aboutsummaryrefslogtreecommitdiffstats
path: root/ethchain/state_manager.go
blob: 27eaa5e6013daaa9eabca04ef79c7f412ed89c39 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
package ethchain

import (
    "bytes"
    "fmt"
    "github.com/ethereum/eth-go/ethutil"
    "github.com/ethereum/eth-go/ethwire"
    "math/big"
    "sync"
    "time"
)

type BlockProcessor interface {
    ProcessBlock(block *Block)
}

type EthManager interface {
    StateManager() *StateManager
    BlockChain() *BlockChain
    TxPool() *TxPool
    Broadcast(msgType ethwire.MsgType, data []interface{})
    Reactor() *ethutil.ReactorEngine
    PeerCount() int
    IsMining() bool
    IsListening() bool
}

type StateManager struct {
    // Mutex for locking the block processor. Blocks can only be handled one at a time
    mutex sync.Mutex
    // Canonical block chain
    bc *BlockChain
    // Stack for processing contracts
    stack *Stack
    // non-persistent key/value memory storage
    mem map[string]*big.Int
    // Proof of work used for validating
    Pow PoW
    // The ethereum manager interface
    Ethereum EthManager
    // The managed states
    // Transiently state. The trans state isn't ever saved, validated and
    // it could be used for setting account nonces without effecting
    // the main states.
    transState *State
    // Mining state. The mining state is used purely and solely by the mining
    // operation.
    miningState *State
}

func NewStateManager(ethereum EthManager) *StateManager {
    sm := &StateManager{
        stack:    NewStack(),
        mem:      make(map[string]*big.Int),
        Pow:      &EasyPow{},
        Ethereum: ethereum,
        bc:       ethereum.BlockChain(),
    }
    sm.transState = ethereum.BlockChain().CurrentBlock.State().Copy()
    sm.miningState = ethereum.BlockChain().CurrentBlock.State().Copy()

    return sm
}

func (sm *StateManager) CurrentState() *State {
    return sm.Ethereum.BlockChain().CurrentBlock.State()
}

func (sm *StateManager) TransState() *State {
    return sm.transState
}

func (sm *StateManager) MiningState() *State {
    return sm.miningState
}

func (sm *StateManager) NewMiningState() *State {
    sm.miningState = sm.Ethereum.BlockChain().CurrentBlock.State().Copy()

    return sm.miningState
}

func (sm *StateManager) BlockChain() *BlockChain {
    return sm.bc
}

func (sm *StateManager) MakeContract(state *State, tx *Transaction) *StateObject {
    contract := MakeContract(tx, state)
    if contract != nil {
        state.states[string(tx.CreationAddress())] = contract.state

        return contract
    }

    return nil
}

// Apply transactions uses the transaction passed to it and applies them onto
// the current processing state.
func (sm *StateManager) ApplyTransactions(state *State, block *Block, txs []*Transaction) {
    // Process each transaction/contract
    for _, tx := range txs {
        sm.ApplyTransaction(state, block, tx)
    }
}

func (sm *StateManager) ApplyTransaction(state *State, block *Block, tx *Transaction) {
    // If there's no recipient, it's a contract
    // Check if this is a contract creation traction and if so
    // create a contract of this tx.
    if tx.IsContract() {
        err := sm.Ethereum.TxPool().ProcessTransaction(tx, block, false)
        if err == nil {
            contract := sm.MakeContract(state, tx)
            if contract != nil {
                sm.EvalScript(state, contract.Init(), contract, tx, block)
            } else {
                ethutil.Config.Log.Infoln("[STATE] Unable to create contract")
            }
        } else {
            ethutil.Config.Log.Infoln("[STATE] contract create:", err)
        }
    } else {
        err := sm.Ethereum.TxPool().ProcessTransaction(tx, block, false)
        contract := state.GetStateObject(tx.Recipient)
        ethutil.Config.Log.Debugf("contract recip %x\n", tx.Recipient)
        if err == nil && len(contract.Script()) > 0 {
            sm.EvalScript(state, contract.Script(), contract, tx, block)
        } else if err != nil {
            ethutil.Config.Log.Infoln("[STATE] process:", err)
        }
    }
}

// Block processing and validating with a given (temporarily) state
func (sm *StateManager) ProcessBlock(state *State, block *Block, dontReact bool) error {
    // Processing a blocks may never happen simultaneously
    sm.mutex.Lock()
    defer sm.mutex.Unlock()
    hash := block.Hash()

    if sm.bc.HasBlock(hash) {
        //fmt.Println("[STATE] We already have this block, ignoring")
        return nil
    }

    // Defer the Undo on the Trie. If the block processing happened
    // we don't want to undo but since undo only happens on dirty
    // nodes this won't happen because Commit would have been called
    // before that.
    defer state.Reset()

    // Check if we have the parent hash, if it isn't known we discard it
    // Reasons might be catching up or simply an invalid block
    if !sm.bc.HasBlock(block.PrevHash) && sm.bc.CurrentBlock != nil {
        return ParentError(block.PrevHash)
    }

    // Process the transactions on to current block
    sm.ApplyTransactions(state, sm.bc.CurrentBlock, block.Transactions())

    // Block validation
    if err := sm.ValidateBlock(block); err != nil {
        fmt.Println("[SM] Error validating block:", err)
        return err
    }

    // I'm not sure, but I don't know if there should be thrown
    // any errors at this time.
    if err := sm.AccumelateRewards(state, block); err != nil {
        fmt.Println("[SM] Error accumulating reward", err)
        return err
    }

    //if !sm.compState.Cmp(state) {
    if !block.State().Cmp(state) {
        return fmt.Errorf("Invalid merkle root. Expected %x, got %x", block.State().trie.Root, state.trie.Root)
    }

    // Calculate the new total difficulty and sync back to the db
    if sm.CalculateTD(block) {
        // Sync the current block's state to the database and cancelling out the deferred Undo
        state.Sync()

        // Add the block to the chain
        sm.bc.Add(block)
        sm.notifyChanges(state)

        ethutil.Config.Log.Infof("[STATE] Added block #%d (%x)\n", block.BlockInfo().Number, block.Hash())
        if dontReact == false {
            sm.Ethereum.Reactor().Post("newBlock", block)

            state.manifest.Reset()
        }

        sm.Ethereum.Broadcast(ethwire.MsgBlockTy, []interface{}{block.Value().Val})

        sm.Ethereum.TxPool().RemoveInvalid(state)
    } else {
        fmt.Println("total diff failed")
    }

    return nil
}
func (sm *StateManager) CalculateTD(block *Block) bool {
    uncleDiff := new(big.Int)
    for _, uncle := range block.Uncles {
        uncleDiff = uncleDiff.Add(uncleDiff, uncle.Difficulty)
    }

    // TD(genesis_block) = 0 and TD(B) = TD(B.parent) + sum(u.difficulty for u in B.uncles) + B.difficulty
    td := new(big.Int)
    td = td.Add(sm.bc.TD, uncleDiff)
    td = td.Add(td, block.Difficulty)

    // The new TD will only be accepted if the new difficulty is
    // is greater than the previous.
    if td.Cmp(sm.bc.TD) > 0 {
        // Set the new total difficulty back to the block chain
        sm.bc.SetTotalDifficulty(td)

        return true
    }

    return false
}

// Validates the current block. Returns an error if the block was invalid,
// an uncle or anything that isn't on the current block chain.
// Validation validates easy over difficult (dagger takes longer time = difficult)
func (sm *StateManager) ValidateBlock(block *Block) error {
    // TODO
    // 2. Check if the difficulty is correct

    // Check each uncle's previous hash. In order for it to be valid
    // is if it has the same block hash as the current
    previousBlock := sm.bc.GetBlock(block.PrevHash)
    for _, uncle := range block.Uncles {
        if bytes.Compare(uncle.PrevHash, previousBlock.PrevHash) != 0 {
            return ValidationError("Mismatch uncle's previous hash. Expected %x, got %x", previousBlock.PrevHash, uncle.PrevHash)
        }
    }

    diff := block.Time - sm.bc.CurrentBlock.Time
    if diff < 0 {
        return ValidationError("Block timestamp less then prev block %v", diff)
    }

    // New blocks must be within the 15 minute range of the last block.
    if diff > int64(15*time.Minute) {
        return ValidationError("Block is too far in the future of last block (> 15 minutes)")
    }

    // Verify the nonce of the block. Return an error if it's not valid
    if !sm.Pow.Verify(block.HashNoNonce(), block.Difficulty, block.Nonce) {
        return ValidationError("Block's nonce is invalid (= %v)", ethutil.Hex(block.Nonce))
    }

    return nil
}

func CalculateBlockReward(block *Block, uncleLength int) *big.Int {
    base := new(big.Int)
    for i := 0; i < uncleLength; i++ {
        base.Add(base, UncleInclusionReward)
    }
    return base.Add(base, BlockReward)
}

func CalculateUncleReward(block *Block) *big.Int {
    return UncleReward
}

func (sm *StateManager) AccumelateRewards(state *State, block *Block) error {
    // Get the account associated with the coinbase
    account := state.GetAccount(block.Coinbase)
    // Reward amount of ether to the coinbase address
    account.AddAmount(CalculateBlockReward(block, len(block.Uncles)))

    addr := make([]byte, len(block.Coinbase))
    copy(addr, block.Coinbase)
    state.UpdateStateObject(account)

    for _, uncle := range block.Uncles {
        uncleAccount := state.GetAccount(uncle.Coinbase)
        uncleAccount.AddAmount(CalculateUncleReward(uncle))

        state.UpdateStateObject(uncleAccount)
    }

    return nil
}

func (sm *StateManager) Stop() {
    sm.bc.Stop()
}

func (sm *StateManager) EvalScript(state *State, script []byte, object *StateObject, tx *Transaction, block *Block) {
    account := state.GetAccount(tx.Sender())

    err := account.ConvertGas(tx.Gas, tx.GasPrice)
    if err != nil {
        ethutil.Config.Log.Debugln(err)
        return
    }

    closure := NewClosure(account, object, script, state, tx.Gas, tx.GasPrice)
    vm := NewVm(state, sm, RuntimeVars{
        Origin:      account.Address(),
        BlockNumber: block.BlockInfo().Number,
        PrevHash:    block.PrevHash,
        Coinbase:    block.Coinbase,
        Time:        block.Time,
        Diff:        block.Difficulty,
        Value:       tx.Value,
        //Price:       tx.GasPrice,
    })
    closure.Call(vm, tx.Data, nil)

    // Update the account (refunds)
    state.UpdateStateObject(account)
    state.UpdateStateObject(object)
}

func (sm *StateManager) notifyChanges(state *State) {
    for addr, stateObject := range state.manifest.objectChanges {
        sm.Ethereum.Reactor().Post("object:"+addr, stateObject)
    }

    for stateObjectAddr, mappedObjects := range state.manifest.storageChanges {
        for addr, value := range mappedObjects {
            sm.Ethereum.Reactor().Post("storage:"+stateObjectAddr+":"+addr, &StorageState{[]byte(stateObjectAddr), []byte(addr), value})
        }
    }
}