquareVal(val *fieldVal) *fieldVal {
    // This could be done with a couple of for loops and an array to store
    // the intermediate terms, but this unrolled version is significantly
    // faster.

    // Terms for 2^(fieldBase*0).
    m := uint64(val.n[0]) * uint64(val.n[0])
    t0 := m & fieldBaseMask

    // Terms for 2^(fieldBase*1).
    m = (m >> fieldBase) + 2*uint64(val.n[0])*uint64(val.n[1])
    t1 := m & fieldBaseMask

    // Terms for 2^(fieldBase*2).
    m = (m >> fieldBase) +
        2*uint64(val.n[0])*uint64(val.n[2]) +
        uint64(val.n[1])*uint64(val.n[1])
    t2 := m & fieldBaseMask

    // Terms for 2^(fieldBase*3).
    m = (m >> fieldBase) +
        2*uint64(val.n[0])*uint64(val.n[3]) +
        2*uint64(val.n[1])*uint64(val.n[2])
    t3 := m & fieldBaseMask

    // Terms for 2^(fieldBase*4).
    m = (m >> fieldBase) +
        2*uint64(val.n[0])*uint64(val.n[4]) +
        2*uint64(val.n[1])*uint64(val.n[3]) +
        uint64(val.n[2])*uint64(val.n[2])
    t4 := m & fieldBaseMask

    // Terms for 2^(fieldBase*5).
    m = (m >> fieldBase) +
        2*uint64(val.n[0])*uint64(val.n[5]) +
        2*uint64(val.n[1])*uint64(val.n[4]) +
        2*uint64(val.n[2])*uint64(val.n[3])
    t5 := m & fieldBaseMask

    // Terms for 2^(fieldBase*6).
    m = (m >> fieldBase) +
        2*uint64(val.n[0])*uint64(val.n[6]) +
        2*uint64(val.n[1])*uint64(val.n[5]) +
        2*uint64(val.n[2])*uint64(val.n[4]) +
        uint64(val.n[3])*uint64(val.n[3])
    t6 := m & fieldBaseMask

    // Terms for 2^(fieldBase*7).
    m = (m >> fieldBase) +
        2*uint64(val.n[0])*uint64(val.n[7]) +
        2*uint64(val.n[1])*uint64(val.n[6]) +
        2*uint64(val.n[2])*uint64(val.n[5]) +
        2*uint64(val.n[3])*uint64(val.n[4])
    t7 := m & fieldBaseMask

    // Terms for 2^(fieldBase*8).
    m = (m >> fieldBase) +
        2*uint64(val.n[0])*uint64(val.n[8]) +
        2*uint64(val.n[1])*uint64(val.n[7]) +
        2*uint64(val.n[2])*uint64(val.n[6]) +
        2*uint64(val.n[3])*uint64(val.n[5]) +
        uint64(val.n[4])*uint64(val.n[4])
    t8 := m & fieldBaseMask

    // Terms for 2^(fieldBase*9).
    m = (m >> fieldBase) +
        2*uint64(val.n[0])*uint64(val.n[9]) +
        2*uint64(val.n[1])*uint64(val.n[8]) +
        2*uint64(val.n[2])*uint64(val.n[7]) +
        2*uint64(val.n[3])*uint64(val.n[6]) +
        2*uint64(val.n[4])*uint64(val.n[5])
    t9 := m & fieldBaseMask

    // Terms for 2^(fieldBase*10).
    m = (m >> fieldBase) +
        2*uint64(val.n[1])*uint64(val.n[9]) +
        2*uint64(val.n[2])*uint64(val.n[8]) +
        2*uint64(val.n[3])*uint64(val.n[7]) +
        2*uint64(val.n[4])*uint64(val.n[6]) +
        uint64(val.n[5])*uint64(val.n[5])
    t10 := m & fieldBaseMask

    // Terms for 2^(fieldBase*11).
    m = (m >> fieldBase) +
        2*uint64(val.n[2])*uint64(val.n[9]) +
        2*uint64(val.n[3])*uint64(val.n[8]) +
        2*uint64(val.n[4])*uint64(val.n[7]) +
        2*uint64(val.n[5])*uint64(val.n[6])
    t11 := m & fieldBaseMask

    // Terms for 2^(fieldBase*12).
    m = (m >> fieldBase) +
        2*uint64(val.n[3])*uint64(val.n[9]) +
        2*uint64(val.n[4])*uint64(val.n[8]) +
        2*uint64(val.n[5])*uint64(val.n[7]) +
        uint64(val.n[6])*uint64(val.n[6])
    t12 := m & fieldBaseMask

    // Terms for 2^(fieldBase*13).
    m = (m >> fieldBase) +
        2*uint64(val.n[4])*uint64(val.n[9]) +
        2*uint64(val.n[5])*uint64(val.n[8]) +
        2*uint64(val.n[6])*uint64(val.n[7])
    t13 := m & fieldBaseMask

    // Terms for 2^(fieldBase*14).
    m = (m >> fieldBase) +
        2*uint64(val.n[5])*uint64(val.n[9]) +
        2*uint64(val.n[6])*uint64(val.n[8]) +
        uint64(val.n[7])*uint64(val.n[7])
    t14 := m & fieldBaseMask

    // Terms for 2^(fieldBase*15).
    m = (m >> fieldBase) +
        2*uint64(val.n[6])*uint64(val.n[9]) +
        2*uint64(val.n[7])*uint64(val.n[8])
    t15 := m & fieldBaseMask

    // Terms for 2^(fieldBase*16).
    m = (m >> fieldBase) +
        2*uint64(val.n[7])*uint64(val.n[9]) +
        uint64(val.n[8])*uint64(val.n[8])
    t16 := m & fieldBaseMask

    // Terms for 2^(fieldBase*17).
    m = (m >> fieldBase) + 2*uint64(val.n[8])*uint64(val.n[9])
    t17 := m & fieldBaseMask

    // Terms for 2^(fieldBase*18).
    m = (m >> fieldBase) + uint64(val.n[9])*uint64(val.n[9])
    t18 := m & fieldBaseMask

    // What's left is for 2^(fieldBase*19).
    t19 := m >> fieldBase

    // At this point, all of the terms are grouped into their respective
    // base.
    //
    // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
    // when the modulus is of the special form m = b^t - c, highly efficient
    // reduction can be achieved per the provided algorithm.
    //
    // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
    // this criteria.
    //
    // 4294968273 in field representation (base 2^26) is:
    // n[0] = 977
    // n[1] = 64
    // That is to say (2^26 * 64) + 977 = 4294968273
    //
    // Since each word is in base 26, the upper terms (t10 and up) start
    // at 260 bits (versus the final desired range of 256 bits), so the
    // field representation of 'c' from above needs to be adjusted for the
    // extra 4 bits by multiplying it by 2^4 = 16.  4294968273 * 16 =
    // 68719492368.  Thus, the adjusted field representation of 'c' is:
    // n[0] = 977 * 16 = 15632
    // n[1] = 64 * 16 = 1024
    // That is to say (2^26 * 1024) + 15632 = 68719492368
    //
    // To reduce the final term, t19, the entire 'c' value is needed instead
    // of only n[0] because there are no more terms left to handle n[1].
    // This means there might be some magnitude left in the upper bits that
    // is handled below.
    m = t0 + t10*15632
    t0 = m & fieldBaseMask
    m = (m >> fieldBase) + t1 + t10*1024 + t11*15632
    t1 = m & fieldBaseMask
    m = (m >> fieldBase) + t2 + t11*1024 + t12*15632
    t2 = m & fieldBaseMask
    m = (m >> fieldBase) + t3 + t12*1024 + t13*15632
    t3 = m & fieldBaseMask
    m = (m >> fieldBase) + t4 + t13*1024 + t14*15632
    t4 = m & fieldBaseMask
    m = (m >> fieldBase) + t5 + t14*1024 + t15*15632
    t5 = m & fieldBaseMask
    m = (m >> fieldBase) + t6 + t15*1024 + t16*15632
    t6 = m & fieldBaseMask
    m = (m >> fieldBase) + t7 + t16*1024 + t17*15632
    t7 = m & fieldBaseMask
    m = (m >> fieldBase) + t8 + t17*1024 + t18*15632
    t8 = m & fieldBaseMask
    m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368
    t9 = m & fieldMSBMask
    m = m >> fieldMSBBits

    // At this point, if the magnitude is greater than 0, the overall value
    // is greater than the max possible 256-bit value.  In particular, it is
    // "how many times larger" than the max value it is.
    //
    // The algorithm presented in [HAC] section 14.3.4 repeats until the
    // quotient is zero.  However, due to the above, we already know at
    // least how many times we would need to repeat as it's the value
    // currently in m.  Thus we can simply multiply the magnitude by the
    // field representation of the prime and do a single iteration.  Notice
    // that nothing will be changed when the magnitude is zero, so we could
    // skip this in that case, however always running regardless allows it
    // to run in constant time.  The final result will be in the range
    // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a
    // magnitude of 1, but it is denormalized.
    n := t0 + m*977
    f.n[0] = uint32(n & fieldBaseMask)
    n = (n >> fieldBase) + t1 + m*64
    f.n[1] = uint32(n & fieldBaseMask)
    f.n[2] = uint32((n >> fieldBase) + t2)
    f.n[3] = uint32(t3)
    f.n[4] = uint32(t4)
    f.n[5] = uint32(t5)
    f.n[6] = uint32(t6)
    f.n[7] = uint32(t7)
    f.n[8] = uint32(t8)
    f.n[9] = uint32(t9)

    return f
}

// Inverse finds the modular multiplicative inverse of the field value.  The
// existing field value is modified.
//
// The field value is returned to support chaining.  This enables syntax like:
// f.Inverse().Mul(f2) so that f = f^-1 * f2.
func (f *fieldVal) Inverse() *fieldVal {
    // Fermat's little theorem states that for a nonzero number a and prime
    // prime p, a^(p-1) = 1 (mod p).  Since the multipliciative inverse is
    // a*b = 1 (mod p), it follows that b = a*a^(p-2) = a^(p-1) = 1 (mod p).
    // Thus, a^(p-2) is the multiplicative inverse.
    //
    // In order to efficiently compute a^(p-2), p-2 needs to be split into
    // a sequence of squares and multipications that minimizes the number of
    // multiplications needed (since they are more costly than squarings).
    // Intermediate results are saved and reused as well.
    //
    // The secp256k1 prime - 2 is 2^256 - 4294968275.
    //
    // This has a cost of 258 field squarings and 33 field multiplications.
    var a2, a3, a4, a10, a11, a21, a42, a45, a63, a1019, a1023 fieldVal
    a2.SquareVal(f)
    a3.Mul2(&a2, f)
    a4.SquareVal(&a2)
    a10.SquareVal(&a4).Mul(&a2)
    a11.Mul2(&a10, f)
    a21.Mul2(&a10, &a11)
    a42.SquareVal(&a21)
    a45.Mul2(&a42, &a3)
    a63.Mul2(&a42, &a21)
    a1019.SquareVal(&a63).Square().Square().Square().Mul(&a11)
    a1023.Mul2(&a1019, &a4)
    f.Set(&a63)                                    // f = a^(2^6 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^11 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^16 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^16 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^21 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^26 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^26 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^31 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^36 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^36 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^41 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^46 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^46 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^51 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^56 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^56 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^61 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^66 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^66 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^71 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^76 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^76 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^81 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^86 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^86 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^91 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^96 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^96 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^101 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^106 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^106 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^111 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^116 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^116 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^121 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^126 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^126 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^131 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^136 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^136 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^141 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^146 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^146 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^151 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^156 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^156 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^161 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^166 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^166 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^171 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^176 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^176 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^181 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^186 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^186 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^191 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^196 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^196 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^201 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^206 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^206 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^211 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^216 - 1024)
    f.Mul(&a1023)                                  // f = a^(2^216 - 1)
    f.Square().Square().Square().Square().Square() // f = a^(2^221 - 32)
    f.Square().Square().Square().Square().Square() // f = a^(2^226 - 1024)
    f.Mul(&a1019)                                  // f = a^(2^226 - 5)
    f.Square().Square().Square().Square().Square() // f = a^(2^231 - 160)
    f.Square().Square().Square().Square().Square() // f = a^(2^236 - 5120)
    f.Mul(&a1023)                                  // f = a^(2^236 - 4097)
    f.Square().Square().Square().Square().Square() // f = a^(2^241 - 131104)
    f.Square().Square().Square().Square().Square() // f = a^(2^246 - 4195328)
    f.Mul(&a1023)                                  // f = a^(2^246 - 4194305)
    f.Square().Square().Square().Square().Square() // f = a^(2^251 - 134217760)
    f.Square().Square().Square().Square().Square() // f = a^(2^256 - 4294968320)
    return f.Mul(&a45)                             // f = a^(2^256 - 4294968275) = a^(p-2)
}