aboutsummaryrefslogtreecommitdiffstats
path: root/p2p/discover/table.go
blob: 26526330be62b634a1ed40423fc8315139abaa90 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover

import (
    "crypto/ecdsa"
    "crypto/elliptic"
    "encoding/hex"
    "fmt"
    "io"
    "math/rand"
    "net"
    "sort"
    "strings"
    "sync"
    "time"

    "github.com/ethereum/go-ethereum/crypto/secp256k1"
    "github.com/ethereum/go-ethereum/rlp"
)

const (
    alpha      = 3                   // Kademlia concurrency factor
    bucketSize = 16                  // Kademlia bucket size
    nBuckets   = len(NodeID{})*8 + 1 // Number of buckets
)

type Table struct {
    mutex   sync.Mutex        // protects buckets, their content, and nursery
    buckets [nBuckets]*bucket // index of known nodes by distance
    nursery []*Node           // bootstrap nodes

    net  transport
    self *Node // metadata of the local node
}

// transport is implemented by the UDP transport.
// it is an interface so we can test without opening lots of UDP
// sockets and without generating a private key.
type transport interface {
    ping(*Node) error
    findnode(e *Node, target NodeID) ([]*Node, error)
    close()
}

// bucket contains nodes, ordered by their last activity.
type bucket struct {
    lastLookup time.Time
    entries    []*Node
}

// Node represents node metadata that is stored in the table.
type Node struct {
    Addr *net.UDPAddr
    ID   NodeID

    active time.Time
}

type rpcNode struct {
    IP   string
    Port uint16
    ID   NodeID
}

func (n Node) EncodeRLP(w io.Writer) error {
    return rlp.Encode(w, rpcNode{IP: n.Addr.IP.String(), Port: uint16(n.Addr.Port), ID: n.ID})
}
func (n *Node) DecodeRLP(s *rlp.Stream) (err error) {
    var ext rpcNode
    if err = s.Decode(&ext); err == nil {
        n.Addr = &net.UDPAddr{IP: net.ParseIP(ext.IP), Port: int(ext.Port)}
        n.ID = ext.ID
    }
    return err
}

func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr) *Table {
    tab := &Table{net: t, self: &Node{ID: ourID, Addr: ourAddr}}
    for i := range tab.buckets {
        tab.buckets[i] = &bucket{}
    }
    return tab
}

// Bootstrap sets the bootstrap nodes. These nodes are used to connect
// to the network if the table is empty. Bootstrap will also attempt to
// fill the table by performing random lookup operations on the
// network.
func (tab *Table) Bootstrap(nodes []Node) {
    tab.mutex.Lock()
    // TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes
    tab.nursery = make([]*Node, 0, len(nodes))
    for _, n := range nodes {
        cpy := n
        tab.nursery = append(tab.nursery, &cpy)
    }
    tab.mutex.Unlock()
    tab.refresh()
}

// Lookup performs a network search for nodes close
// to the given target. It approaches the target by querying
// nodes that are closer to it on each iteration.
func (tab *Table) Lookup(target NodeID) []*Node {
    var (
        asked          = make(map[NodeID]bool)
        seen           = make(map[NodeID]bool)
        reply          = make(chan []*Node, alpha)
        pendingQueries = 0
    )
    // don't query further if we hit the target.
    // unlikely to happen often in practice.
    asked[target] = true

    tab.mutex.Lock()
    // update last lookup stamp (for refresh logic)
    tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now()
    // generate initial result set
    result := tab.closest(target, bucketSize)
    tab.mutex.Unlock()

    for {
        // ask the closest nodes that we haven't asked yet
        for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
            n := result.entries[i]
            if !asked[n.ID] {
                asked[n.ID] = true
                pendingQueries++
                go func() {
                    result, _ := tab.net.findnode(n, target)
                    reply <- result
                }()
            }
        }
        if pendingQueries == 0 {
            // we have asked all closest nodes, stop the search
            break
        }

        // wait for the next reply
        for _, n := range <-reply {
            cn := n
            if !seen[n.ID] {
                seen[n.ID] = true
                result.push(cn, bucketSize)
            }
        }
        pendingQueries--
    }
    return result.entries
}

// refresh performs a lookup for a random target to keep buckets full.
func (tab *Table) refresh() {
    ld := -1 // logdist of chosen bucket
    tab.mutex.Lock()
    for i, b := range tab.buckets {
        if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) {
            ld = i
            break
        }
    }
    tab.mutex.Unlock()

    result := tab.Lookup(randomID(tab.self.ID, ld))
    if len(result) == 0 {
        // bootstrap the table with a self lookup
        tab.mutex.Lock()
        tab.add(tab.nursery)
        tab.mutex.Unlock()
        tab.Lookup(tab.self.ID)
        // TODO: the Kademlia paper says that we're supposed to perform
        // random lookups in all buckets further away than our closest neighbor.
    }
}

// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance {
    // This is a very wasteful way to find the closest nodes but
    // obviously correct. I believe that tree-based buckets would make
    // this easier to implement efficiently.
    close := &nodesByDistance{target: target}
    for _, b := range tab.buckets {
        for _, n := range b.entries {
            close.push(n, nresults)
        }
    }
    return close
}

func (tab *Table) len() (n int) {
    for _, b := range tab.buckets {
        n += len(b.entries)
    }
    return n
}

// bumpOrAdd updates the activity timestamp for the given node and
// attempts to insert the node into a bucket. The returned Node might
// not be part of the table. The caller must hold tab.mutex.
func (tab *Table) bumpOrAdd(node NodeID, from *net.UDPAddr) (n *Node) {
    b := tab.buckets[logdist(tab.self.ID, node)]
    if n = b.bump(node); n == nil {
        n = &Node{ID: node, Addr: from, active: time.Now()}
        if len(b.entries) == bucketSize {
            tab.pingReplace(n, b)
        } else {
            b.entries = append(b.entries, n)
        }
    }
    return n
}

func (tab *Table) pingReplace(n *Node, b *bucket) {
    old := b.entries[bucketSize-1]
    go func() {
        if err := tab.net.ping(old); err == nil {
            // it responded, we don't need to replace it.
            return
        }
        // it didn't respond, replace the node if it is still the oldest node.
        tab.mutex.Lock()
        if len(b.entries) > 0 && b.entries[len(b.entries)-1] == old {
            // slide down other entries and put the new one in front.
            copy(b.entries[1:], b.entries)
            b.entries[0] = n
        }
        tab.mutex.Unlock()
    }()
}

// bump updates the activity timestamp for the given node.
// The caller must hold tab.mutex.
func (tab *Table) bump(node NodeID) {
    tab.buckets[logdist(tab.self.ID, node)].bump(node)
}

// add puts the entries into the table if their corresponding
// bucket is not full. The caller must hold tab.mutex.
func (tab *Table) add(entries []*Node) {
outer:
    for _, n := range entries {
        if n == nil || n.ID == tab.self.ID {
            // skip bad entries. The RLP decoder returns nil for empty
            // input lists.
            continue
        }
        bucket := tab.buckets[logdist(tab.self.ID, n.ID)]
        for i := range bucket.entries {
            if bucket.entries[i].ID == n.ID {
                // already in bucket
                continue outer
            }
        }
        if len(bucket.entries) < bucketSize {
            bucket.entries = append(bucket.entries, n)
        }
    }
}

func (b *bucket) bump(id NodeID) *Node {
    for i, n := range b.entries {
        if n.ID == id {
            n.active = time.Now()
            // move it to the front
            copy(b.entries[1:], b.entries[:i+1])
            b.entries[0] = n
            return n
        }
    }
    return nil
}

// nodesByDistance is a list of nodes, ordered by
// distance to target.
type nodesByDistance struct {
    entries []*Node
    target  NodeID
}

// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *Node, maxElems int) {
    ix := sort.Search(len(h.entries), func(i int) bool {
        return distcmp(h.target, h.entries[i].ID, n.ID) > 0
    })
    if len(h.entries) < maxElems {
        h.entries = append(h.entries, n)
    }
    if ix == len(h.entries) {
        // farther away than all nodes we already have.
        // if there was room for it, the node is now the last element.
    } else {
        // slide existing entries down to make room
        // this will overwrite the entry we just appended.
        copy(h.entries[ix+1:], h.entries[ix:])
        h.entries[ix] = n
    }
}

// NodeID is a unique identifier for each node.
// The node identifier is a marshaled elliptic curve public key.
type NodeID [512 / 8]byte

// NodeID prints as a long hexadecimal number.
func (n NodeID) String() string {
    return fmt.Sprintf("%#x", n[:])
}

// The Go syntax representation of a NodeID is a call to HexID.
func (n NodeID) GoString() string {
    return fmt.Sprintf("HexID(\"%#x\")", n[:])
}

// HexID converts a hex string to a NodeID.
// The string may be prefixed with 0x.
func HexID(in string) NodeID {
    if strings.HasPrefix(in, "0x") {
        in = in[2:]
    }
    var id NodeID
    b, err := hex.DecodeString(in)
    if err != nil {
        panic(err)
    } else if len(b) != len(id) {
        panic("wrong length")
    }
    copy(id[:], b)
    return id
}

func newNodeID(priv *ecdsa.PrivateKey) (id NodeID) {
    pubkey := elliptic.Marshal(priv.Curve, priv.X, priv.Y)
    if len(pubkey)-1 != len(id) {
        panic(fmt.Errorf("invalid key: need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pubkey)))
    }
    copy(id[:], pubkey[1:])
    return id
}

// recoverNodeID computes the public key used to sign the
// given hash from the signature.
func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
    pubkey, err := secp256k1.RecoverPubkey(hash, sig)
    if err != nil {
        return id, err
    }
    if len(pubkey)-1 != len(id) {
        return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
    }
    for i := range id {
        id[i] = pubkey[i+1]
    }
    return id, nil
}

// distcmp compares the distances a->target and b->target.
// Returns -1 if a is closer to target, 1 if b is closer to target
// and 0 if they are equal.
func distcmp(target, a, b NodeID) int {
    for i := range target {
        da := a[i] ^ target[i]
        db := b[i] ^ target[i]
        if da > db {
            return 1
        } else if da < db {
            return -1
        }
    }
    return 0
}

// table of leading zero counts for bytes [0..255]
var lzcount = [256]int{
    8, 7, 6, 6, 5, 5, 5, 5,
    4, 4, 4, 4, 4, 4, 4, 4,
    3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 3, 3, 3, 3,
    2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
}

// logdist returns the logarithmic distance between a and b, log2(a ^ b).
func logdist(a, b NodeID) int {
    lz := 0
    for i := range a {
        x := a[i] ^ b[i]
        if x == 0 {
            lz += 8
        } else {
            lz += lzcount[x]
            break
        }
    }
    return len(a)*8 - lz
}

// randomID returns a random NodeID such that logdist(a, b) == n
func randomID(a NodeID, n int) (b NodeID) {
    if n == 0 {
        return a
    }
    // flip bit at position n, fill the rest with random bits
    b = a
    pos := len(a) - n/8 - 1
    bit := byte(0x01) << (byte(n%8) - 1)
    if bit == 0 {
        pos++
        bit = 0x80
    }
    b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
    for i := pos + 1; i < len(a); i++ {
        b[i] = byte(rand.Intn(255))
    }
    return b
}