aboutsummaryrefslogtreecommitdiffstats
path: root/p2p/crypto.go
blob: 9204fa9d0f59622d0b5269b2a2ddd3b863dac76e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
package p2p

import (
    "bytes"
    "crypto/ecdsa"
    "crypto/rand"
    "fmt"
    "io"

    "github.com/ethereum/go-ethereum/crypto"
    "github.com/obscuren/ecies"
    "github.com/obscuren/secp256k1-go"
)

var (
    skLen     int = 32                             // ecies.MaxSharedKeyLength(pubKey) / 2
    sigLen    int = 32                             // elliptic S256
    pubKeyLen int = 32                             // ECDSA
    msgLen    int = sigLen + 1 + pubKeyLen + skLen // 97
)

//, aesSecret, macSecret, egressMac, ingress
type secretRW struct {
    aesSecret, macSecret, egressMac, ingressMac []byte
}

type cryptoId struct {
    prvKey  *ecdsa.PrivateKey
    pubKey  *ecdsa.PublicKey
    pubKeyR io.ReaderAt
}

func newCryptoId(id ClientIdentity) (self *cryptoId, err error) {
    // will be at server  init
    var prvKeyDER []byte = id.PrivKey()
    if prvKeyDER == nil {
        err = fmt.Errorf("no private key for client")
        return
    }
    // initialise ecies private key via importing DER encoded keys (known via our own clientIdentity)
    var prvKey = crypto.ToECDSA(prvKeyDER)
    if prvKey == nil {
        err = fmt.Errorf("invalid private key for client")
        return
    }
    self = &cryptoId{
        prvKey: prvKey,
        // initialise public key from the imported private key
        pubKey: &prvKey.PublicKey,
        // to be created at server init shared between peers and sessions
        // for reuse, call wth ReadAt, no reset seek needed
    }
    self.pubKeyR = bytes.NewReader(id.Pubkey())
    return
}

//
func (self *cryptoId) setupAuth(remotePubKeyDER, sessionToken []byte) (auth []byte, nonce []byte, sharedKnowledge []byte, err error) {
    // session init, common to both parties
    var remotePubKey = crypto.ToECDSAPub(remotePubKeyDER)
    if remotePubKey == nil {
        err = fmt.Errorf("invalid remote public key")
        return
    }
    var sharedSecret []byte
    // generate shared key from prv and remote pubkey
    sharedSecret, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), skLen, skLen)
    if err != nil {
        return
    }
    // check previous session token
    if sessionToken == nil {
        err = fmt.Errorf("no session token for peer")
        return
    }
    // allocate msgLen long message
    var msg []byte = make([]byte, msgLen)
    // generate skLen long nonce at the end
    nonce = msg[msgLen-skLen:]
    if _, err = rand.Read(nonce); err != nil {
        return
    }
    // create known message
    // should use
    // cipher.xorBytes from crypto/cipher/xor.go for fast xor
    sharedKnowledge = Xor(sharedSecret, sessionToken)
    var signedMsg = Xor(sharedKnowledge, nonce)

    // generate random keypair to use for signing
    var ecdsaRandomPrvKey *ecdsa.PrivateKey
    if ecdsaRandomPrvKey, err = crypto.GenerateKey(); err != nil {
        return
    }
    // var ecdsaRandomPubKey *ecdsa.PublicKey
    //  ecdsaRandomPubKey= &ecdsaRandomPrvKey.PublicKey

    // message known to both parties ecdh-shared-secret^nonce^token
    var signature []byte
    // signature = sign(ecdhe-random, ecdh-shared-secret^nonce^token)
    // uses secp256k1.Sign
    if signature, err = crypto.Sign(signedMsg, ecdsaRandomPrvKey); err != nil {
        return
    }
    // msg = signature || 0x80 || pubk || nonce
    copy(msg, signature)
    msg[sigLen] = 0x80
    self.pubKeyR.ReadAt(msg[sigLen+1:], int64(pubKeyLen)) // gives pubKeyLen, io.EOF (since we dont read onto the nonce)

    // auth = eciesEncrypt(remote-pubk, msg)
    if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
        return
    }
    return
}

func (self *cryptoId) verifyAuth(auth, nonce, sharedKnowledge []byte) (sessionToken []byte, rw *secretRW, err error) {
    var msg []byte
    // they prove that msg is meant for me,
    // I prove I possess private key if i can read it
    if msg, err = crypto.Decrypt(self.prvKey, auth); err != nil {
        return
    }

    var remoteNonce []byte = msg[msgLen-skLen:]
    // I prove that i possess prv key (to derive shared secret, and read nonce off encrypted msg) and that I posessed the earlier one , our shared history
    // they prove they possess their private key to derive the same shared secret, plus the same shared history (previous session token)
    var signedMsg = Xor(sharedKnowledge, remoteNonce)
    var remoteRandomPubKeyDER []byte
    if remoteRandomPubKeyDER, err = secp256k1.RecoverPubkey(signedMsg, msg[:32]); err != nil {
        return
    }
    var remoteRandomPubKey = crypto.ToECDSAPub(remoteRandomPubKeyDER)
    if remoteRandomPubKey == nil {
        err = fmt.Errorf("invalid remote public key")
        return
    }
    // 3) Now we can trust ecdhe-random-pubk to derive keys
    //ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
    var dhSharedSecret []byte
    dhSharedSecret, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remoteRandomPubKey), skLen, skLen)
    if err != nil {
        return
    }
    // shared-secret = crypto.Sha3(ecdhe-shared-secret || crypto.Sha3(nonce || initiator-nonce))
    var sharedSecret []byte = crypto.Sha3(append(dhSharedSecret, crypto.Sha3(append(nonce, remoteNonce...))...))
    // token = crypto.Sha3(shared-secret)
    sessionToken = crypto.Sha3(sharedSecret)
    // aes-secret = crypto.Sha3(ecdhe-shared-secret || shared-secret)
    var aesSecret = crypto.Sha3(append(dhSharedSecret, sharedSecret...))
    // # destroy shared-secret
    // mac-secret = crypto.Sha3(ecdhe-shared-secret || aes-secret)
    var macSecret = crypto.Sha3(append(dhSharedSecret, aesSecret...))
    // # destroy ecdhe-shared-secret
    // egress-mac = crypto.Sha3(mac-secret^nonce || auth)
    var egressMac = crypto.Sha3(append(Xor(macSecret, nonce), auth...))
    // # destroy nonce
    // ingress-mac = crypto.Sha3(mac-secret^initiator-nonce || auth),
    var ingressMac = crypto.Sha3(append(Xor(macSecret, remoteNonce), auth...))
    // # destroy remote-nonce
    rw = &secretRW{
        aesSecret:  aesSecret,
        macSecret:  macSecret,
        egressMac:  egressMac,
        ingressMac: ingressMac,
    }
    return
}

func Xor(one, other []byte) (xor []byte) {
    for i := 0; i < len(one); i++ {
        xor[i] = one[i] ^ other[i]
    }
    return
}