aboutsummaryrefslogtreecommitdiffstats
path: root/miner/worker.go
blob: cf1740753f0c998b2fd85aa50d41e7c9068f1171 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package miner

import (
    "bytes"
    "errors"
    "math/big"
    "sync"
    "sync/atomic"
    "time"

    mapset "github.com/deckarep/golang-set"
    "github.com/tangerine-network/go-tangerine/common"
    "github.com/tangerine-network/go-tangerine/consensus"
    "github.com/tangerine-network/go-tangerine/consensus/misc"
    "github.com/tangerine-network/go-tangerine/core"
    "github.com/tangerine-network/go-tangerine/core/state"
    "github.com/tangerine-network/go-tangerine/core/types"
    "github.com/tangerine-network/go-tangerine/event"
    "github.com/tangerine-network/go-tangerine/log"
    "github.com/tangerine-network/go-tangerine/params"
)

const (
    // resultQueueSize is the size of channel listening to sealing result.
    resultQueueSize = 10

    // txChanSize is the size of channel listening to NewTxsEvent.
    // The number is referenced from the size of tx pool.
    txChanSize = 4096

    // chainHeadChanSize is the size of channel listening to ChainHeadEvent.
    chainHeadChanSize = 10

    // chainSideChanSize is the size of channel listening to ChainSideEvent.
    chainSideChanSize = 10

    // resubmitAdjustChanSize is the size of resubmitting interval adjustment channel.
    resubmitAdjustChanSize = 10

    // miningLogAtDepth is the number of confirmations before logging successful mining.
    miningLogAtDepth = 7

    // minRecommitInterval is the minimal time interval to recreate the mining block with
    // any newly arrived transactions.
    minRecommitInterval = 1 * time.Second

    // maxRecommitInterval is the maximum time interval to recreate the mining block with
    // any newly arrived transactions.
    maxRecommitInterval = 15 * time.Second

    // intervalAdjustRatio is the impact a single interval adjustment has on sealing work
    // resubmitting interval.
    intervalAdjustRatio = 0.1

    // intervalAdjustBias is applied during the new resubmit interval calculation in favor of
    // increasing upper limit or decreasing lower limit so that the limit can be reachable.
    intervalAdjustBias = 200 * 1000.0 * 1000.0

    // staleThreshold is the maximum depth of the acceptable stale block.
    staleThreshold = 7
)

// environment is the worker's current environment and holds all of the current state information.
type environment struct {
    signer types.Signer

    state     *state.StateDB // apply state changes here
    ancestors mapset.Set     // ancestor set (used for checking uncle parent validity)
    family    mapset.Set     // family set (used for checking uncle invalidity)
    uncles    mapset.Set     // uncle set
    tcount    int            // tx count in cycle
    gasPool   *core.GasPool  // available gas used to pack transactions

    header   *types.Header
    txs      []*types.Transaction
    receipts []*types.Receipt
}

// task contains all information for consensus engine sealing and result submitting.
type task struct {
    receipts  []*types.Receipt
    state     *state.StateDB
    block     *types.Block
    createdAt time.Time
}

const (
    commitInterruptNone int32 = iota
    commitInterruptNewHead
    commitInterruptResubmit
)

// newWorkReq represents a request for new sealing work submitting with relative interrupt notifier.
type newWorkReq struct {
    interrupt *int32
    noempty   bool
    timestamp int64
}

// intervalAdjust represents a resubmitting interval adjustment.
type intervalAdjust struct {
    ratio float64
    inc   bool
}

// worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
type worker struct {
    config *params.ChainConfig
    engine consensus.Engine
    eth    Backend
    chain  *core.BlockChain

    gasFloor uint64
    gasCeil  uint64

    // Subscriptions
    mux          *event.TypeMux
    txsCh        chan core.NewTxsEvent
    txsSub       event.Subscription
    chainHeadCh  chan core.ChainHeadEvent
    chainHeadSub event.Subscription
    chainSideCh  chan core.ChainSideEvent
    chainSideSub event.Subscription

    // Channels
    newWorkCh          chan *newWorkReq
    taskCh             chan *task
    resultCh           chan *types.Block
    startCh            chan struct{}
    exitCh             chan struct{}
    resubmitIntervalCh chan time.Duration
    resubmitAdjustCh   chan *intervalAdjust

    current      *environment                 // An environment for current running cycle.
    localUncles  map[common.Hash]*types.Block // A set of side blocks generated locally as the possible uncle blocks.
    remoteUncles map[common.Hash]*types.Block // A set of side blocks as the possible uncle blocks.
    unconfirmed  *unconfirmedBlocks           // A set of locally mined blocks pending canonicalness confirmations.

    mu       sync.RWMutex // The lock used to protect the coinbase and extra fields
    coinbase common.Address
    extra    []byte

    pendingMu    sync.RWMutex
    pendingTasks map[common.Hash]*task

    snapshotMu    sync.RWMutex // The lock used to protect the block snapshot and state snapshot
    snapshotBlock *types.Block
    snapshotState *state.StateDB

    // atomic status counters
    running int32 // The indicator whether the consensus engine is running or not.
    newTxs  int32 // New arrival transaction count since last sealing work submitting.

    // External functions
    isLocalBlock func(block *types.Block) bool // Function used to determine whether the specified block is mined by local miner.

    // Test hooks
    newTaskHook  func(*task)                        // Method to call upon receiving a new sealing task.
    skipSealHook func(*task) bool                   // Method to decide whether skipping the sealing.
    fullTaskHook func()                             // Method to call before pushing the full sealing task.
    resubmitHook func(time.Duration, time.Duration) // Method to call upon updating resubmitting interval.
}

func newWorker(config *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, recommit time.Duration, gasFloor, gasCeil uint64, isLocalBlock func(*types.Block) bool) *worker {
    worker := &worker{
        config:             config,
        engine:             engine,
        eth:                eth,
        mux:                mux,
        chain:              eth.BlockChain(),
        gasFloor:           gasFloor,
        gasCeil:            gasCeil,
        isLocalBlock:       isLocalBlock,
        localUncles:        make(map[common.Hash]*types.Block),
        remoteUncles:       make(map[common.Hash]*types.Block),
        unconfirmed:        newUnconfirmedBlocks(eth.BlockChain(), miningLogAtDepth),
        pendingTasks:       make(map[common.Hash]*task),
        txsCh:              make(chan core.NewTxsEvent, txChanSize),
        chainHeadCh:        make(chan core.ChainHeadEvent, chainHeadChanSize),
        chainSideCh:        make(chan core.ChainSideEvent, chainSideChanSize),
        newWorkCh:          make(chan *newWorkReq),
        taskCh:             make(chan *task),
        resultCh:           make(chan *types.Block, resultQueueSize),
        exitCh:             make(chan struct{}),
        startCh:            make(chan struct{}, 1),
        resubmitIntervalCh: make(chan time.Duration),
        resubmitAdjustCh:   make(chan *intervalAdjust, resubmitAdjustChanSize),
    }
    // Subscribe NewTxsEvent for tx pool
    worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh)
    // Subscribe events for blockchain
    worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
    worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh)

    // Sanitize recommit interval if the user-specified one is too short.
    if recommit < minRecommitInterval {
        log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval)
        recommit = minRecommitInterval
    }

    go worker.mainLoop()
    go worker.newWorkLoop(recommit)
    go worker.resultLoop()
    go worker.taskLoop()

    // Submit first work to initialize pending state.
    worker.startCh <- struct{}{}

    return worker
}

// setEtherbase sets the etherbase used to initialize the block coinbase field.
func (w *worker) setEtherbase(addr common.Address) {
    w.mu.Lock()
    defer w.mu.Unlock()
    w.coinbase = addr
}

// setExtra sets the content used to initialize the block extra field.
func (w *worker) setExtra(extra []byte) {
    w.mu.Lock()
    defer w.mu.Unlock()
    w.extra = extra
}

// setRecommitInterval updates the interval for miner sealing work recommitting.
func (w *worker) setRecommitInterval(interval time.Duration) {
    w.resubmitIntervalCh <- interval
}

// pending returns the pending state and corresponding block.
func (w *worker) pending() (*types.Block, *state.StateDB) {
    // return a snapshot to avoid contention on currentMu mutex
    w.snapshotMu.RLock()
    defer w.snapshotMu.RUnlock()
    if w.snapshotState == nil {
        return nil, nil
    }
    return w.snapshotBlock, w.snapshotState.Copy()
}

// pendingBlock returns pending block.
func (w *worker) pendingBlock() *types.Block {
    // return a snapshot to avoid contention on currentMu mutex
    w.snapshotMu.RLock()
    defer w.snapshotMu.RUnlock()
    return w.snapshotBlock
}

// start sets the running status as 1 and triggers new work submitting.
func (w *worker) start() {
    atomic.StoreInt32(&w.running, 1)
    w.startCh <- struct{}{}
}

// stop sets the running status as 0.
func (w *worker) stop() {
    atomic.StoreInt32(&w.running, 0)
}

// isRunning returns an indicator whether worker is running or not.
func (w *worker) isRunning() bool {
    return atomic.LoadInt32(&w.running) == 1
}

// close terminates all background threads maintained by the worker.
// Note the worker does not support being closed multiple times.
func (w *worker) close() {
    close(w.exitCh)
}

// newWorkLoop is a standalone goroutine to submit new mining work upon received events.
func (w *worker) newWorkLoop(recommit time.Duration) {
    var (
        interrupt   *int32
        minRecommit = recommit // minimal resubmit interval specified by user.
        timestamp   int64      // timestamp for each round of mining.
    )

    timer := time.NewTimer(0)
    <-timer.C // discard the initial tick

    // commit aborts in-flight transaction execution with given signal and resubmits a new one.
    commit := func(noempty bool, s int32) {
        if interrupt != nil {
            atomic.StoreInt32(interrupt, s)
        }
        interrupt = new(int32)
        w.newWorkCh <- &newWorkReq{interrupt: interrupt, noempty: noempty, timestamp: timestamp}
        timer.Reset(recommit)
        atomic.StoreInt32(&w.newTxs, 0)
    }
    // recalcRecommit recalculates the resubmitting interval upon feedback.
    recalcRecommit := func(target float64, inc bool) {
        var (
            prev = float64(recommit.Nanoseconds())
            next float64
        )
        if inc {
            next = prev*(1-intervalAdjustRatio) + intervalAdjustRatio*(target+intervalAdjustBias)
            // Recap if interval is larger than the maximum time interval
            if next > float64(maxRecommitInterval.Nanoseconds()) {
                next = float64(maxRecommitInterval.Nanoseconds())
            }
        } else {
            next = prev*(1-intervalAdjustRatio) + intervalAdjustRatio*(target-intervalAdjustBias)
            // Recap if interval is less than the user specified minimum
            if next < float64(minRecommit.Nanoseconds()) {
                next = float64(minRecommit.Nanoseconds())
            }
        }
        recommit = time.Duration(int64(next))
    }
    // clearPending cleans the stale pending tasks.
    clearPending := func(number uint64) {
        w.pendingMu.Lock()
        for h, t := range w.pendingTasks {
            if t.block.NumberU64()+staleThreshold <= number {
                delete(w.pendingTasks, h)
            }
        }
        w.pendingMu.Unlock()
    }

    for {
        select {
        case <-w.startCh:
            clearPending(w.chain.CurrentBlock().NumberU64())
            timestamp = time.Now().Unix()
            commit(false, commitInterruptNewHead)

        case head := <-w.chainHeadCh:
            clearPending(head.Block.NumberU64())
            timestamp = time.Now().Unix()
            commit(false, commitInterruptNewHead)

        case <-timer.C:
            // If mining is running resubmit a new work cycle periodically to pull in
            // higher priced transactions. Disable this overhead for pending blocks.
            if w.isRunning() && (w.config.Clique == nil || w.config.Clique.Period > 0) {
                // Short circuit if no new transaction arrives.
                if atomic.LoadInt32(&w.newTxs) == 0 {
                    timer.Reset(recommit)
                    continue
                }
                commit(true, commitInterruptResubmit)
            }

        case interval := <-w.resubmitIntervalCh:
            // Adjust resubmit interval explicitly by user.
            if interval < minRecommitInterval {
                log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval)
                interval = minRecommitInterval
            }
            log.Info("Miner recommit interval update", "from", minRecommit, "to", interval)
            minRecommit, recommit = interval, interval

            if w.resubmitHook != nil {
                w.resubmitHook(minRecommit, recommit)
            }

        case adjust := <-w.resubmitAdjustCh:
            // Adjust resubmit interval by feedback.
            if adjust.inc {
                before := recommit
                recalcRecommit(float64(recommit.Nanoseconds())/adjust.ratio, true)
                log.Trace("Increase miner recommit interval", "from", before, "to", recommit)
            } else {
                before := recommit
                recalcRecommit(float64(minRecommit.Nanoseconds()), false)
                log.Trace("Decrease miner recommit interval", "from", before, "to", recommit)
            }

            if w.resubmitHook != nil {
                w.resubmitHook(minRecommit, recommit)
            }

        case <-w.exitCh:
            return
        }
    }
}

// mainLoop is a standalone goroutine to regenerate the sealing task based on the received event.
func (w *worker) mainLoop() {
    defer w.txsSub.Unsubscribe()
    defer w.chainHeadSub.Unsubscribe()
    defer w.chainSideSub.Unsubscribe()

    for {
        select {
        case req := <-w.newWorkCh:
            w.commitNewWork(req.interrupt, req.noempty, req.timestamp)

        case ev := <-w.chainSideCh:
            // Short circuit for duplicate side blocks
            if _, exist := w.localUncles[ev.Block.Hash()]; exist {
                continue
            }
            if _, exist := w.remoteUncles[ev.Block.Hash()]; exist {
                continue
            }
            // Add side block to possible uncle block set depending on the author.
            if w.isLocalBlock != nil && w.isLocalBlock(ev.Block) {
                w.localUncles[ev.Block.Hash()] = ev.Block
            } else {
                w.remoteUncles[ev.Block.Hash()] = ev.Block
            }
            // If our mining block contains less than 2 uncle blocks,
            // add the new uncle block if valid and regenerate a mining block.
            if w.isRunning() && w.current != nil && w.current.uncles.Cardinality() < 2 {
                start := time.Now()
                if err := w.commitUncle(w.current, ev.Block.Header()); err == nil {
                    var uncles []*types.Header
                    w.current.uncles.Each(func(item interface{}) bool {
                        hash, ok := item.(common.Hash)
                        if !ok {
                            return false
                        }
                        uncle, exist := w.localUncles[hash]
                        if !exist {
                            uncle, exist = w.remoteUncles[hash]
                        }
                        if !exist {
                            return false
                        }
                        uncles = append(uncles, uncle.Header())
                        return false
                    })
                    w.commit(uncles, nil, true, start)
                }
            }

        case ev := <-w.txsCh:
            // Apply transactions to the pending state if we're not mining.
            //
            // Note all transactions received may not be continuous with transactions
            // already included in the current mining block. These transactions will
            // be automatically eliminated.
            if !w.isRunning() && w.current != nil {
                w.mu.RLock()
                coinbase := w.coinbase
                w.mu.RUnlock()

                txs := make(map[common.Address]types.Transactions)
                for _, tx := range ev.Txs {
                    acc, _ := types.Sender(w.current.signer, tx)
                    txs[acc] = append(txs[acc], tx)
                }
                txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs)
                w.commitTransactions(txset, coinbase, nil)
                w.updateSnapshot()
            } else {
                // If we're mining, but nothing is being processed, wake on new transactions
                if w.config.Clique != nil && w.config.Clique.Period == 0 {
                    w.commitNewWork(nil, false, time.Now().Unix())
                }
            }
            atomic.AddInt32(&w.newTxs, int32(len(ev.Txs)))

        // System stopped
        case <-w.exitCh:
            return
        case <-w.txsSub.Err():
            return
        case <-w.chainHeadSub.Err():
            return
        case <-w.chainSideSub.Err():
            return
        }
    }
}

// taskLoop is a standalone goroutine to fetch sealing task from the generator and
// push them to consensus engine.
func (w *worker) taskLoop() {
    var (
        stopCh chan struct{}
        prev   common.Hash
    )

    // interrupt aborts the in-flight sealing task.
    interrupt := func() {
        if stopCh != nil {
            close(stopCh)
            stopCh = nil
        }
    }
    for {
        select {
        case task := <-w.taskCh:
            if w.newTaskHook != nil {
                w.newTaskHook(task)
            }
            // Reject duplicate sealing work due to resubmitting.
            sealHash := w.engine.SealHash(task.block.Header())
            if sealHash == prev {
                continue
            }
            // Interrupt previous sealing operation
            interrupt()
            stopCh, prev = make(chan struct{}), sealHash

            if w.skipSealHook != nil && w.skipSealHook(task) {
                continue
            }
            w.pendingMu.Lock()
            w.pendingTasks[w.engine.SealHash(task.block.Header())] = task
            w.pendingMu.Unlock()

            if err := w.engine.Seal(w.chain, task.block, w.resultCh, stopCh); err != nil {
                log.Warn("Block sealing failed", "err", err)
            }
        case <-w.exitCh:
            interrupt()
            return
        }
    }
}

// resultLoop is a standalone goroutine to handle sealing result submitting
// and flush relative data to the database.
func (w *worker) resultLoop() {
    for {
        select {
        case block := <-w.resultCh:
            // Short circuit when receiving empty result.
            if block == nil {
                continue
            }
            // Short circuit when receiving duplicate result caused by resubmitting.
            if w.chain.HasBlock(block.Hash(), block.NumberU64()) {
                continue
            }
            var (
                sealhash = w.engine.SealHash(block.Header())
                hash     = block.Hash()
            )
            w.pendingMu.RLock()
            task, exist := w.pendingTasks[sealhash]
            w.pendingMu.RUnlock()
            if !exist {
                log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash)
                continue
            }
            // Different block could share same sealhash, deep copy here to prevent write-write conflict.
            var (
                receipts = make([]*types.Receipt, len(task.receipts))
                logs     []*types.Log
            )
            for i, receipt := range task.receipts {
                receipts[i] = new(types.Receipt)
                *receipts[i] = *receipt
                // Update the block hash in all logs since it is now available and not when the
                // receipt/log of individual transactions were created.
                for _, log := range receipt.Logs {
                    log.BlockHash = hash
                }
                logs = append(logs, receipt.Logs...)
            }
            // Commit block and state to database.
            stat, err := w.chain.WriteBlockWithState(block, receipts, task.state)
            if err != nil {
                log.Error("Failed writing block to chain", "err", err)
                continue
            }
            log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash,
                "elapsed", common.PrettyDuration(time.Since(task.createdAt)))

            // Broadcast the block and announce chain insertion event
            w.mux.Post(core.NewMinedBlockEvent{Block: block})

            var events []interface{}
            switch stat {
            case core.CanonStatTy:
                events = append(events, core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
                events = append(events, core.ChainHeadEvent{Block: block})
            case core.SideStatTy:
                events = append(events, core.ChainSideEvent{Block: block})
            }
            w.chain.PostChainEvents(events, logs)

            // Insert the block into the set of pending ones to resultLoop for confirmations
            w.unconfirmed.Insert(block.NumberU64(), block.Hash())

        case <-w.exitCh:
            return
        }
    }
}

// makeCurrent creates a new environment for the current cycle.
func (w *worker) makeCurrent(parent *types.Block, header *types.Header) error {
    state, err := w.chain.StateAt(parent.Root())
    if err != nil {
        return err
    }
    env := &environment{
        signer:    types.NewEIP155Signer(w.config.ChainID),
        state:     state,
        ancestors: mapset.NewSet(),
        family:    mapset.NewSet(),
        uncles:    mapset.NewSet(),
        header:    header,
    }

    // when 08 is processed ancestors contain 07 (quick block)
    for _, ancestor := range w.chain.GetBlocksFromHash(parent.Hash(), 7) {
        for _, uncle := range ancestor.Uncles() {
            env.family.Add(uncle.Hash())
        }
        env.family.Add(ancestor.Hash())
        env.ancestors.Add(ancestor.Hash())
    }

    // Keep track of transactions which return errors so they can be removed
    env.tcount = 0
    w.current = env
    return nil
}

// commitUncle adds the given block to uncle block set, returns error if failed to add.
func (w *worker) commitUncle(env *environment, uncle *types.Header) error {
    hash := uncle.Hash()
    if env.uncles.Contains(hash) {
        return errors.New("uncle not unique")
    }
    if env.header.ParentHash == uncle.ParentHash {
        return errors.New("uncle is sibling")
    }
    if !env.ancestors.Contains(uncle.ParentHash) {
        return errors.New("uncle's parent unknown")
    }
    if env.family.Contains(hash) {
        return errors.New("uncle already included")
    }
    env.uncles.Add(uncle.Hash())
    return nil
}

// updateSnapshot updates pending snapshot block and state.
// Note this function assumes the current variable is thread safe.
func (w *worker) updateSnapshot() {
    w.snapshotMu.Lock()
    defer w.snapshotMu.Unlock()

    var uncles []*types.Header
    w.current.uncles.Each(func(item interface{}) bool {
        hash, ok := item.(common.Hash)
        if !ok {
            return false
        }
        uncle, exist := w.localUncles[hash]
        if !exist {
            uncle, exist = w.remoteUncles[hash]
        }
        if !exist {
            return false
        }
        uncles = append(uncles, uncle.Header())
        return false
    })

    w.snapshotBlock = types.NewBlock(
        w.current.header,
        w.current.txs,
        uncles,
        w.current.receipts,
    )

    w.snapshotState = w.current.state.Copy()
}

func (w *worker) commitTransaction(tx *types.Transaction, coinbase common.Address) ([]*types.Log, error) {
    snap := w.current.state.Snapshot()

    receipt, _, err := core.ApplyTransaction(w.config, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.header, tx, &w.current.header.GasUsed, *w.chain.GetVMConfig())
    if err != nil {
        w.current.state.RevertToSnapshot(snap)
        return nil, err
    }
    w.current.txs = append(w.current.txs, tx)
    w.current.receipts = append(w.current.receipts, receipt)

    return receipt.Logs, nil
}

func (w *worker) commitTransactions(txs *types.TransactionsByPriceAndNonce, coinbase common.Address, interrupt *int32) bool {
    // Short circuit if current is nil
    if w.current == nil {
        return true
    }

    if w.current.gasPool == nil {
        w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit)
    }

    var coalescedLogs []*types.Log

    for {
        // In the following three cases, we will interrupt the execution of the transaction.
        // (1) new head block event arrival, the interrupt signal is 1
        // (2) worker start or restart, the interrupt signal is 1
        // (3) worker recreate the mining block with any newly arrived transactions, the interrupt signal is 2.
        // For the first two cases, the semi-finished work will be discarded.
        // For the third case, the semi-finished work will be submitted to the consensus engine.
        if interrupt != nil && atomic.LoadInt32(interrupt) != commitInterruptNone {
            // Notify resubmit loop to increase resubmitting interval due to too frequent commits.
            if atomic.LoadInt32(interrupt) == commitInterruptResubmit {
                ratio := float64(w.current.header.GasLimit-w.current.gasPool.Gas()) / float64(w.current.header.GasLimit)
                if ratio < 0.1 {
                    ratio = 0.1
                }
                w.resubmitAdjustCh <- &intervalAdjust{
                    ratio: ratio,
                    inc:   true,
                }
            }
            return atomic.LoadInt32(interrupt) == commitInterruptNewHead
        }
        // If we don't have enough gas for any further transactions then we're done
        if w.current.gasPool.Gas() < params.TxGas {
            log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas)
            break
        }
        // Retrieve the next transaction and abort if all done
        tx := txs.Peek()
        if tx == nil {
            break
        }
        // Error may be ignored here. The error has already been checked
        // during transaction acceptance is the transaction pool.
        //
        // We use the eip155 signer regardless of the current hf.
        from, _ := types.Sender(w.current.signer, tx)
        // Check whether the tx is replay protected. If we're not in the EIP155 hf
        // phase, start ignoring the sender until we do.
        if tx.Protected() && !w.config.IsEIP155(w.current.header.Number) {
            log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.config.EIP155Block)

            txs.Pop()
            continue
        }
        // Start executing the transaction
        w.current.state.Prepare(tx.Hash(), common.Hash{}, w.current.tcount)

        logs, err := w.commitTransaction(tx, coinbase)
        switch err {
        case core.ErrGasLimitReached:
            // Pop the current out-of-gas transaction without shifting in the next from the account
            log.Trace("Gas limit exceeded for current block", "sender", from)
            txs.Pop()

        case core.ErrNonceTooLow:
            // New head notification data race between the transaction pool and miner, shift
            log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce())
            txs.Shift()

        case core.ErrNonceTooHigh:
            // Reorg notification data race between the transaction pool and miner, skip account =
            log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce())
            txs.Pop()

        case nil:
            // Everything ok, collect the logs and shift in the next transaction from the same account
            coalescedLogs = append(coalescedLogs, logs...)
            w.current.tcount++
            txs.Shift()

        default:
            // Strange error, discard the transaction and get the next in line (note, the
            // nonce-too-high clause will prevent us from executing in vain).
            log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err)
            txs.Shift()
        }
    }

    if !w.isRunning() && len(coalescedLogs) > 0 {
        // We don't push the pendingLogsEvent while we are mining. The reason is that
        // when we are mining, the worker will regenerate a mining block every 3 seconds.
        // In order to avoid pushing the repeated pendingLog, we disable the pending log pushing.

        // make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
        // logs by filling in the block hash when the block was mined by the local miner. This can
        // cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
        cpy := make([]*types.Log, len(coalescedLogs))
        for i, l := range coalescedLogs {
            cpy[i] = new(types.Log)
            *cpy[i] = *l
        }
        go w.mux.Post(core.PendingLogsEvent{Logs: cpy})
    }
    // Notify resubmit loop to decrease resubmitting interval if current interval is larger
    // than the user-specified one.
    if interrupt != nil {
        w.resubmitAdjustCh <- &intervalAdjust{inc: false}
    }
    return false
}

// commitNewWork generates several new sealing tasks based on the parent block.
func (w *worker) commitNewWork(interrupt *int32, noempty bool, timestamp int64) {
    w.mu.RLock()
    defer w.mu.RUnlock()

    tstart := time.Now()
    parent := w.chain.CurrentBlock()

    if parent.Time() >= uint64(timestamp) {
        timestamp = int64(parent.Time() + 1)
    }
    // this will ensure we're not going off too far in the future
    if now := time.Now().Unix(); timestamp > now+1 {
        wait := time.Duration(timestamp-now) * time.Second
        log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait))
        time.Sleep(wait)
    }

    num := parent.Number()
    header := &types.Header{
        ParentHash: parent.Hash(),
        Number:     num.Add(num, common.Big1),
        GasLimit:   core.CalcGasLimit(parent, w.gasFloor, w.gasCeil),
        Extra:      w.extra,
        Time:       uint64(timestamp),
    }
    // Only set the coinbase if our consensus engine is running (avoid spurious block rewards)
    if w.isRunning() {
        if w.coinbase == (common.Address{}) {
            log.Error("Refusing to mine without etherbase")
            return
        }
        header.Coinbase = w.coinbase
    }
    if err := w.engine.Prepare(w.chain, header); err != nil {
        log.Error("Failed to prepare header for mining", "err", err)
        return
    }
    // If we are care about TheDAO hard-fork check whether to override the extra-data or not
    if daoBlock := w.config.DAOForkBlock; daoBlock != nil {
        // Check whether the block is among the fork extra-override range
        limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange)
        if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 {
            // Depending whether we support or oppose the fork, override differently
            if w.config.DAOForkSupport {
                header.Extra = common.CopyBytes(params.DAOForkBlockExtra)
            } else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) {
                header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data
            }
        }
    }
    // Could potentially happen if starting to mine in an odd state.
    err := w.makeCurrent(parent, header)
    if err != nil {
        log.Error("Failed to create mining context", "err", err)
        return
    }
    // Create the current work task and check any fork transitions needed
    env := w.current
    if w.config.DAOForkSupport && w.config.DAOForkBlock != nil && w.config.DAOForkBlock.Cmp(header.Number) == 0 {
        misc.ApplyDAOHardFork(env.state)
    }
    // Accumulate the uncles for the current block
    uncles := make([]*types.Header, 0, 2)
    commitUncles := func(blocks map[common.Hash]*types.Block) {
        // Clean up stale uncle blocks first
        for hash, uncle := range blocks {
            if uncle.NumberU64()+staleThreshold <= header.Number.Uint64() {
                delete(blocks, hash)
            }
        }
        for hash, uncle := range blocks {
            if len(uncles) == 2 {
                break
            }
            if err := w.commitUncle(env, uncle.Header()); err != nil {
                log.Trace("Possible uncle rejected", "hash", hash, "reason", err)
            } else {
                log.Debug("Committing new uncle to block", "hash", hash)
                uncles = append(uncles, uncle.Header())
            }
        }
    }
    // Prefer to locally generated uncle
    commitUncles(w.localUncles)
    commitUncles(w.remoteUncles)

    if !noempty {
        // Create an empty block based on temporary copied state for sealing in advance without waiting block
        // execution finished.
        w.commit(uncles, nil, false, tstart)
    }

    // Fill the block with all available pending transactions.
    pending, err := w.eth.TxPool().Pending()
    if err != nil {
        log.Error("Failed to fetch pending transactions", "err", err)
        return
    }
    // Short circuit if there is no available pending transactions
    if len(pending) == 0 {
        w.updateSnapshot()
        return
    }
    // Split the pending transactions into locals and remotes
    localTxs, remoteTxs := make(map[common.Address]types.Transactions), pending
    for _, account := range w.eth.TxPool().Locals() {
        if txs := remoteTxs[account]; len(txs) > 0 {
            delete(remoteTxs, account)
            localTxs[account] = txs
        }
    }
    if len(localTxs) > 0 {
        txs := types.NewTransactionsByPriceAndNonce(w.current.signer, localTxs)
        if w.commitTransactions(txs, w.coinbase, interrupt) {
            return
        }
    }
    if len(remoteTxs) > 0 {
        txs := types.NewTransactionsByPriceAndNonce(w.current.signer, remoteTxs)
        if w.commitTransactions(txs, w.coinbase, interrupt) {
            return
        }
    }
    w.commit(uncles, w.fullTaskHook, true, tstart)
}

// commit runs any post-transaction state modifications, assembles the final block
// and commits new work if consensus engine is running.
func (w *worker) commit(uncles []*types.Header, interval func(), update bool, start time.Time) error {
    // Deep copy receipts here to avoid interaction between different tasks.
    receipts := make([]*types.Receipt, len(w.current.receipts))
    for i, l := range w.current.receipts {
        receipts[i] = new(types.Receipt)
        *receipts[i] = *l
    }
    s := w.current.state.Copy()
    block, err := w.engine.Finalize(w.chain, w.current.header, s, w.current.txs, uncles, w.current.receipts)
    if err != nil {
        return err
    }
    if w.isRunning() {
        if interval != nil {
            interval()
        }
        select {
        case w.taskCh <- &task{receipts: receipts, state: s, block: block, createdAt: time.Now()}:
            w.unconfirmed.Shift(block.NumberU64() - 1)

            feesWei := new(big.Int)
            for i, tx := range block.Transactions() {
                feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), tx.GasPrice()))
            }
            feesEth := new(big.Float).Quo(new(big.Float).SetInt(feesWei), new(big.Float).SetInt(big.NewInt(params.Ether)))

            log.Info("Commit new mining work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()),
                "uncles", len(uncles), "txs", w.current.tcount, "gas", block.GasUsed(), "fees", feesEth, "elapsed", common.PrettyDuration(time.Since(start)))

        case <-w.exitCh:
            log.Info("Worker has exited")
        }
    }
    if update {
        w.updateSnapshot()
    }
    return nil
}