aboutsummaryrefslogtreecommitdiffstats
path: root/eth/sync.go
blob: 88a76805c6730a6d16105938ddb9e30f05af7b90 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
package eth

import (
    "math/rand"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/logger"
    "github.com/ethereum/go-ethereum/logger/glog"
    "github.com/ethereum/go-ethereum/p2p/discover"
)

const (
    forceSyncCycle      = 10 * time.Second       // Time interval to force syncs, even if few peers are available
    notifyCheckCycle    = 100 * time.Millisecond // Time interval to allow hash notifies to fulfill before hard fetching
    notifyArriveTimeout = 500 * time.Millisecond // Time allowance before an announced block is explicitly requested
    notifyFetchTimeout  = 5 * time.Second        // Maximum alloted time to return an explicitly requested block
    minDesiredPeerCount = 5                      // Amount of peers desired to start syncing

    // This is the target size for the packs of transactions sent by txsyncLoop.
    // A pack can get larger than this if a single transactions exceeds this size.
    txsyncPackSize = 100 * 1024
)

// blockAnnounce is the hash notification of the availability of a new block in
// the network.
type blockAnnounce struct {
    hash common.Hash
    peer *peer
    time time.Time
}

type txsync struct {
    p   *peer
    txs []*types.Transaction
}

// syncTransactions starts sending all currently pending transactions to the given peer.
func (pm *ProtocolManager) syncTransactions(p *peer) {
    txs := pm.txpool.GetTransactions()
    if len(txs) == 0 {
        return
    }
    select {
    case pm.txsyncCh <- &txsync{p, txs}:
    case <-pm.quitSync:
    }
}

// txsyncLoop takes care of the initial transaction sync for each new
// connection. When a new peer appears, we relay all currently pending
// transactions. In order to minimise egress bandwidth usage, we send
// the transactions in small packs to one peer at a time.
func (pm *ProtocolManager) txsyncLoop() {
    var (
        pending = make(map[discover.NodeID]*txsync)
        sending = false               // whether a send is active
        pack    = new(txsync)         // the pack that is being sent
        done    = make(chan error, 1) // result of the send
    )

    // send starts a sending a pack of transactions from the sync.
    send := func(s *txsync) {
        // Fill pack with transactions up to the target size.
        size := common.StorageSize(0)
        pack.p = s.p
        pack.txs = pack.txs[:0]
        for i := 0; i < len(s.txs) && size < txsyncPackSize; i++ {
            pack.txs = append(pack.txs, s.txs[i])
            size += s.txs[i].Size()
        }
        // Remove the transactions that will be sent.
        s.txs = s.txs[:copy(s.txs, s.txs[len(pack.txs):])]
        if len(s.txs) == 0 {
            delete(pending, s.p.ID())
        }
        // Send the pack in the background.
        glog.V(logger.Detail).Infof("%v: sending %d transactions (%v)", s.p.Peer, len(pack.txs), size)
        sending = true
        go func() { done <- pack.p.sendTransactions(pack.txs) }()
    }

    // pick chooses the next pending sync.
    pick := func() *txsync {
        if len(pending) == 0 {
            return nil
        }
        n := rand.Intn(len(pending)) + 1
        for _, s := range pending {
            if n--; n == 0 {
                return s
            }
        }
        return nil
    }

    for {
        select {
        case s := <-pm.txsyncCh:
            pending[s.p.ID()] = s
            if !sending {
                send(s)
            }
        case err := <-done:
            sending = false
            // Stop tracking peers that cause send failures.
            if err != nil {
                glog.V(logger.Debug).Infof("%v: tx send failed: %v", pack.p.Peer, err)
                delete(pending, pack.p.ID())
            }
            // Schedule the next send.
            if s := pick(); s != nil {
                send(s)
            }
        case <-pm.quitSync:
            return
        }
    }
}

// fetcher is responsible for collecting hash notifications, and periodically
// checking all unknown ones and individually fetching them.
func (pm *ProtocolManager) fetcher() {
    announces := make(map[common.Hash][]*blockAnnounce)
    request := make(map[*peer][]common.Hash)
    pending := make(map[common.Hash]*blockAnnounce)
    cycle := time.Tick(notifyCheckCycle)
    done := make(chan common.Hash)

    // Iterate the block fetching until a quit is requested
    for {
        select {
        case notifications := <-pm.newHashCh:
            // A batch of hashes the notified, schedule them for retrieval
            glog.V(logger.Debug).Infof("Scheduling %d hash announcements from %s", len(notifications), notifications[0].peer.id)
            for _, announce := range notifications {
                // Skip if it's already pending fetch
                if _, ok := pending[announce.hash]; ok {
                    continue
                }
                // Otherwise queue up the peer as a potential source
                announces[announce.hash] = append(announces[announce.hash], announce)
            }

        case hash := <-done:
            // A pending import finished, remove all traces
            delete(pending, hash)

        case <-cycle:
            // Clean up any expired block fetches
            for hash, announce := range pending {
                if time.Since(announce.time) > notifyFetchTimeout {
                    delete(pending, hash)
                }
            }
            // Check if any notified blocks failed to arrive
            for hash, all := range announces {
                if time.Since(all[0].time) > notifyArriveTimeout {
                    announce := all[rand.Intn(len(all))]
                    if !pm.chainman.HasBlock(hash) {
                        request[announce.peer] = append(request[announce.peer], hash)
                        pending[hash] = announce
                    }
                    delete(announces, hash)
                }
            }
            if len(request) == 0 {
                break
            }
            // Send out all block requests
            for peer, hashes := range request {
                glog.V(logger.Debug).Infof("Explicitly fetching %d blocks from %s", len(hashes), peer.id)
                peer.requestBlocks(hashes)
            }
            request = make(map[*peer][]common.Hash)

        case filter := <-pm.newBlockCh:
            // Blocks arrived, extract any explicit fetches, return all else
            var blocks types.Blocks
            select {
            case blocks = <-filter:
            case <-pm.quitSync:
                return
            }

            explicit, download := []*types.Block{}, []*types.Block{}
            for _, block := range blocks {
                hash := block.Hash()

                // Filter explicitly requested blocks from hash announcements
                if _, ok := pending[hash]; ok {
                    // Discard if already imported by other means
                    if !pm.chainman.HasBlock(hash) {
                        explicit = append(explicit, block)
                    } else {
                        delete(pending, hash)
                    }
                } else {
                    download = append(download, block)
                }
            }

            select {
            case filter <- download:
            case <-pm.quitSync:
                return
            }
            // Create a closure with the retrieved blocks and origin peers
            peers := make([]*peer, 0, len(explicit))
            blocks = make([]*types.Block, 0, len(explicit))
            for _, block := range explicit {
                hash := block.Hash()
                if announce := pending[hash]; announce != nil {
                    // Drop the block if it surely cannot fit
                    if pm.chainman.HasBlock(hash) || !pm.chainman.HasBlock(block.ParentHash()) {
                        delete(pending, hash)
                        continue
                    }
                    // Otherwise accumulate for import
                    peers = append(peers, announce.peer)
                    blocks = append(blocks, block)
                }
            }
            // If any explicit fetches were replied to, import them
            if count := len(blocks); count > 0 {
                glog.V(logger.Debug).Infof("Importing %d explicitly fetched blocks", len(blocks))
                go func() {
                    // Make sure all hashes are cleaned up
                    for _, block := range blocks {
                        hash := block.Hash()
                        defer func() { done <- hash }()
                    }
                    // Try and actually import the blocks
                    for i := 0; i < len(blocks); i++ {
                        if err := pm.importBlock(peers[i], blocks[i], nil); err != nil {
                            glog.V(logger.Detail).Infof("Failed to import explicitly fetched block: %v", err)
                            return
                        }
                    }
                }()
            }

        case <-pm.quitSync:
            return
        }
    }
}

// syncer is responsible for periodically synchronising with the network, both
// downloading hashes and blocks as well as retrieving cached ones.
func (pm *ProtocolManager) syncer() {
    // Abort any pending syncs if we terminate
    defer pm.downloader.Cancel()

    forceSync := time.Tick(forceSyncCycle)
    for {
        select {
        case <-pm.newPeerCh:
            // Make sure we have peers to select from, then sync
            if pm.peers.Len() < minDesiredPeerCount {
                break
            }
            go pm.synchronise(pm.peers.BestPeer())

        case <-forceSync:
            // Force a sync even if not enough peers are present
            go pm.synchronise(pm.peers.BestPeer())

        case <-pm.quitSync:
            return
        }
    }
}

// synchronise tries to sync up our local block chain with a remote peer, both
// adding various sanity checks as well as wrapping it with various log entries.
func (pm *ProtocolManager) synchronise(peer *peer) {
    // Short circuit if no peers are available
    if peer == nil {
        return
    }
    // Make sure the peer's TD is higher than our own. If not drop.
    if peer.Td().Cmp(pm.chainman.Td()) <= 0 {
        return
    }
    // Otherwise try to sync with the downloader
    pm.downloader.Synchronise(peer.id, peer.Head())
}