aboutsummaryrefslogtreecommitdiffstats
path: root/swarm/pss/prox_test.go
blob: 1c8538d50be35a671ef4ccf17099f379fd04360d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
package pss

import (
    "context"
    "encoding/binary"
    "encoding/json"
    "errors"
    "fmt"
    "io/ioutil"
    "os"
    "strconv"
    "strings"
    "sync"
    "testing"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/common/hexutil"
    "github.com/ethereum/go-ethereum/log"
    "github.com/ethereum/go-ethereum/node"
    "github.com/ethereum/go-ethereum/p2p"
    "github.com/ethereum/go-ethereum/p2p/enode"
    "github.com/ethereum/go-ethereum/p2p/simulations"
    "github.com/ethereum/go-ethereum/p2p/simulations/adapters"
    "github.com/ethereum/go-ethereum/rpc"
    "github.com/ethereum/go-ethereum/swarm/network"
    "github.com/ethereum/go-ethereum/swarm/network/simulation"
    "github.com/ethereum/go-ethereum/swarm/pot"
    "github.com/ethereum/go-ethereum/swarm/state"
)

// needed to make the enode id of the receiving node available to the handler for triggers
type handlerContextFunc func(*testData, *adapters.NodeConfig) *handler

// struct to notify reception of messages to simulation driver
// TODO To make code cleaner:
// - consider a separate pss unwrap to message event in sim framework (this will make eventual message propagation analysis with pss easier/possible in the future)
// - consider also test api calls to inspect handling results of messages
type handlerNotification struct {
    id     enode.ID
    serial uint64
}

type testData struct {
    mu               sync.Mutex
    sim              *simulation.Simulation
    handlerDone      bool // set to true on termination of the simulation run
    requiredMessages int
    allowedMessages  int
    messageCount     int
    kademlias        map[enode.ID]*network.Kademlia
    nodeAddrs        map[enode.ID][]byte      // make predictable overlay addresses from the generated random enode ids
    recipients       map[int][]enode.ID       // for logging output only
    allowed          map[int][]enode.ID       // allowed recipients
    expectedMsgs     map[enode.ID][]uint64    // message serials we expect respective nodes to receive
    allowedMsgs      map[enode.ID][]uint64    // message serials we expect respective nodes to receive
    senders          map[int]enode.ID         // originating nodes of the messages (intention is to choose as far as possible from the receiving neighborhood)
    handlerC         chan handlerNotification // passes message from pss message handler to simulation driver
    doneC            chan struct{}            // terminates the handler channel listener
    errC             chan error               // error to pass to main sim thread
    msgC             chan handlerNotification // message receipt notification to main sim thread
    msgs             [][]byte                 // recipient addresses of messages
}

var (
    pof   = pot.DefaultPof(256) // generate messages and index them
    topic = BytesToTopic([]byte{0xf3, 0x9e, 0x06, 0x82})
)

func (d *testData) getMsgCount() int {
    d.mu.Lock()
    defer d.mu.Unlock()
    return d.messageCount
}

func (d *testData) incrementMsgCount() int {
    d.mu.Lock()
    defer d.mu.Unlock()
    d.messageCount++
    return d.messageCount
}

func (d *testData) isDone() bool {
    d.mu.Lock()
    defer d.mu.Unlock()
    return d.handlerDone
}

func (d *testData) setDone() {
    d.mu.Lock()
    defer d.mu.Unlock()
    d.handlerDone = true
}

func getCmdParams(t *testing.T) (int, int) {
    args := strings.Split(t.Name(), "/")
    msgCount, err := strconv.ParseInt(args[2], 10, 16)
    if err != nil {
        t.Fatal(err)
    }
    nodeCount, err := strconv.ParseInt(args[1], 10, 16)
    if err != nil {
        t.Fatal(err)
    }
    return int(msgCount), int(nodeCount)
}

func readSnapshot(t *testing.T, nodeCount int) simulations.Snapshot {
    f, err := os.Open(fmt.Sprintf("testdata/snapshot_%d.json", nodeCount))
    if err != nil {
        t.Fatal(err)
    }
    defer f.Close()
    jsonbyte, err := ioutil.ReadAll(f)
    if err != nil {
        t.Fatal(err)
    }
    var snap simulations.Snapshot
    err = json.Unmarshal(jsonbyte, &snap)
    if err != nil {
        t.Fatal(err)
    }
    return snap
}

func newTestData() *testData {
    return &testData{
        kademlias:    make(map[enode.ID]*network.Kademlia),
        nodeAddrs:    make(map[enode.ID][]byte),
        recipients:   make(map[int][]enode.ID),
        allowed:      make(map[int][]enode.ID),
        expectedMsgs: make(map[enode.ID][]uint64),
        allowedMsgs:  make(map[enode.ID][]uint64),
        senders:      make(map[int]enode.ID),
        handlerC:     make(chan handlerNotification),
        doneC:        make(chan struct{}),
        errC:         make(chan error),
        msgC:         make(chan handlerNotification),
    }
}

func (d *testData) init(msgCount int) {
    log.Debug("TestProxNetwork start")

    for _, nodeId := range d.sim.NodeIDs() {
        d.nodeAddrs[nodeId] = nodeIDToAddr(nodeId)
    }

    for i := 0; i < int(msgCount); i++ {
        msgAddr := pot.RandomAddress() // we choose message addresses randomly
        d.msgs = append(d.msgs, msgAddr.Bytes())
        smallestPo := 256
        var targets []enode.ID
        var closestPO int

        // loop through all nodes and find the required and allowed recipients of each message
        // (for more information, please see the comment to the main test function)
        for _, nod := range d.sim.Net.GetNodes() {
            po, _ := pof(d.msgs[i], d.nodeAddrs[nod.ID()], 0)
            depth := d.kademlias[nod.ID()].NeighbourhoodDepth()

            // only nodes with closest IDs (wrt the msg address) will be required recipients
            if po > closestPO {
                closestPO = po
                targets = nil
                targets = append(targets, nod.ID())
            } else if po == closestPO {
                targets = append(targets, nod.ID())
            }

            if po >= depth {
                d.allowedMessages++
                d.allowed[i] = append(d.allowed[i], nod.ID())
                d.allowedMsgs[nod.ID()] = append(d.allowedMsgs[nod.ID()], uint64(i))
            }

            // a node with the smallest PO (wrt msg) will be the sender,
            // in order to increase the distance the msg must travel
            if po < smallestPo {
                smallestPo = po
                d.senders[i] = nod.ID()
            }
        }

        d.requiredMessages += len(targets)
        for _, id := range targets {
            d.recipients[i] = append(d.recipients[i], id)
            d.expectedMsgs[id] = append(d.expectedMsgs[id], uint64(i))
        }

        log.Debug("nn for msg", "targets", len(d.recipients[i]), "msgidx", i, "msg", common.Bytes2Hex(msgAddr[:8]), "sender", d.senders[i], "senderpo", smallestPo)
    }
    log.Debug("msgs to receive", "count", d.requiredMessages)
}

// Here we test specific functionality of the pss, setting the prox property of
// the handler. The tests generate a number of messages with random addresses.
// Then, for each message it calculates which nodes have the msg address
// within its nearest neighborhood depth, and stores those nodes as possible
// recipients. Those nodes that are the closest to the message address (nodes
// belonging to the deepest PO wrt the msg address) are stored as required
// recipients. The difference between allowed and required recipients results
// from the fact that the nearest neighbours are not necessarily reciprocal.
// Upon sending the messages, the test verifies that the respective message is
// passed to the message handlers of these required recipients. The test fails
// if a message is handled by recipient which is not listed among the allowed
// recipients of this particular message. It also fails after timeout, if not
// all the required recipients have received their respective messages.
//
// For example, if proximity order of certain msg address is 4, and node X
// has PO=5 wrt the message address, and nodes Y and Z have PO=6, then:
// nodes Y and Z will be considered required recipients of the msg,
// whereas nodes X, Y and Z will be allowed recipients.
func TestProxNetwork(t *testing.T) {
    t.Run("16/16", testProxNetwork)
}

// params in run name: nodes/msgs
func TestProxNetworkLong(t *testing.T) {
    if !*longrunning {
        t.Skip("run with --longrunning flag to run extensive network tests")
    }
    t.Run("8/100", testProxNetwork)
    t.Run("16/100", testProxNetwork)
    t.Run("32/100", testProxNetwork)
    t.Run("64/100", testProxNetwork)
    t.Run("128/100", testProxNetwork)
}

func testProxNetwork(t *testing.T) {
    tstdata := newTestData()
    msgCount, nodeCount := getCmdParams(t)
    handlerContextFuncs := make(map[Topic]handlerContextFunc)
    handlerContextFuncs[topic] = nodeMsgHandler
    services := newProxServices(tstdata, true, handlerContextFuncs, tstdata.kademlias)
    tstdata.sim = simulation.New(services)
    defer tstdata.sim.Close()
    err := tstdata.sim.UploadSnapshot(fmt.Sprintf("testdata/snapshot_%d.json", nodeCount))
    if err != nil {
        t.Fatal(err)
    }
    ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
    defer cancel()
    snap := readSnapshot(t, nodeCount)
    err = tstdata.sim.WaitTillSnapshotRecreated(ctx, snap)
    if err != nil {
        t.Fatalf("failed to recreate snapshot: %s", err)
    }
    tstdata.init(msgCount) // initialize the test data
    wrapper := func(c context.Context, _ *simulation.Simulation) error {
        return testRoutine(tstdata, c)
    }
    result := tstdata.sim.Run(ctx, wrapper) // call the main test function
    if result.Error != nil {
        // context deadline exceeded
        // however, it might just mean that not all possible messages are received
        // now we must check if all required messages are received
        cnt := tstdata.getMsgCount()
        log.Debug("TestProxNetwork finnished", "rcv", cnt)
        if cnt < tstdata.requiredMessages {
            t.Fatal(result.Error)
        }
    }
    t.Logf("completed %d", result.Duration)
}

func (tstdata *testData) sendAllMsgs() {
    for i, msg := range tstdata.msgs {
        log.Debug("sending msg", "idx", i, "from", tstdata.senders[i])
        nodeClient, err := tstdata.sim.Net.GetNode(tstdata.senders[i]).Client()
        if err != nil {
            tstdata.errC <- err
        }
        var uvarByte [8]byte
        binary.PutUvarint(uvarByte[:], uint64(i))
        nodeClient.Call(nil, "pss_sendRaw", hexutil.Encode(msg), hexutil.Encode(topic[:]), hexutil.Encode(uvarByte[:]))
    }
    log.Debug("all messages sent")
}

// testRoutine is the main test function, called by Simulation.Run()
func testRoutine(tstdata *testData, ctx context.Context) error {
    go handlerChannelListener(tstdata, ctx)
    go tstdata.sendAllMsgs()
    received := 0

    // collect incoming messages and terminate with corresponding status when message handler listener ends
    for {
        select {
        case err := <-tstdata.errC:
            return err
        case hn := <-tstdata.msgC:
            received++
            log.Debug("msg received", "msgs_received", received, "total_expected", tstdata.requiredMessages, "id", hn.id, "serial", hn.serial)
            if received == tstdata.allowedMessages {
                close(tstdata.doneC)
                return nil
            }
        }
    }
    return nil
}

func handlerChannelListener(tstdata *testData, ctx context.Context) {
    for {
        select {
        case <-tstdata.doneC: // graceful exit
            tstdata.setDone()
            tstdata.errC <- nil
            return

        case <-ctx.Done(): // timeout or cancel
            tstdata.setDone()
            tstdata.errC <- ctx.Err()
            return

        // incoming message from pss message handler
        case handlerNotification := <-tstdata.handlerC:
            // check if recipient has already received all its messages and notify to fail the test if so
            aMsgs := tstdata.allowedMsgs[handlerNotification.id]
            if len(aMsgs) == 0 {
                tstdata.setDone()
                tstdata.errC <- fmt.Errorf("too many messages received by recipient %x", handlerNotification.id)
                return
            }

            // check if message serial is in expected messages for this recipient and notify to fail the test if not
            idx := -1
            for i, msg := range aMsgs {
                if handlerNotification.serial == msg {
                    idx = i
                    break
                }
            }
            if idx == -1 {
                tstdata.setDone()
                tstdata.errC <- fmt.Errorf("message %d received by wrong recipient %v", handlerNotification.serial, handlerNotification.id)
                return
            }

            // message is ok, so remove that message serial from the recipient expectation array and notify the main sim thread
            aMsgs[idx] = aMsgs[len(aMsgs)-1]
            aMsgs = aMsgs[:len(aMsgs)-1]
            tstdata.msgC <- handlerNotification
        }
    }
}

func nodeMsgHandler(tstdata *testData, config *adapters.NodeConfig) *handler {
    return &handler{
        f: func(msg []byte, p *p2p.Peer, asymmetric bool, keyid string) error {
            cnt := tstdata.incrementMsgCount()
            log.Debug("nodeMsgHandler rcv", "cnt", cnt)

            // using simple serial in message body, makes it easy to keep track of who's getting what
            serial, c := binary.Uvarint(msg)
            if c <= 0 {
                log.Crit(fmt.Sprintf("corrupt message received by %x (uvarint parse returned %d)", config.ID, c))
            }

            if tstdata.isDone() {
                return errors.New("handlers aborted") // terminate if simulation is over
            }

            // pass message context to the listener in the simulation
            tstdata.handlerC <- handlerNotification{
                id:     config.ID,
                serial: serial,
            }
            return nil
        },
        caps: &handlerCaps{
            raw:  true, // we use raw messages for simplicity
            prox: true,
        },
    }
}

// an adaptation of the same services setup as in pss_test.go
// replaces pss_test.go when those tests are rewritten to the new swarm/network/simulation package
func newProxServices(tstdata *testData, allowRaw bool, handlerContextFuncs map[Topic]handlerContextFunc, kademlias map[enode.ID]*network.Kademlia) map[string]simulation.ServiceFunc {
    stateStore := state.NewInmemoryStore()
    kademlia := func(id enode.ID) *network.Kademlia {
        if k, ok := kademlias[id]; ok {
            return k
        }
        params := network.NewKadParams()
        params.MaxBinSize = 3
        params.MinBinSize = 1
        params.MaxRetries = 1000
        params.RetryExponent = 2
        params.RetryInterval = 1000000
        kademlias[id] = network.NewKademlia(id[:], params)
        return kademlias[id]
    }
    return map[string]simulation.ServiceFunc{
        "bzz": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
            // normally translation of enode id to swarm address is concealed by the network package
            // however, we need to keep track of it in the test driver as well.
            // if the translation in the network package changes, that can cause these tests to unpredictably fail
            // therefore we keep a local copy of the translation here
            addr := network.NewAddr(ctx.Config.Node())
            addr.OAddr = nodeIDToAddr(ctx.Config.Node().ID())
            hp := network.NewHiveParams()
            hp.Discovery = false
            config := &network.BzzConfig{
                OverlayAddr:  addr.Over(),
                UnderlayAddr: addr.Under(),
                HiveParams:   hp,
            }
            return network.NewBzz(config, kademlia(ctx.Config.ID), stateStore, nil, nil), nil, nil
        },
        "pss": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
            // execadapter does not exec init()
            initTest()

            // create keys in whisper and set up the pss object
            ctxlocal, cancel := context.WithTimeout(context.Background(), time.Second*3)
            defer cancel()
            keys, err := wapi.NewKeyPair(ctxlocal)
            privkey, err := w.GetPrivateKey(keys)
            pssp := NewPssParams().WithPrivateKey(privkey)
            pssp.AllowRaw = allowRaw
            pskad := kademlia(ctx.Config.ID)
            ps, err := NewPss(pskad, pssp)
            if err != nil {
                return nil, nil, err
            }
            b.Store(simulation.BucketKeyKademlia, pskad)

            // register the handlers we've been passed
            var deregisters []func()
            for tpc, hndlrFunc := range handlerContextFuncs {
                deregisters = append(deregisters, ps.Register(&tpc, hndlrFunc(tstdata, ctx.Config)))
            }

            // if handshake mode is set, add the controller
            // TODO: This should be hooked to the handshake test file
            if useHandshake {
                SetHandshakeController(ps, NewHandshakeParams())
            }

            // we expose some api calls for cheating
            ps.addAPI(rpc.API{
                Namespace: "psstest",
                Version:   "0.3",
                Service:   NewAPITest(ps),
                Public:    false,
            })

            // return Pss and cleanups
            return ps, func() {
                // run the handler deregister functions in reverse order
                for i := len(deregisters); i > 0; i-- {
                    deregisters[i-1]()
                }
            }, nil
        },
    }
}

// makes sure we create the addresses the same way in driver and service setup
func nodeIDToAddr(id enode.ID) []byte {
    return id.Bytes()
}