aboutsummaryrefslogtreecommitdiffstats
path: root/les/servingqueue.go
blob: 26656ec0182fb0ff7893395c86b01799069ad3da (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package les

import (
    "fmt"
    "sort"
    "sync"
    "sync/atomic"

    "github.com/ethereum/go-ethereum/common/mclock"
    "github.com/ethereum/go-ethereum/common/prque"
    "github.com/ethereum/go-ethereum/les/csvlogger"
)

// servingQueue allows running tasks in a limited number of threads and puts the
// waiting tasks in a priority queue
type servingQueue struct {
    recentTime, queuedTime, servingTimeDiff uint64
    burstLimit, burstDropLimit              uint64
    burstDecRate                            float64
    lastUpdate                              mclock.AbsTime

    queueAddCh, queueBestCh chan *servingTask
    stopThreadCh, quit      chan struct{}
    setThreadsCh            chan int

    wg          sync.WaitGroup
    threadCount int          // number of currently running threads
    queue       *prque.Prque // priority queue for waiting or suspended tasks
    best        *servingTask // the highest priority task (not included in the queue)
    suspendBias int64        // priority bias against suspending an already running task

    logger        *csvlogger.Logger
    logRecentTime *csvlogger.Channel
    logQueuedTime *csvlogger.Channel
}

// servingTask represents a request serving task. Tasks can be implemented to
// run in multiple steps, allowing the serving queue to suspend execution between
// steps if higher priority tasks are entered. The creator of the task should
// set the following fields:
//
// - priority: greater value means higher priority; values can wrap around the int64 range
// - run: execute a single step; return true if finished
// - after: executed after run finishes or returns an error, receives the total serving time
type servingTask struct {
    sq                                       *servingQueue
    servingTime, timeAdded, maxTime, expTime uint64
    peer                                     *peer
    priority                                 int64
    biasAdded                                bool
    token                                    runToken
    tokenCh                                  chan runToken
}

// runToken received by servingTask.start allows the task to run. Closing the
// channel by servingTask.stop signals the thread controller to allow a new task
// to start running.
type runToken chan struct{}

// start blocks until the task can start and returns true if it is allowed to run.
// Returning false means that the task should be cancelled.
func (t *servingTask) start() bool {
    if t.peer.isFrozen() {
        return false
    }
    t.tokenCh = make(chan runToken, 1)
    select {
    case t.sq.queueAddCh <- t:
    case <-t.sq.quit:
        return false
    }
    select {
    case t.token = <-t.tokenCh:
    case <-t.sq.quit:
        return false
    }
    if t.token == nil {
        return false
    }
    t.servingTime -= uint64(mclock.Now())
    return true
}

// done signals the thread controller about the task being finished and returns
// the total serving time of the task in nanoseconds.
func (t *servingTask) done() uint64 {
    t.servingTime += uint64(mclock.Now())
    close(t.token)
    diff := t.servingTime - t.timeAdded
    t.timeAdded = t.servingTime
    if t.expTime > diff {
        t.expTime -= diff
        atomic.AddUint64(&t.sq.servingTimeDiff, t.expTime)
    } else {
        t.expTime = 0
    }
    return t.servingTime
}

// waitOrStop can be called during the execution of the task. It blocks if there
// is a higher priority task waiting (a bias is applied in favor of the currently
// running task). Returning true means that the execution can be resumed. False
// means the task should be cancelled.
func (t *servingTask) waitOrStop() bool {
    t.done()
    if !t.biasAdded {
        t.priority += t.sq.suspendBias
        t.biasAdded = true
    }
    return t.start()
}

// newServingQueue returns a new servingQueue
func newServingQueue(suspendBias int64, utilTarget float64, logger *csvlogger.Logger) *servingQueue {
    sq := &servingQueue{
        queue:          prque.New(nil),
        suspendBias:    suspendBias,
        queueAddCh:     make(chan *servingTask, 100),
        queueBestCh:    make(chan *servingTask),
        stopThreadCh:   make(chan struct{}),
        quit:           make(chan struct{}),
        setThreadsCh:   make(chan int, 10),
        burstLimit:     uint64(utilTarget * bufLimitRatio * 1200000),
        burstDropLimit: uint64(utilTarget * bufLimitRatio * 1000000),
        burstDecRate:   utilTarget,
        lastUpdate:     mclock.Now(),
        logger:         logger,
        logRecentTime:  logger.NewMinMaxChannel("recentTime", false),
        logQueuedTime:  logger.NewMinMaxChannel("queuedTime", false),
    }
    sq.wg.Add(2)
    go sq.queueLoop()
    go sq.threadCountLoop()
    return sq
}

// newTask creates a new task with the given priority
func (sq *servingQueue) newTask(peer *peer, maxTime uint64, priority int64) *servingTask {
    return &servingTask{
        sq:       sq,
        peer:     peer,
        maxTime:  maxTime,
        expTime:  maxTime,
        priority: priority,
    }
}

// threadController is started in multiple goroutines and controls the execution
// of tasks. The number of active thread controllers equals the allowed number of
// concurrently running threads. It tries to fetch the highest priority queued
// task first. If there are no queued tasks waiting then it can directly catch
// run tokens from the token channel and allow the corresponding tasks to run
// without entering the priority queue.
func (sq *servingQueue) threadController() {
    for {
        token := make(runToken)
        select {
        case best := <-sq.queueBestCh:
            best.tokenCh <- token
        case <-sq.stopThreadCh:
            sq.wg.Done()
            return
        case <-sq.quit:
            sq.wg.Done()
            return
        }
        <-token
        select {
        case <-sq.stopThreadCh:
            sq.wg.Done()
            return
        case <-sq.quit:
            sq.wg.Done()
            return
        default:
        }
    }
}

type (
    // peerTasks lists the tasks received from a given peer when selecting peers to freeze
    peerTasks struct {
        peer     *peer
        list     []*servingTask
        sumTime  uint64
        priority float64
    }
    // peerList is a sortable list of peerTasks
    peerList []*peerTasks
)

func (l peerList) Len() int {
    return len(l)
}

func (l peerList) Less(i, j int) bool {
    return l[i].priority < l[j].priority
}

func (l peerList) Swap(i, j int) {
    l[i], l[j] = l[j], l[i]
}

// freezePeers selects the peers with the worst priority queued tasks and freezes
// them until burstTime goes under burstDropLimit or all peers are frozen
func (sq *servingQueue) freezePeers() {
    peerMap := make(map[*peer]*peerTasks)
    var peerList peerList
    if sq.best != nil {
        sq.queue.Push(sq.best, sq.best.priority)
    }
    sq.best = nil
    for sq.queue.Size() > 0 {
        task := sq.queue.PopItem().(*servingTask)
        tasks := peerMap[task.peer]
        if tasks == nil {
            bufValue, bufLimit := task.peer.fcClient.BufferStatus()
            if bufLimit < 1 {
                bufLimit = 1
            }
            tasks = &peerTasks{
                peer:     task.peer,
                priority: float64(bufValue) / float64(bufLimit), // lower value comes first
            }
            peerMap[task.peer] = tasks
            peerList = append(peerList, tasks)
        }
        tasks.list = append(tasks.list, task)
        tasks.sumTime += task.expTime
    }
    sort.Sort(peerList)
    drop := true
    sq.logger.Event("freezing peers")
    for _, tasks := range peerList {
        if drop {
            tasks.peer.freezeClient()
            tasks.peer.fcClient.Freeze()
            sq.queuedTime -= tasks.sumTime
            if sq.logQueuedTime != nil {
                sq.logQueuedTime.Update(float64(sq.queuedTime) / 1000)
            }
            sq.logger.Event(fmt.Sprintf("frozen peer  sumTime=%d, %v", tasks.sumTime, tasks.peer.id))
            drop = sq.recentTime+sq.queuedTime > sq.burstDropLimit
            for _, task := range tasks.list {
                task.tokenCh <- nil
            }
        } else {
            for _, task := range tasks.list {
                sq.queue.Push(task, task.priority)
            }
        }
    }
    if sq.queue.Size() > 0 {
        sq.best = sq.queue.PopItem().(*servingTask)
    }
}

// updateRecentTime recalculates the recent serving time value
func (sq *servingQueue) updateRecentTime() {
    subTime := atomic.SwapUint64(&sq.servingTimeDiff, 0)
    now := mclock.Now()
    dt := now - sq.lastUpdate
    sq.lastUpdate = now
    if dt > 0 {
        subTime += uint64(float64(dt) * sq.burstDecRate)
    }
    if sq.recentTime > subTime {
        sq.recentTime -= subTime
    } else {
        sq.recentTime = 0
    }
}

// addTask inserts a task into the priority queue
func (sq *servingQueue) addTask(task *servingTask) {
    if sq.best == nil {
        sq.best = task
    } else if task.priority > sq.best.priority {
        sq.queue.Push(sq.best, sq.best.priority)
        sq.best = task
    } else {
        sq.queue.Push(task, task.priority)
    }
    sq.updateRecentTime()
    sq.queuedTime += task.expTime
    if sq.logQueuedTime != nil {
        sq.logRecentTime.Update(float64(sq.recentTime) / 1000)
        sq.logQueuedTime.Update(float64(sq.queuedTime) / 1000)
    }
    if sq.recentTime+sq.queuedTime > sq.burstLimit {
        sq.freezePeers()
    }
}

// queueLoop is an event loop running in a goroutine. It receives tasks from queueAddCh
// and always tries to send the highest priority task to queueBestCh. Successfully sent
// tasks are removed from the queue.
func (sq *servingQueue) queueLoop() {
    for {
        if sq.best != nil {
            expTime := sq.best.expTime
            select {
            case task := <-sq.queueAddCh:
                sq.addTask(task)
            case sq.queueBestCh <- sq.best:
                sq.updateRecentTime()
                sq.queuedTime -= expTime
                sq.recentTime += expTime
                if sq.logQueuedTime != nil {
                    sq.logRecentTime.Update(float64(sq.recentTime) / 1000)
                    sq.logQueuedTime.Update(float64(sq.queuedTime) / 1000)
                }
                if sq.queue.Size() == 0 {
                    sq.best = nil
                } else {
                    sq.best, _ = sq.queue.PopItem().(*servingTask)
                }
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        } else {
            select {
            case task := <-sq.queueAddCh:
                sq.addTask(task)
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        }
    }
}

// threadCountLoop is an event loop running in a goroutine. It adjusts the number
// of active thread controller goroutines.
func (sq *servingQueue) threadCountLoop() {
    var threadCountTarget int
    for {
        for threadCountTarget > sq.threadCount {
            sq.wg.Add(1)
            go sq.threadController()
            sq.threadCount++
        }
        if threadCountTarget < sq.threadCount {
            select {
            case threadCountTarget = <-sq.setThreadsCh:
            case sq.stopThreadCh <- struct{}{}:
                sq.threadCount--
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        } else {
            select {
            case threadCountTarget = <-sq.setThreadsCh:
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        }
    }
}

// setThreads sets the allowed processing thread count, suspending tasks as soon as
// possible if necessary.
func (sq *servingQueue) setThreads(threadCount int) {
    select {
    case sq.setThreadsCh <- threadCount:
    case <-sq.quit:
        return
    }
}

// stop stops task processing as soon as possible and shuts down the serving queue.
func (sq *servingQueue) stop() {
    close(sq.quit)
    sq.wg.Wait()
}