aboutsummaryrefslogtreecommitdiffstats
path: root/trie/iterator.go
blob: 00b890eb896fade08b70c47b4928af1b73449f46 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package trie

import (
    "bytes"
    "container/heap"
    "errors"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/rlp"
)

// Iterator is a key-value trie iterator that traverses a Trie.
type Iterator struct {
    nodeIt NodeIterator

    Key   []byte // Current data key on which the iterator is positioned on
    Value []byte // Current data value on which the iterator is positioned on
    Err   error
}

// NewIterator creates a new key-value iterator from a node iterator
func NewIterator(it NodeIterator) *Iterator {
    return &Iterator{
        nodeIt: it,
    }
}

// Next moves the iterator forward one key-value entry.
func (it *Iterator) Next() bool {
    for it.nodeIt.Next(true) {
        if it.nodeIt.Leaf() {
            it.Key = it.nodeIt.LeafKey()
            it.Value = it.nodeIt.LeafBlob()
            return true
        }
    }
    it.Key = nil
    it.Value = nil
    it.Err = it.nodeIt.Error()
    return false
}

// Prove generates the Merkle proof for the leaf node the iterator is currently
// positioned on.
func (it *Iterator) Prove() [][]byte {
    return it.nodeIt.LeafProof()
}

// NodeIterator is an iterator to traverse the trie pre-order.
type NodeIterator interface {
    // Next moves the iterator to the next node. If the parameter is false, any child
    // nodes will be skipped.
    Next(bool) bool

    // Error returns the error status of the iterator.
    Error() error

    // Hash returns the hash of the current node.
    Hash() common.Hash

    // Parent returns the hash of the parent of the current node. The hash may be the one
    // grandparent if the immediate parent is an internal node with no hash.
    Parent() common.Hash

    // Path returns the hex-encoded path to the current node.
    // Callers must not retain references to the return value after calling Next.
    // For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
    Path() []byte

    // Leaf returns true iff the current node is a leaf node.
    Leaf() bool

    // LeafKey returns the key of the leaf. The method panics if the iterator is not
    // positioned at a leaf. Callers must not retain references to the value after
    // calling Next.
    LeafKey() []byte

    // LeafBlob returns the content of the leaf. The method panics if the iterator
    // is not positioned at a leaf. Callers must not retain references to the value
    // after calling Next.
    LeafBlob() []byte

    // LeafProof returns the Merkle proof of the leaf. The method panics if the
    // iterator is not positioned at a leaf. Callers must not retain references
    // to the value after calling Next.
    LeafProof() [][]byte
}

// nodeIteratorState represents the iteration state at one particular node of the
// trie, which can be resumed at a later invocation.
type nodeIteratorState struct {
    hash    common.Hash // Hash of the node being iterated (nil if not standalone)
    node    node        // Trie node being iterated
    parent  common.Hash // Hash of the first full ancestor node (nil if current is the root)
    index   int         // Child to be processed next
    pathlen int         // Length of the path to this node
}

type nodeIterator struct {
    trie  *Trie                // Trie being iterated
    stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
    path  []byte               // Path to the current node
    err   error                // Failure set in case of an internal error in the iterator
}

// errIteratorEnd is stored in nodeIterator.err when iteration is done.
var errIteratorEnd = errors.New("end of iteration")

// seekError is stored in nodeIterator.err if the initial seek has failed.
type seekError struct {
    key []byte
    err error
}

func (e seekError) Error() string {
    return "seek error: " + e.err.Error()
}

func newNodeIterator(trie *Trie, start []byte) NodeIterator {
    if trie.Hash() == emptyState {
        return new(nodeIterator)
    }
    it := &nodeIterator{trie: trie}
    it.err = it.seek(start)
    return it
}

func (it *nodeIterator) Hash() common.Hash {
    if len(it.stack) == 0 {
        return common.Hash{}
    }
    return it.stack[len(it.stack)-1].hash
}

func (it *nodeIterator) Parent() common.Hash {
    if len(it.stack) == 0 {
        return common.Hash{}
    }
    return it.stack[len(it.stack)-1].parent
}

func (it *nodeIterator) Leaf() bool {
    return hasTerm(it.path)
}

func (it *nodeIterator) LeafKey() []byte {
    if len(it.stack) > 0 {
        if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
            return hexToKeybytes(it.path)
        }
    }
    panic("not at leaf")
}

func (it *nodeIterator) LeafBlob() []byte {
    if len(it.stack) > 0 {
        if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
            return []byte(node)
        }
    }
    panic("not at leaf")
}

func (it *nodeIterator) LeafProof() [][]byte {
    if len(it.stack) > 0 {
        if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
            hasher := newHasher(0, 0, nil)
            proofs := make([][]byte, 0, len(it.stack))

            for i, item := range it.stack[:len(it.stack)-1] {
                // Gather nodes that end up as hash nodes (or the root)
                node, _, _ := hasher.hashChildren(item.node, nil)
                hashed, _ := hasher.store(node, nil, false)
                if _, ok := hashed.(hashNode); ok || i == 0 {
                    enc, _ := rlp.EncodeToBytes(node)
                    proofs = append(proofs, enc)
                }
            }
            return proofs
        }
    }
    panic("not at leaf")
}

func (it *nodeIterator) Path() []byte {
    return it.path
}

func (it *nodeIterator) Error() error {
    if it.err == errIteratorEnd {
        return nil
    }
    if seek, ok := it.err.(seekError); ok {
        return seek.err
    }
    return it.err
}

// Next moves the iterator to the next node, returning whether there are any
// further nodes. In case of an internal error this method returns false and
// sets the Error field to the encountered failure. If `descend` is false,
// skips iterating over any subnodes of the current node.
func (it *nodeIterator) Next(descend bool) bool {
    if it.err == errIteratorEnd {
        return false
    }
    if seek, ok := it.err.(seekError); ok {
        if it.err = it.seek(seek.key); it.err != nil {
            return false
        }
    }
    // Otherwise step forward with the iterator and report any errors.
    state, parentIndex, path, err := it.peek(descend)
    it.err = err
    if it.err != nil {
        return false
    }
    it.push(state, parentIndex, path)
    return true
}

func (it *nodeIterator) seek(prefix []byte) error {
    // The path we're looking for is the hex encoded key without terminator.
    key := keybytesToHex(prefix)
    key = key[:len(key)-1]
    // Move forward until we're just before the closest match to key.
    for {
        state, parentIndex, path, err := it.peek(bytes.HasPrefix(key, it.path))
        if err == errIteratorEnd {
            return errIteratorEnd
        } else if err != nil {
            return seekError{prefix, err}
        } else if bytes.Compare(path, key) >= 0 {
            return nil
        }
        it.push(state, parentIndex, path)
    }
}

// peek creates the next state of the iterator.
func (it *nodeIterator) peek(descend bool) (*nodeIteratorState, *int, []byte, error) {
    if len(it.stack) == 0 {
        // Initialize the iterator if we've just started.
        root := it.trie.Hash()
        state := &nodeIteratorState{node: it.trie.root, index: -1}
        if root != emptyRoot {
            state.hash = root
        }
        err := state.resolve(it.trie, nil)
        return state, nil, nil, err
    }
    if !descend {
        // If we're skipping children, pop the current node first
        it.pop()
    }

    // Continue iteration to the next child
    for len(it.stack) > 0 {
        parent := it.stack[len(it.stack)-1]
        ancestor := parent.hash
        if (ancestor == common.Hash{}) {
            ancestor = parent.parent
        }
        state, path, ok := it.nextChild(parent, ancestor)
        if ok {
            if err := state.resolve(it.trie, path); err != nil {
                return parent, &parent.index, path, err
            }
            return state, &parent.index, path, nil
        }
        // No more child nodes, move back up.
        it.pop()
    }
    return nil, nil, nil, errIteratorEnd
}

func (st *nodeIteratorState) resolve(tr *Trie, path []byte) error {
    if hash, ok := st.node.(hashNode); ok {
        resolved, err := tr.resolveHash(hash, path)
        if err != nil {
            return err
        }
        st.node = resolved
        st.hash = common.BytesToHash(hash)
    }
    return nil
}

func (it *nodeIterator) nextChild(parent *nodeIteratorState, ancestor common.Hash) (*nodeIteratorState, []byte, bool) {
    switch node := parent.node.(type) {
    case *fullNode:
        // Full node, move to the first non-nil child.
        for i := parent.index + 1; i < len(node.Children); i++ {
            child := node.Children[i]
            if child != nil {
                hash, _ := child.cache()
                state := &nodeIteratorState{
                    hash:    common.BytesToHash(hash),
                    node:    child,
                    parent:  ancestor,
                    index:   -1,
                    pathlen: len(it.path),
                }
                path := append(it.path, byte(i))
                parent.index = i - 1
                return state, path, true
            }
        }
    case *shortNode:
        // Short node, return the pointer singleton child
        if parent.index < 0 {
            hash, _ := node.Val.cache()
            state := &nodeIteratorState{
                hash:    common.BytesToHash(hash),
                node:    node.Val,
                parent:  ancestor,
                index:   -1,
                pathlen: len(it.path),
            }
            path := append(it.path, node.Key...)
            return state, path, true
        }
    }
    return parent, it.path, false
}

func (it *nodeIterator) push(state *nodeIteratorState, parentIndex *int, path []byte) {
    it.path = path
    it.stack = append(it.stack, state)
    if parentIndex != nil {
        *parentIndex++
    }
}

func (it *nodeIterator) pop() {
    parent := it.stack[len(it.stack)-1]
    it.path = it.path[:parent.pathlen]
    it.stack = it.stack[:len(it.stack)-1]
}

func compareNodes(a, b NodeIterator) int {
    if cmp := bytes.Compare(a.Path(), b.Path()); cmp != 0 {
        return cmp
    }
    if a.Leaf() && !b.Leaf() {
        return -1
    } else if b.Leaf() && !a.Leaf() {
        return 1
    }
    if cmp := bytes.Compare(a.Hash().Bytes(), b.Hash().Bytes()); cmp != 0 {
        return cmp
    }
    if a.Leaf() && b.Leaf() {
        return bytes.Compare(a.LeafBlob(), b.LeafBlob())
    }
    return 0
}

type differenceIterator struct {
    a, b  NodeIterator // Nodes returned are those in b - a.
    eof   bool         // Indicates a has run out of elements
    count int          // Number of nodes scanned on either trie
}

// NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
// are not in a. Returns the iterator, and a pointer to an integer recording the number
// of nodes seen.
func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
    a.Next(true)
    it := &differenceIterator{
        a: a,
        b: b,
    }
    return it, &it.count
}

func (it *differenceIterator) Hash() common.Hash {
    return it.b.Hash()
}

func (it *differenceIterator) Parent() common.Hash {
    return it.b.Parent()
}

func (it *differenceIterator) Leaf() bool {
    return it.b.Leaf()
}

func (it *differenceIterator) LeafKey() []byte {
    return it.b.LeafKey()
}

func (it *differenceIterator) LeafBlob() []byte {
    return it.b.LeafBlob()
}

func (it *differenceIterator) LeafProof() [][]byte {
    return it.b.LeafProof()
}

func (it *differenceIterator) Path() []byte {
    return it.b.Path()
}

func (it *differenceIterator) Next(bool) bool {
    // Invariants:
    // - We always advance at least one element in b.
    // - At the start of this function, a's path is lexically greater than b's.
    if !it.b.Next(true) {
        return false
    }
    it.count++

    if it.eof {
        // a has reached eof, so we just return all elements from b
        return true
    }

    for {
        switch compareNodes(it.a, it.b) {
        case -1:
            // b jumped past a; advance a
            if !it.a.Next(true) {
                it.eof = true
                return true
            }
            it.count++
        case 1:
            // b is before a
            return true
        case 0:
            // a and b are identical; skip this whole subtree if the nodes have hashes
            hasHash := it.a.Hash() == common.Hash{}
            if !it.b.Next(hasHash) {
                return false
            }
            it.count++
            if !it.a.Next(hasHash) {
                it.eof = true
                return true
            }
            it.count++
        }
    }
}

func (it *differenceIterator) Error() error {
    if err := it.a.Error(); err != nil {
        return err
    }
    return it.b.Error()
}

type nodeIteratorHeap []NodeIterator

func (h nodeIteratorHeap) Len() int            { return len(h) }
func (h nodeIteratorHeap) Less(i, j int) bool  { return compareNodes(h[i], h[j]) < 0 }
func (h nodeIteratorHeap) Swap(i, j int)       { h[i], h[j] = h[j], h[i] }
func (h *nodeIteratorHeap) Push(x interface{}) { *h = append(*h, x.(NodeIterator)) }
func (h *nodeIteratorHeap) Pop() interface{} {
    n := len(*h)
    x := (*h)[n-1]
    *h = (*h)[0 : n-1]
    return x
}

type unionIterator struct {
    items *nodeIteratorHeap // Nodes returned are the union of the ones in these iterators
    count int               // Number of nodes scanned across all tries
}

// NewUnionIterator constructs a NodeIterator that iterates over elements in the union
// of the provided NodeIterators. Returns the iterator, and a pointer to an integer
// recording the number of nodes visited.
func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int) {
    h := make(nodeIteratorHeap, len(iters))
    copy(h, iters)
    heap.Init(&h)

    ui := &unionIterator{items: &h}
    return ui, &ui.count
}

func (it *unionIterator) Hash() common.Hash {
    return (*it.items)[0].Hash()
}

func (it *unionIterator) Parent() common.Hash {
    return (*it.items)[0].Parent()
}

func (it *unionIterator) Leaf() bool {
    return (*it.items)[0].Leaf()
}

func (it *unionIterator) LeafKey() []byte {
    return (*it.items)[0].LeafKey()
}

func (it *unionIterator) LeafBlob() []byte {
    return (*it.items)[0].LeafBlob()
}

func (it *unionIterator) LeafProof() [][]byte {
    return (*it.items)[0].LeafProof()
}

func (it *unionIterator) Path() []byte {
    return (*it.items)[0].Path()
}

// Next returns the next node in the union of tries being iterated over.
//
// It does this by maintaining a heap of iterators, sorted by the iteration
// order of their next elements, with one entry for each source trie. Each
// time Next() is called, it takes the least element from the heap to return,
// advancing any other iterators that also point to that same element. These
// iterators are called with descend=false, since we know that any nodes under
// these nodes will also be duplicates, found in the currently selected iterator.
// Whenever an iterator is advanced, it is pushed back into the heap if it still
// has elements remaining.
//
// In the case that descend=false - eg, we're asked to ignore all subnodes of the
// current node - we also advance any iterators in the heap that have the current
// path as a prefix.
func (it *unionIterator) Next(descend bool) bool {
    if len(*it.items) == 0 {
        return false
    }

    // Get the next key from the union
    least := heap.Pop(it.items).(NodeIterator)

    // Skip over other nodes as long as they're identical, or, if we're not descending, as
    // long as they have the same prefix as the current node.
    for len(*it.items) > 0 && ((!descend && bytes.HasPrefix((*it.items)[0].Path(), least.Path())) || compareNodes(least, (*it.items)[0]) == 0) {
        skipped := heap.Pop(it.items).(NodeIterator)
        // Skip the whole subtree if the nodes have hashes; otherwise just skip this node
        if skipped.Next(skipped.Hash() == common.Hash{}) {
            it.count++
            // If there are more elements, push the iterator back on the heap
            heap.Push(it.items, skipped)
        }
    }
    if least.Next(descend) {
        it.count++
        heap.Push(it.items, least)
    }
    return len(*it.items) > 0
}

func (it *unionIterator) Error() error {
    for i := 0; i < len(*it.items); i++ {
        if err := (*it.items)[i].Error(); err != nil {
            return err
        }
    }
    return nil
}