1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
package ethchain
import (
_ "bytes"
_ "fmt"
"github.com/ethereum/eth-go/ethutil"
_ "github.com/obscuren/secp256k1-go"
"log"
_ "math"
"math/big"
)
type Vm struct {
txPool *TxPool
// Stack for processing contracts
stack *Stack
// non-persistent key/value memory storage
mem map[string]*big.Int
vars RuntimeVars
state *State
}
type RuntimeVars struct {
origin []byte
blockNumber uint64
prevHash []byte
coinbase []byte
time int64
diff *big.Int
txData []string
}
func NewVm(state *State, vars RuntimeVars) *Vm {
return &Vm{vars: vars, state: state}
}
var Pow256 = ethutil.BigPow(2, 256)
func (vm *Vm) RunClosure(closure *Closure) []byte {
// If the amount of gas supplied is less equal to 0
if closure.Gas.Cmp(big.NewInt(0)) <= 0 {
// TODO Do something
}
// Memory for the current closure
mem := &Memory{}
// New stack (should this be shared?)
stack := NewStack()
// Instruction pointer
pc := big.NewInt(0)
// Current step count
step := 0
// The base for all big integer arithmetic
base := new(big.Int)
if ethutil.Config.Debug {
ethutil.Config.Log.Debugf("# op\n")
}
for {
step++
// Get the memory location of pc
val := closure.GetMem(pc)
// Get the opcode (it must be an opcode!)
op := OpCode(val.Uint())
if ethutil.Config.Debug {
ethutil.Config.Log.Debugf("%-3d %-4s", pc, op.String())
}
// TODO Get each instruction cost properly
fee := new(big.Int)
fee.Add(fee, big.NewInt(1000))
if closure.Gas.Cmp(fee) < 0 {
return closure.Return(nil)
}
switch op {
case oLOG:
stack.Print()
mem.Print()
case oSTOP: // Stop the closure
return closure.Return(nil)
// 0x20 range
case oADD:
x, y := stack.Popn()
// (x + y) % 2 ** 256
base.Add(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
stack.Push(base)
case oSUB:
x, y := stack.Popn()
// (x - y) % 2 ** 256
base.Sub(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
stack.Push(base)
case oMUL:
x, y := stack.Popn()
// (x * y) % 2 ** 256
base.Mul(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
stack.Push(base)
case oDIV:
x, y := stack.Popn()
// floor(x / y)
base.Div(x, y)
// Pop result back on the stack
stack.Push(base)
case oSDIV:
x, y := stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 {
x.Sub(Pow256, x)
}
if y.Cmp(Pow256) > 0 {
y.Sub(Pow256, y)
}
z := new(big.Int)
z.Div(x, y)
if z.Cmp(Pow256) > 0 {
z.Sub(Pow256, z)
}
// Push result on to the stack
stack.Push(z)
case oMOD:
x, y := stack.Popn()
base.Mod(x, y)
stack.Push(base)
case oSMOD:
x, y := stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 {
x.Sub(Pow256, x)
}
if y.Cmp(Pow256) > 0 {
y.Sub(Pow256, y)
}
z := new(big.Int)
z.Mod(x, y)
if z.Cmp(Pow256) > 0 {
z.Sub(Pow256, z)
}
// Push result on to the stack
stack.Push(z)
case oEXP:
x, y := stack.Popn()
base.Exp(x, y, Pow256)
stack.Push(base)
case oNEG:
base.Sub(Pow256, stack.Pop())
stack.Push(base)
case oLT:
x, y := stack.Popn()
// x < y
if x.Cmp(y) < 0 {
stack.Push(ethutil.BigTrue)
} else {
stack.Push(ethutil.BigFalse)
}
case oGT:
x, y := stack.Popn()
// x > y
if x.Cmp(y) > 0 {
stack.Push(ethutil.BigTrue)
} else {
stack.Push(ethutil.BigFalse)
}
case oNOT:
x, y := stack.Popn()
// x != y
if x.Cmp(y) != 0 {
stack.Push(ethutil.BigTrue)
} else {
stack.Push(ethutil.BigFalse)
}
// 0x10 range
case oAND:
case oOR:
case oXOR:
case oBYTE:
// 0x20 range
case oSHA3:
// 0x30 range
case oADDRESS:
stack.Push(ethutil.BigD(closure.Object().Address()))
case oBALANCE:
stack.Push(closure.Value)
case oORIGIN:
stack.Push(ethutil.BigD(vm.vars.origin))
case oCALLER:
stack.Push(ethutil.BigD(closure.Callee().Address()))
case oCALLVALUE:
// FIXME: Original value of the call, not the current value
stack.Push(closure.Value)
case oCALLDATA:
offset := stack.Pop()
mem.Set(offset.Int64(), int64(len(closure.Args)), closure.Args)
case oCALLDATASIZE:
stack.Push(big.NewInt(int64(len(closure.Args))))
case oGASPRICE:
// TODO
// 0x40 range
case oPREVHASH:
stack.Push(ethutil.BigD(vm.vars.prevHash))
case oCOINBASE:
stack.Push(ethutil.BigD(vm.vars.coinbase))
case oTIMESTAMP:
stack.Push(big.NewInt(vm.vars.time))
case oNUMBER:
stack.Push(big.NewInt(int64(vm.vars.blockNumber)))
case oDIFFICULTY:
stack.Push(vm.vars.diff)
case oGASLIMIT:
// TODO
// 0x50 range
case oPUSH: // Push PC+1 on to the stack
pc.Add(pc, ethutil.Big1)
val := closure.GetMem(pc).BigInt()
stack.Push(val)
case oPOP:
stack.Pop()
case oDUP:
stack.Push(stack.Peek())
case oSWAP:
x, y := stack.Popn()
stack.Push(y)
stack.Push(x)
case oMLOAD:
offset := stack.Pop()
stack.Push(ethutil.BigD(mem.Get(offset.Int64(), 32)))
case oMSTORE: // Store the value at stack top-1 in to memory at location stack top
// Pop value of the stack
val, mStart := stack.Popn()
mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(val, 256))
case oMSTORE8:
val, mStart := stack.Popn()
base.And(val, new(big.Int).SetInt64(0xff))
mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(base, 256))
case oSLOAD:
loc := stack.Pop()
val := closure.GetMem(loc)
stack.Push(val.BigInt())
case oSSTORE:
val, loc := stack.Popn()
closure.SetMem(loc, ethutil.NewValue(val))
case oJUMP:
pc = stack.Pop()
case oJUMPI:
pos, cond := stack.Popn()
if cond.Cmp(big.NewInt(0)) > 0 {
pc = pos
}
case oPC:
stack.Push(pc)
case oMSIZE:
stack.Push(big.NewInt(int64(mem.Len())))
// 0x60 range
case oCALL:
// Pop return size and offset
retSize, retOffset := stack.Popn()
// Pop input size and offset
inSize, inOffset := stack.Popn()
// Get the arguments from the memory
args := mem.Get(inOffset.Int64(), inSize.Int64())
// Pop gas and value of the stack.
gas, value := stack.Popn()
// Closure addr
addr := stack.Pop()
// Fetch the contract which will serve as the closure body
contract := vm.state.GetContract(addr.Bytes())
// Create a new callable closure
closure := NewClosure(closure, contract, vm.state, gas, value)
// Executer the closure and get the return value (if any)
ret := closure.Call(vm, args)
mem.Set(retOffset.Int64(), retSize.Int64(), ret)
case oRETURN:
size, offset := stack.Popn()
ret := mem.Get(offset.Int64(), size.Int64())
return closure.Return(ret)
case oSUICIDE:
/*
recAddr := stack.Pop().Bytes()
// Purge all memory
deletedMemory := contract.state.Purge()
// Add refunds to the pop'ed address
refund := new(big.Int).Mul(StoreFee, big.NewInt(int64(deletedMemory)))
account := state.GetAccount(recAddr)
account.Amount.Add(account.Amount, refund)
// Update the refunding address
state.UpdateAccount(recAddr, account)
// Delete the contract
state.trie.Update(string(addr), "")
ethutil.Config.Log.Debugf("(%d) => %x\n", deletedMemory, recAddr)
break out
*/
default:
ethutil.Config.Log.Debugln("Invalid opcode", op)
}
pc.Add(pc, ethutil.Big1)
}
}
func makeInlineTx(addr []byte, value, from, length *big.Int, contract *Contract, state *State) {
ethutil.Config.Log.Debugf(" => creating inline tx %x %v %v %v", addr, value, from, length)
j := int64(0)
dataItems := make([]string, int(length.Uint64()))
for i := from.Int64(); i < length.Int64(); i++ {
dataItems[j] = contract.GetMem(big.NewInt(j)).Str()
j++
}
tx := NewTransaction(addr, value, dataItems)
if tx.IsContract() {
contract := MakeContract(tx, state)
state.UpdateContract(contract)
} else {
account := state.GetAccount(tx.Recipient)
account.Amount.Add(account.Amount, tx.Value)
state.UpdateAccount(tx.Recipient, account)
}
}
// Returns an address from the specified contract's address
func contractMemory(state *State, contractAddr []byte, memAddr *big.Int) *big.Int {
contract := state.GetContract(contractAddr)
if contract == nil {
log.Panicf("invalid contract addr %x", contractAddr)
}
val := state.trie.Get(memAddr.String())
// decode the object as a big integer
decoder := ethutil.NewValueFromBytes([]byte(val))
if decoder.IsNil() {
return ethutil.BigFalse
}
return decoder.BigInt()
}
|