aboutsummaryrefslogtreecommitdiffstats
path: root/p2p/peer.go
blob: 99f1a61d38a02a1b8490370b852365c0c6ab5091 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
package p2p

import (
    "bufio"
    "bytes"
    "crypto/rand"
    "fmt"
    "io"
    "io/ioutil"
    "net"
    "sort"
    "sync"
    "time"

    "github.com/ethereum/go-ethereum/event"
    "github.com/ethereum/go-ethereum/logger"
)

// peerAddr is the structure of a peer list element.
// It is also a valid net.Addr.
type peerAddr struct {
    IP     net.IP
    Port   uint64
    Pubkey []byte // optional
}

func newPeerAddr(addr net.Addr, pubkey []byte) *peerAddr {
    n := addr.Network()
    if n != "tcp" && n != "tcp4" && n != "tcp6" {
        // for testing with non-TCP
        return &peerAddr{net.ParseIP("127.0.0.1"), 30303, pubkey}
    }
    ta := addr.(*net.TCPAddr)
    return &peerAddr{ta.IP, uint64(ta.Port), pubkey}
}

func (d peerAddr) Network() string {
    if d.IP.To4() != nil {
        return "tcp4"
    } else {
        return "tcp6"
    }
}

func (d peerAddr) String() string {
    return fmt.Sprintf("%v:%d", d.IP, d.Port)
}

func (d *peerAddr) RlpData() interface{} {
    return []interface{}{string(d.IP), d.Port, d.Pubkey}
}

// Peer represents a remote peer.
type Peer struct {
    // Peers have all the log methods.
    // Use them to display messages related to the peer.
    *logger.Logger

    infolock   sync.Mutex
    identity   ClientIdentity
    caps       []Cap
    listenAddr *peerAddr // what remote peer is listening on
    dialAddr   *peerAddr // non-nil if dialing

    // The mutex protects the connection
    // so only one protocol can write at a time.
    writeMu sync.Mutex
    conn    net.Conn
    bufconn *bufio.ReadWriter

    // These fields maintain the running protocols.
    protocols       []Protocol
    runBaseProtocol bool // for testing
    cryptoHandshake bool // for testing
    cryptoReady     chan struct{}

    runlock sync.RWMutex // protects running
    running map[string]*proto

    protoWG  sync.WaitGroup
    protoErr chan error
    closed   chan struct{}
    disc     chan DiscReason

    activity event.TypeMux // for activity events

    slot int // index into Server peer list

    // These fields are kept so base protocol can access them.
    // TODO: this should be one or more interfaces
    ourID         ClientIdentity        // client id of the Server
    ourListenAddr *peerAddr             // listen addr of Server, nil if not listening
    newPeerAddr   chan<- *peerAddr      // tell server about received peers
    otherPeers    func() []*Peer        // should return the list of all peers
    pubkeyHook    func(*peerAddr) error // called at end of handshake to validate pubkey
}

// NewPeer returns a peer for testing purposes.
func NewPeer(id ClientIdentity, caps []Cap) *Peer {
    conn, _ := net.Pipe()
    peer := newPeer(conn, nil, nil)
    peer.setHandshakeInfo(id, nil, caps)
    close(peer.closed)
    return peer
}

func newServerPeer(server *Server, conn net.Conn, dialAddr *peerAddr) *Peer {
    p := newPeer(conn, server.Protocols, dialAddr)
    p.ourID = server.Identity
    p.newPeerAddr = server.peerConnect
    p.otherPeers = server.Peers
    p.pubkeyHook = server.verifyPeer
    p.runBaseProtocol = true

    // laddr can be updated concurrently by NAT traversal.
    // newServerPeer must be called with the server lock held.
    if server.laddr != nil {
        p.ourListenAddr = newPeerAddr(server.laddr, server.Identity.Pubkey())
    }
    return p
}

func newPeer(conn net.Conn, protocols []Protocol, dialAddr *peerAddr) *Peer {
    p := &Peer{
        Logger:      logger.NewLogger("P2P " + conn.RemoteAddr().String()),
        conn:        conn,
        dialAddr:    dialAddr,
        bufconn:     bufio.NewReadWriter(bufio.NewReader(conn), bufio.NewWriter(conn)),
        protocols:   protocols,
        running:     make(map[string]*proto),
        disc:        make(chan DiscReason),
        protoErr:    make(chan error),
        closed:      make(chan struct{}),
        cryptoReady: make(chan struct{}),
    }
    return p
}

// Identity returns the client identity of the remote peer. The
// identity can be nil if the peer has not yet completed the
// handshake.
func (p *Peer) Identity() ClientIdentity {
    p.infolock.Lock()
    defer p.infolock.Unlock()
    return p.identity
}

func (self *Peer) Pubkey() (pubkey []byte) {
    self.infolock.Lock()
    defer self.infolock.Unlock()
    switch {
    case self.identity != nil:
        pubkey = self.identity.Pubkey()[1:]
    case self.dialAddr != nil:
        pubkey = self.dialAddr.Pubkey
    case self.listenAddr != nil:
        pubkey = self.listenAddr.Pubkey
    }
    return
}

// Caps returns the capabilities (supported subprotocols) of the remote peer.
func (p *Peer) Caps() []Cap {
    p.infolock.Lock()
    defer p.infolock.Unlock()
    return p.caps
}

func (p *Peer) setHandshakeInfo(id ClientIdentity, laddr *peerAddr, caps []Cap) {
    p.infolock.Lock()
    p.identity = id
    p.listenAddr = laddr
    p.caps = caps
    p.infolock.Unlock()
}

// RemoteAddr returns the remote address of the network connection.
func (p *Peer) RemoteAddr() net.Addr {
    return p.conn.RemoteAddr()
}

// LocalAddr returns the local address of the network connection.
func (p *Peer) LocalAddr() net.Addr {
    return p.conn.LocalAddr()
}

// Disconnect terminates the peer connection with the given reason.
// It returns immediately and does not wait until the connection is closed.
func (p *Peer) Disconnect(reason DiscReason) {
    select {
    case p.disc <- reason:
    case <-p.closed:
    }
}

// String implements fmt.Stringer.
func (p *Peer) String() string {
    kind := "inbound"
    p.infolock.Lock()
    if p.dialAddr != nil {
        kind = "outbound"
    }
    p.infolock.Unlock()
    return fmt.Sprintf("Peer(%p %v %s)", p, p.conn.RemoteAddr(), kind)
}

const (
    // maximum amount of time allowed for reading a message
    msgReadTimeout = 5 * time.Second
    // maximum amount of time allowed for writing a message
    msgWriteTimeout = 5 * time.Second
    // messages smaller than this many bytes will be read at
    // once before passing them to a protocol.
    wholePayloadSize = 64 * 1024
)

var (
    inactivityTimeout     = 2 * time.Second
    disconnectGracePeriod = 2 * time.Second
)

func (p *Peer) loop() (reason DiscReason, err error) {
    defer p.activity.Stop()
    defer p.closeProtocols()
    defer close(p.closed)
    defer p.conn.Close()

    var readLoop func(chan<- Msg, chan<- error, <-chan bool)
    if p.cryptoHandshake {
        if readLoop, err = p.handleCryptoHandshake(); err != nil {
            // from here on everything can be encrypted, authenticated
            return DiscProtocolError, err // no graceful disconnect
        }
    } else {
        readLoop = p.readLoop
    }

    // read loop
    readMsg := make(chan Msg)
    readErr := make(chan error)
    readNext := make(chan bool, 1)
    protoDone := make(chan struct{}, 1)
    go readLoop(readMsg, readErr, readNext)
    readNext <- true

    close(p.cryptoReady)
    if p.runBaseProtocol {
        p.startBaseProtocol()
    }

loop:
    for {
        select {
        case msg := <-readMsg:
            // a new message has arrived.
            var wait bool
            if wait, err = p.dispatch(msg, protoDone); err != nil {
                p.Errorf("msg dispatch error: %v\n", err)
                reason = discReasonForError(err)
                break loop
            }
            if !wait {
                // Msg has already been read completely, continue with next message.
                readNext <- true
            }
            p.activity.Post(time.Now())
        case <-protoDone:
            // protocol has consumed the message payload,
            // we can continue reading from the socket.
            readNext <- true

        case err := <-readErr:
            // read failed. there is no need to run the
            // polite disconnect sequence because the connection
            // is probably dead anyway.
            // TODO: handle write errors as well
            return DiscNetworkError, err
        case err = <-p.protoErr:
            reason = discReasonForError(err)
            break loop
        case reason = <-p.disc:
            break loop
        }
    }

    // wait for read loop to return.
    close(readNext)
    <-readErr
    // tell the remote end to disconnect
    done := make(chan struct{})
    go func() {
        p.conn.SetDeadline(time.Now().Add(disconnectGracePeriod))
        p.writeMsg(NewMsg(discMsg, reason), disconnectGracePeriod)
        io.Copy(ioutil.Discard, p.conn)
        close(done)
    }()
    select {
    case <-done:
    case <-time.After(disconnectGracePeriod):
    }
    return reason, err
}

func (p *Peer) readLoop(msgc chan<- Msg, errc chan<- error, unblock <-chan bool) {
    for _ = range unblock {
        p.conn.SetReadDeadline(time.Now().Add(msgReadTimeout))
        if msg, err := readMsg(p.bufconn); err != nil {
            errc <- err
        } else {
            msgc <- msg
        }
    }
    close(errc)
}

func (p *Peer) dispatch(msg Msg, protoDone chan struct{}) (wait bool, err error) {
    proto, err := p.getProto(msg.Code)
    if err != nil {
        return false, err
    }
    if msg.Size <= wholePayloadSize {
        // optimization: msg is small enough, read all
        // of it and move on to the next message
        buf, err := ioutil.ReadAll(msg.Payload)
        if err != nil {
            return false, err
        }
        msg.Payload = bytes.NewReader(buf)
        proto.in <- msg
    } else {
        wait = true
        pr := &eofSignal{msg.Payload, int64(msg.Size), protoDone}
        msg.Payload = pr
        proto.in <- msg
    }
    return wait, nil
}

type readLoop func(chan<- Msg, chan<- error, <-chan bool)

func (p *Peer) handleCryptoHandshake() (loop readLoop, err error) {
    // cryptoId is just created for the lifecycle of the handshake
    // it is survived by an encrypted readwriter
    var initiator bool
    var sessionToken []byte
    sessionToken = make([]byte, keyLen)
    if _, err = rand.Read(sessionToken); err != nil {
        return
    }
    if p.dialAddr != nil { // this should have its own method Outgoing() bool
        initiator = true
    }
    // create crypto layer
    // this could in principle run only once but maybe we want to allow
    // identity switching
    var crypto *cryptoId
    if crypto, err = newCryptoId(p.ourID); err != nil {
        return
    }
    // run on peer
    // this bit handles the handshake and creates a secure communications channel with
    // var rw *secretRW
    if sessionToken, _, err = crypto.Run(p.conn, p.Pubkey(), sessionToken, initiator); err != nil {
        p.Debugf("unable to setup secure session: %v", err)
        return
    }
    loop = func(msg chan<- Msg, err chan<- error, next <-chan bool) {
        // this is the readloop :)
    }
    return
}

func (p *Peer) startBaseProtocol() {
    p.runlock.Lock()
    defer p.runlock.Unlock()
    p.running[""] = p.startProto(0, Protocol{
        Length: baseProtocolLength,
        Run:    runBaseProtocol,
    })
}

// startProtocols starts matching named subprotocols.
func (p *Peer) startSubprotocols(caps []Cap) {
    sort.Sort(capsByName(caps))

    p.runlock.Lock()
    defer p.runlock.Unlock()
    offset := baseProtocolLength
outer:
    for _, cap := range caps {
        for _, proto := range p.protocols {
            if proto.Name == cap.Name &&
                proto.Version == cap.Version &&
                p.running[cap.Name] == nil {
                p.running[cap.Name] = p.startProto(offset, proto)
                offset += proto.Length
                continue outer
            }
        }
    }
}

func (p *Peer) startProto(offset uint64, impl Protocol) *proto {
    rw := &proto{
        in:      make(chan Msg),
        offset:  offset,
        maxcode: impl.Length,
        peer:    p,
    }
    p.protoWG.Add(1)
    go func() {
        err := impl.Run(p, rw)
        if err == nil {
            p.Infof("protocol %q returned", impl.Name)
            err = newPeerError(errMisc, "protocol returned")
        } else {
            p.Errorf("protocol %q error: %v\n", impl.Name, err)
        }
        select {
        case p.protoErr <- err:
        case <-p.closed:
        }
        p.protoWG.Done()
    }()
    return rw
}

// getProto finds the protocol responsible for handling
// the given message code.
func (p *Peer) getProto(code uint64) (*proto, error) {
    p.runlock.RLock()
    defer p.runlock.RUnlock()
    for _, proto := range p.running {
        if code >= proto.offset && code < proto.offset+proto.maxcode {
            return proto, nil
        }
    }
    return nil, newPeerError(errInvalidMsgCode, "%d", code)
}

func (p *Peer) closeProtocols() {
    p.runlock.RLock()
    for _, p := range p.running {
        close(p.in)
    }
    p.runlock.RUnlock()
    p.protoWG.Wait()
}

// writeProtoMsg sends the given message on behalf of the given named protocol.
func (p *Peer) writeProtoMsg(protoName string, msg Msg) error {
    p.runlock.RLock()
    proto, ok := p.running[protoName]
    p.runlock.RUnlock()
    if !ok {
        return fmt.Errorf("protocol %s not handled by peer", protoName)
    }
    if msg.Code >= proto.maxcode {
        return newPeerError(errInvalidMsgCode, "code %x is out of range for protocol %q", msg.Code, protoName)
    }
    msg.Code += proto.offset
    return p.writeMsg(msg, msgWriteTimeout)
}

// writeMsg writes a message to the connection.
func (p *Peer) writeMsg(msg Msg, timeout time.Duration) error {
    p.writeMu.Lock()
    defer p.writeMu.Unlock()
    p.conn.SetWriteDeadline(time.Now().Add(timeout))
    if err := writeMsg(p.bufconn, msg); err != nil {
        return newPeerError(errWrite, "%v", err)
    }
    return p.bufconn.Flush()
}

type proto struct {
    name            string
    in              chan Msg
    maxcode, offset uint64
    peer            *Peer
}

func (rw *proto) WriteMsg(msg Msg) error {
    if msg.Code >= rw.maxcode {
        return newPeerError(errInvalidMsgCode, "not handled")
    }
    msg.Code += rw.offset
    return rw.peer.writeMsg(msg, msgWriteTimeout)
}

func (rw *proto) EncodeMsg(code uint64, data ...interface{}) error {
    return rw.WriteMsg(NewMsg(code, data...))
}

func (rw *proto) ReadMsg() (Msg, error) {
    msg, ok := <-rw.in
    if !ok {
        return msg, io.EOF
    }
    msg.Code -= rw.offset
    return msg, nil
}

// eofSignal wraps a reader with eof signaling. the eof channel is
// closed when the wrapped reader returns an error or when count bytes
// have been read.
//
type eofSignal struct {
    wrapped io.Reader
    count   int64
    eof     chan<- struct{}
}

// note: when using eofSignal to detect whether a message payload
// has been read, Read might not be called for zero sized messages.

func (r *eofSignal) Read(buf []byte) (int, error) {
    n, err := r.wrapped.Read(buf)
    r.count -= int64(n)
    if (err != nil || r.count <= 0) && r.eof != nil {
        r.eof <- struct{}{} // tell Peer that msg has been consumed
        r.eof = nil
    }
    return n, err
}