aboutsummaryrefslogtreecommitdiffstats
path: root/accounts/usbwallet/ledger_wallet.go
blob: 97434ed3bdf7faf55494119019310cc0f2878835 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// This file contains the implementation for interacting with the Ledger hardware
// wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo:
// https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc

package usbwallet

import (
    "context"
    "encoding/binary"
    "encoding/hex"
    "errors"
    "fmt"
    "io"
    "math/big"
    "sync"
    "time"

    ethereum "github.com/ethereum/go-ethereum"
    "github.com/ethereum/go-ethereum/accounts"
    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/common/hexutil"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/log"
    "github.com/ethereum/go-ethereum/rlp"
    "github.com/karalabe/hid"
)

// Maximum time between wallet health checks to detect USB unplugs.
const ledgerHeartbeatCycle = time.Second

// Minimum time to wait between self derivation attempts, even it the user is
// requesting accounts like crazy.
const ledgerSelfDeriveThrottling = time.Second

// ledgerOpcode is an enumeration encoding the supported Ledger opcodes.
type ledgerOpcode byte

// ledgerParam1 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam1 byte

// ledgerParam2 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam2 byte

const (
    ledgerOpRetrieveAddress  ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path
    ledgerOpSignTransaction  ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters
    ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration

    ledgerP1DirectlyFetchAddress    ledgerParam1 = 0x00 // Return address directly from the wallet
    ledgerP1ConfirmFetchAddress     ledgerParam1 = 0x01 // Require a user confirmation before returning the address
    ledgerP1InitTransactionData     ledgerParam1 = 0x00 // First transaction data block for signing
    ledgerP1ContTransactionData     ledgerParam1 = 0x80 // Subsequent transaction data block for signing
    ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address
    ledgerP2ReturnAddressChainCode  ledgerParam2 = 0x01 // Require a user confirmation before returning the address
)

// errReplyInvalidHeader is the error message returned by a Ledger data exchange
// if the device replies with a mismatching header. This usually means the device
// is in browser mode.
var errReplyInvalidHeader = errors.New("invalid reply header")

// errInvalidVersionReply is the error message returned by a Ledger version retrieval
// when a response does arrive, but it does not contain the expected data.
var errInvalidVersionReply = errors.New("invalid version reply")

// ledgerWallet represents a live USB Ledger hardware wallet.
type ledgerWallet struct {
    hub *LedgerHub    // USB hub the device originates from (TODO(karalabe): remove if hotplug lands on Windows)
    url *accounts.URL // Textual URL uniquely identifying this wallet

    info    hid.DeviceInfo // Known USB device infos about the wallet
    device  *hid.Device    // USB device advertising itself as a Ledger wallet
    failure error          // Any failure that would make the device unusable

    version  [3]byte                                    // Current version of the Ledger Ethereum app (zero if app is offline)
    browser  bool                                       // Flag whether the Ledger is in browser mode (reply channel mismatch)
    accounts []accounts.Account                         // List of derive accounts pinned on the Ledger
    paths    map[common.Address]accounts.DerivationPath // Known derivation paths for signing operations

    deriveNextPath accounts.DerivationPath   // Next derivation path for account auto-discovery
    deriveNextAddr common.Address            // Next derived account address for auto-discovery
    deriveChain    ethereum.ChainStateReader // Blockchain state reader to discover used account with
    deriveReq      chan chan struct{}        // Channel to request a self-derivation on
    deriveQuit     chan chan error           // Channel to terminate the self-deriver with

    healthQuit chan chan error

    // Locking a hardware wallet is a bit special. Since hardware devices are lower
    // performing, any communication with them might take a non negligible amount of
    // time. Worse still, waiting for user confirmation can take arbitrarily long,
    // but exclusive communication must be upheld during. Locking the entire wallet
    // in the mean time however would stall any parts of the system that don't want
    // to communicate, just read some state (e.g. list the accounts).
    //
    // As such, a hardware wallet needs two locks to function correctly. A state
    // lock can be used to protect the wallet's software-side internal state, which
    // must not be held exlusively during hardware communication. A communication
    // lock can be used to achieve exclusive access to the device itself, this one
    // however should allow "skipping" waiting for operations that might want to
    // use the device, but can live without too (e.g. account self-derivation).
    //
    // Since we have two locks, it's important to know how to properly use them:
    //   - Communication requires the `device` to not change, so obtaining the
    //     commsLock should be done after having a stateLock.
    //   - Communication must not disable read access to the wallet state, so it
    //     must only ever hold a *read* lock to stateLock.
    commsLock chan struct{} // Mutex (buf=1) for the USB comms without keeping the state locked
    stateLock sync.RWMutex  // Protects read and write access to the wallet struct fields

    log log.Logger // Contextual logger to tag the ledger with its id
}

// URL implements accounts.Wallet, returning the URL of the Ledger device.
func (w *ledgerWallet) URL() accounts.URL {
    return *w.url // Immutable, no need for a lock
}

// Status implements accounts.Wallet, always whether the Ledger is opened, closed
// or whether the Ethereum app was not started on it.
func (w *ledgerWallet) Status() string {
    w.stateLock.RLock() // No device communication, state lock is enough
    defer w.stateLock.RUnlock()

    if w.failure != nil {
        return fmt.Sprintf("Failed: %v", w.failure)
    }
    if w.device == nil {
        return "Closed"
    }
    if w.browser {
        return "Ethereum app in browser mode"
    }
    if w.offline() {
        return "Ethereum app offline"
    }
    return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2])
}

// offline returns whether the wallet and the Ethereum app is offline or not.
//
// The method assumes that the state lock is held!
func (w *ledgerWallet) offline() bool {
    return w.version == [3]byte{0, 0, 0}
}

// failed returns if the USB device wrapped by the wallet failed for some reason.
// This is used by the device scanner to report failed wallets as departed.
//
// The method assumes that the state lock is *not* held!
func (w *ledgerWallet) failed() bool {
    w.stateLock.RLock() // No device communication, state lock is enough
    defer w.stateLock.RUnlock()

    return w.failure != nil
}

// Open implements accounts.Wallet, attempting to open a USB connection to the
// Ledger hardware wallet. The Ledger does not require a user passphrase, so that
// parameter is silently discarded.
func (w *ledgerWallet) Open(passphrase string) error {
    w.stateLock.Lock() // State lock is enough since there's no connection yet at this point
    defer w.stateLock.Unlock()

    // If the wallet was already opened, don't try to open again
    if w.device != nil {
        return accounts.ErrWalletAlreadyOpen
    }
    // Otherwise iterate over all USB devices and find this again (no way to directly do this)
    device, err := w.info.Open()
    if err != nil {
        return err
    }
    // Wallet seems to be successfully opened, guess if the Ethereum app is running
    w.device = device
    w.commsLock = make(chan struct{}, 1)
    w.commsLock <- struct{}{} // Enable lock

    w.paths = make(map[common.Address]accounts.DerivationPath)

    w.deriveReq = make(chan chan struct{})
    w.deriveQuit = make(chan chan error)
    w.healthQuit = make(chan chan error)

    defer func() {
        go w.heartbeat()
        go w.selfDerive()
    }()

    if _, err = w.ledgerDerive(accounts.DefaultBaseDerivationPath); err != nil {
        // Ethereum app is not running or in browser mode, nothing more to do, return
        if err == errReplyInvalidHeader {
            w.browser = true
        }
        return nil
    }
    // Try to resolve the Ethereum app's version, will fail prior to v1.0.2
    if w.version, err = w.ledgerVersion(); err != nil {
        w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1
    }
    return nil
}

// heartbeat is a health check loop for the Ledger wallets to periodically verify
// whether they are still present or if they malfunctioned. It is needed because:
//  - libusb on Windows doesn't support hotplug, so we can't detect USB unplugs
//  - communication timeout on the Ledger requires a device power cycle to fix
func (w *ledgerWallet) heartbeat() {
    w.log.Debug("Ledger health-check started")
    defer w.log.Debug("Ledger health-check stopped")

    // Execute heartbeat checks until termination or error
    var (
        errc chan error
        err  error
    )
    for errc == nil && err == nil {
        // Wait until termination is requested or the heartbeat cycle arrives
        select {
        case errc = <-w.healthQuit:
            // Termination requested
            continue
        case <-time.After(ledgerHeartbeatCycle):
            // Heartbeat time
        }
        // Execute a tiny data exchange to see responsiveness
        w.stateLock.RLock()
        if w.device == nil {
            // Terminated while waiting for the lock
            w.stateLock.RUnlock()
            continue
        }
        <-w.commsLock // Don't lock state while resolving version
        _, err = w.ledgerVersion()
        w.commsLock <- struct{}{}
        w.stateLock.RUnlock()

        if err != nil && err != errInvalidVersionReply {
            w.stateLock.Lock() // Lock state to tear the wallet down
            w.failure = err
            w.close()
            w.stateLock.Unlock()
        }
        // Ignore non hardware related errors
        err = nil
    }
    // In case of error, wait for termination
    if err != nil {
        w.log.Debug("Ledger health-check failed", "err", err)
        errc = <-w.healthQuit
    }
    errc <- err
}

// Close implements accounts.Wallet, closing the USB connection to the Ledger.
func (w *ledgerWallet) Close() error {
    // Ensure the wallet was opened
    w.stateLock.RLock()
    hQuit, dQuit := w.healthQuit, w.deriveQuit
    w.stateLock.RUnlock()

    // Terminate the health checks
    var herr error
    if hQuit != nil {
        errc := make(chan error)
        hQuit <- errc
        herr = <-errc // Save for later, we *must* close the USB
    }
    // Terminate the self-derivations
    var derr error
    if dQuit != nil {
        errc := make(chan error)
        dQuit <- errc
        derr = <-errc // Save for later, we *must* close the USB
    }
    // Terminate the device connection
    w.stateLock.Lock()
    defer w.stateLock.Unlock()

    w.healthQuit = nil
    w.deriveQuit = nil
    w.deriveReq = nil

    if err := w.close(); err != nil {
        return err
    }
    if herr != nil {
        return herr
    }
    return derr
}

// close is the internal wallet closer that terminates the USB connection and
// resets all the fields to their defaults.
//
// Note, close assumes the state lock is held!
func (w *ledgerWallet) close() error {
    // Allow duplicate closes, especially for health-check failures
    if w.device == nil {
        return nil
    }
    // Close the device, clear everything, then return
    w.device.Close()
    w.device = nil

    w.browser, w.version = false, [3]byte{}
    w.accounts, w.paths = nil, nil

    return nil
}

// Accounts implements accounts.Wallet, returning the list of accounts pinned to
// the Ledger hardware wallet. If self-derivation was enabled, the account list
// is periodically expanded based on current chain state.
func (w *ledgerWallet) Accounts() []accounts.Account {
    // Attempt self-derivation if it's running
    reqc := make(chan struct{}, 1)
    select {
    case w.deriveReq <- reqc:
        // Self-derivation request accepted, wait for it
        <-reqc
    default:
        // Self-derivation offline, throttled or busy, skip
    }
    // Return whatever account list we ended up with
    w.stateLock.RLock()
    defer w.stateLock.RUnlock()

    cpy := make([]accounts.Account, len(w.accounts))
    copy(cpy, w.accounts)
    return cpy
}

// selfDerive is an account derivation loop that upon request attempts to find
// new non-zero accounts.
func (w *ledgerWallet) selfDerive() {
    w.log.Debug("Ledger self-derivation started")
    defer w.log.Debug("Ledger self-derivation stopped")

    // Execute self-derivations until termination or error
    var (
        reqc chan struct{}
        errc chan error
        err  error
    )
    for errc == nil && err == nil {
        // Wait until either derivation or termination is requested
        select {
        case errc = <-w.deriveQuit:
            // Termination requested
            continue
        case reqc = <-w.deriveReq:
            // Account discovery requested
        }
        // Derivation needs a chain and device access, skip if either unavailable
        w.stateLock.RLock()
        if w.device == nil || w.deriveChain == nil || w.offline() {
            w.stateLock.RUnlock()
            reqc <- struct{}{}
            continue
        }
        select {
        case <-w.commsLock:
        default:
            w.stateLock.RUnlock()
            reqc <- struct{}{}
            continue
        }
        // Device lock obtained, derive the next batch of accounts
        var (
            accs  []accounts.Account
            paths []accounts.DerivationPath

            nextAddr = w.deriveNextAddr
            nextPath = w.deriveNextPath

            context = context.Background()
        )
        for empty := false; !empty; {
            // Retrieve the next derived Ethereum account
            if nextAddr == (common.Address{}) {
                if nextAddr, err = w.ledgerDerive(nextPath); err != nil {
                    w.log.Warn("Ledger account derivation failed", "err", err)
                    break
                }
            }
            // Check the account's status against the current chain state
            var (
                balance *big.Int
                nonce   uint64
            )
            balance, err = w.deriveChain.BalanceAt(context, nextAddr, nil)
            if err != nil {
                w.log.Warn("Ledger balance retrieval failed", "err", err)
                break
            }
            nonce, err = w.deriveChain.NonceAt(context, nextAddr, nil)
            if err != nil {
                w.log.Warn("Ledger nonce retrieval failed", "err", err)
                break
            }
            // If the next account is empty, stop self-derivation, but add it nonetheless
            if balance.Sign() == 0 && nonce == 0 {
                empty = true
            }
            // We've just self-derived a new account, start tracking it locally
            path := make(accounts.DerivationPath, len(nextPath))
            copy(path[:], nextPath[:])
            paths = append(paths, path)

            account := accounts.Account{
                Address: nextAddr,
                URL:     accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)},
            }
            accs = append(accs, account)

            // Display a log message to the user for new (or previously empty accounts)
            if _, known := w.paths[nextAddr]; !known || (!empty && nextAddr == w.deriveNextAddr) {
                w.log.Info("Ledger discovered new account", "address", nextAddr, "path", path, "balance", balance, "nonce", nonce)
            }
            // Fetch the next potential account
            if !empty {
                nextAddr = common.Address{}
                nextPath[len(nextPath)-1]++
            }
        }
        // Self derivation complete, release device lock
        w.commsLock <- struct{}{}
        w.stateLock.RUnlock()

        // Insert any accounts successfully derived
        w.stateLock.Lock()
        for i := 0; i < len(accs); i++ {
            if _, ok := w.paths[accs[i].Address]; !ok {
                w.accounts = append(w.accounts, accs[i])
                w.paths[accs[i].Address] = paths[i]
            }
        }
        // Shift the self-derivation forward
        // TODO(karalabe): don't overwrite changes from wallet.SelfDerive
        w.deriveNextAddr = nextAddr
        w.deriveNextPath = nextPath
        w.stateLock.Unlock()

        // Notify the user of termination and loop after a bit of time (to avoid trashing)
        reqc <- struct{}{}
        if err == nil {
            select {
            case errc = <-w.deriveQuit:
                // Termination requested, abort
            case <-time.After(ledgerSelfDeriveThrottling):
                // Waited enough, willing to self-derive again
            }
        }
    }
    // In case of error, wait for termination
    if err != nil {
        w.log.Debug("Ledger self-derivation failed", "err", err)
        errc = <-w.deriveQuit
    }
    errc <- err
}

// Contains implements accounts.Wallet, returning whether a particular account is
// or is not pinned into this Ledger instance. Although we could attempt to resolve
// unpinned accounts, that would be an non-negligible hardware operation.
func (w *ledgerWallet) Contains(account accounts.Account) bool {
    w.stateLock.RLock()
    defer w.stateLock.RUnlock()

    _, exists := w.paths[account.Address]
    return exists
}

// Derive implements accounts.Wallet, deriving a new account at the specific
// derivation path. If pin is set to true, the account will be added to the list
// of tracked accounts.
func (w *ledgerWallet) Derive(path accounts.DerivationPath, pin bool) (accounts.Account, error) {
    // Try to derive the actual account and update its URL if successful
    w.stateLock.RLock() // Avoid device disappearing during derivation

    if w.device == nil || w.offline() {
        w.stateLock.RUnlock()
        return accounts.Account{}, accounts.ErrWalletClosed
    }
    <-w.commsLock // Avoid concurrent hardware access
    address, err := w.ledgerDerive(path)
    w.commsLock <- struct{}{}

    w.stateLock.RUnlock()

    // If an error occurred or no pinning was requested, return
    if err != nil {
        return accounts.Account{}, err
    }
    account := accounts.Account{
        Address: address,
        URL:     accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)},
    }
    if !pin {
        return account, nil
    }
    // Pinning needs to modify the state
    w.stateLock.Lock()
    defer w.stateLock.Unlock()

    if _, ok := w.paths[address]; !ok {
        w.accounts = append(w.accounts, account)
        w.paths[address] = path
    }
    return account, nil
}

// SelfDerive implements accounts.Wallet, trying to discover accounts that the
// user used previously (based on the chain state), but ones that he/she did not
// explicitly pin to the wallet manually. To avoid chain head monitoring, self
// derivation only runs during account listing (and even then throttled).
func (w *ledgerWallet) SelfDerive(base accounts.DerivationPath, chain ethereum.ChainStateReader) {
    w.stateLock.Lock()
    defer w.stateLock.Unlock()

    w.deriveNextPath = make(accounts.DerivationPath, len(base))
    copy(w.deriveNextPath[:], base[:])

    w.deriveNextAddr = common.Address{}
    w.deriveChain = chain
}

// SignHash implements accounts.Wallet, however signing arbitrary data is not
// supported for Ledger wallets, so this method will always return an error.
func (w *ledgerWallet) SignHash(acc accounts.Account, hash []byte) ([]byte, error) {
    return nil, accounts.ErrNotSupported
}

// SignTx implements accounts.Wallet. It sends the transaction over to the Ledger
// wallet to request a confirmation from the user. It returns either the signed
// transaction or a failure if the user denied the transaction.
//
// Note, if the version of the Ethereum application running on the Ledger wallet is
// too old to sign EIP-155 transactions, but such is requested nonetheless, an error
// will be returned opposed to silently signing in Homestead mode.
func (w *ledgerWallet) SignTx(account accounts.Account, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
    w.stateLock.RLock() // Comms have own mutex, this is for the state fields
    defer w.stateLock.RUnlock()

    // If the wallet is closed, or the Ethereum app doesn't run, abort
    if w.device == nil || w.offline() {
        return nil, accounts.ErrWalletClosed
    }
    // Make sure the requested account is contained within
    path, ok := w.paths[account.Address]
    if !ok {
        return nil, accounts.ErrUnknownAccount
    }
    // Ensure the wallet is capable of signing the given transaction
    if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 {
        return nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2])
    }
    // All infos gathered and metadata checks out, request signing
    <-w.commsLock
    defer func() { w.commsLock <- struct{}{} }()

    // Ensure the device isn't screwed with while user confirmation is pending
    // TODO(karalabe): remove if hotplug lands on Windows
    w.hub.commsLock.RLock()
    defer w.hub.commsLock.RUnlock()

    return w.ledgerSign(path, account.Address, tx, chainID)
}

// SignHashWithPassphrase implements accounts.Wallet, however signing arbitrary
// data is not supported for Ledger wallets, so this method will always return
// an error.
func (w *ledgerWallet) SignHashWithPassphrase(account accounts.Account, passphrase string, hash []byte) ([]byte, error) {
    return nil, accounts.ErrNotSupported
}

// SignTxWithPassphrase implements accounts.Wallet, attempting to sign the given
// transaction with the given account using passphrase as extra authentication.
// Since the Ledger does not support extra passphrases, it is silently ignored.
func (w *ledgerWallet) SignTxWithPassphrase(account accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
    return w.SignTx(account, tx, chainID)
}

// ledgerVersion retrieves the current version of the Ethereum wallet app running
// on the Ledger wallet.
//
// The version retrieval protocol is defined as follows:
//
//   CLA | INS | P1 | P2 | Lc | Le
//   ----+-----+----+----+----+---
//    E0 | 06  | 00 | 00 | 00 | 04
//
// With no input data, and the output data being:
//
//   Description                                        | Length
//   ---------------------------------------------------+--------
//   Flags 01: arbitrary data signature enabled by user | 1 byte
//   Application major version                          | 1 byte
//   Application minor version                          | 1 byte
//   Application patch version                          | 1 byte
func (w *ledgerWallet) ledgerVersion() ([3]byte, error) {
    // Send the request and wait for the response
    reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil)
    if err != nil {
        return [3]byte{}, err
    }
    if len(reply) != 4 {
        return [3]byte{}, errInvalidVersionReply
    }
    // Cache the version for future reference
    var version [3]byte
    copy(version[:], reply[1:])
    return version, nil
}

// ledgerDerive retrieves the currently active Ethereum address from a Ledger
// wallet at the specified derivation path.
//
// The address derivation protocol is defined as follows:
//
//   CLA | INS | P1 | P2 | Lc  | Le
//   ----+-----+----+----+-----+---
//    E0 | 02  | 00 return address
//               01 display address and confirm before returning
//                  | 00: do not return the chain code
//                  | 01: return the chain code
//                       | var | 00
//
// Where the input data is:
//
//   Description                                      | Length
//   -------------------------------------------------+--------
//   Number of BIP 32 derivations to perform (max 10) | 1 byte
//   First derivation index (big endian)              | 4 bytes
//   ...                                              | 4 bytes
//   Last derivation index (big endian)               | 4 bytes
//
// And the output data is:
//
//   Description             | Length
//   ------------------------+-------------------
//   Public Key length       | 1 byte
//   Uncompressed Public Key | arbitrary
//   Ethereum address length | 1 byte
//   Ethereum address        | 40 bytes hex ascii
//   Chain code if requested | 32 bytes
func (w *ledgerWallet) ledgerDerive(derivationPath []uint32) (common.Address, error) {
    // Flatten the derivation path into the Ledger request
    path := make([]byte, 1+4*len(derivationPath))
    path[0] = byte(len(derivationPath))
    for i, component := range derivationPath {
        binary.BigEndian.PutUint32(path[1+4*i:], component)
    }
    // Send the request and wait for the response
    reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path)
    if err != nil {
        return common.Address{}, err
    }
    // Discard the public key, we don't need that for now
    if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
        return common.Address{}, errors.New("reply lacks public key entry")
    }
    reply = reply[1+int(reply[0]):]

    // Extract the Ethereum hex address string
    if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
        return common.Address{}, errors.New("reply lacks address entry")
    }
    hexstr := reply[1 : 1+int(reply[0])]

    // Decode the hex sting into an Ethereum address and return
    var address common.Address
    hex.Decode(address[:], hexstr)
    return address, nil
}

// ledgerSign sends the transaction to the Ledger wallet, and waits for the user
// to confirm or deny the transaction.
//
// The transaction signing protocol is defined as follows:
//
//   CLA | INS | P1 | P2 | Lc  | Le
//   ----+-----+----+----+-----+---
//    E0 | 04  | 00: first transaction data block
//               80: subsequent transaction data block
//                  | 00 | variable | variable
//
// Where the input for the first transaction block (first 255 bytes) is:
//
//   Description                                      | Length
//   -------------------------------------------------+----------
//   Number of BIP 32 derivations to perform (max 10) | 1 byte
//   First derivation index (big endian)              | 4 bytes
//   ...                                              | 4 bytes
//   Last derivation index (big endian)               | 4 bytes
//   RLP transaction chunk                            | arbitrary
//
// And the input for subsequent transaction blocks (first 255 bytes) are:
//
//   Description           | Length
//   ----------------------+----------
//   RLP transaction chunk | arbitrary
//
// And the output data is:
//
//   Description | Length
//   ------------+---------
//   signature V | 1 byte
//   signature R | 32 bytes
//   signature S | 32 bytes
func (w *ledgerWallet) ledgerSign(derivationPath []uint32, address common.Address, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
    // Flatten the derivation path into the Ledger request
    path := make([]byte, 1+4*len(derivationPath))
    path[0] = byte(len(derivationPath))
    for i, component := range derivationPath {
        binary.BigEndian.PutUint32(path[1+4*i:], component)
    }
    // Create the transaction RLP based on whether legacy or EIP155 signing was requeste
    var (
        txrlp []byte
        err   error
    )
    if chainID == nil {
        if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil {
            return nil, err
        }
    } else {
        if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil {
            return nil, err
        }
    }
    payload := append(path, txrlp...)

    // Send the request and wait for the response
    var (
        op    = ledgerP1InitTransactionData
        reply []byte
    )
    for len(payload) > 0 {
        // Calculate the size of the next data chunk
        chunk := 255
        if chunk > len(payload) {
            chunk = len(payload)
        }
        // Send the chunk over, ensuring it's processed correctly
        reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk])
        if err != nil {
            return nil, err
        }
        // Shift the payload and ensure subsequent chunks are marked as such
        payload = payload[chunk:]
        op = ledgerP1ContTransactionData
    }
    // Extract the Ethereum signature and do a sanity validation
    if len(reply) != 65 {
        return nil, errors.New("reply lacks signature")
    }
    signature := append(reply[1:], reply[0])

    // Create the correct signer and signature transform based on the chain ID
    var signer types.Signer
    if chainID == nil {
        signer = new(types.HomesteadSigner)
    } else {
        signer = types.NewEIP155Signer(chainID)
        signature[64] = signature[64] - byte(chainID.Uint64()*2+35)
    }
    // Inject the final signature into the transaction and sanity check the sender
    signed, err := tx.WithSignature(signer, signature)
    if err != nil {
        return nil, err
    }
    sender, err := types.Sender(signer, signed)
    if err != nil {
        return nil, err
    }
    if sender != address {
        return nil, fmt.Errorf("signer mismatch: expected %s, got %s", address.Hex(), sender.Hex())
    }
    return signed, nil
}

// ledgerExchange performs a data exchange with the Ledger wallet, sending it a
// message and retrieving the response.
//
// The common transport header is defined as follows:
//
//  Description                           | Length
//  --------------------------------------+----------
//  Communication channel ID (big endian) | 2 bytes
//  Command tag                           | 1 byte
//  Packet sequence index (big endian)    | 2 bytes
//  Payload                               | arbitrary
//
// The Communication channel ID allows commands multiplexing over the same
// physical link. It is not used for the time being, and should be set to 0101
// to avoid compatibility issues with implementations ignoring a leading 00 byte.
//
// The Command tag describes the message content. Use TAG_APDU (0x05) for standard
// APDU payloads, or TAG_PING (0x02) for a simple link test.
//
// The Packet sequence index describes the current sequence for fragmented payloads.
// The first fragment index is 0x00.
//
// APDU Command payloads are encoded as follows:
//
//  Description              | Length
//  -----------------------------------
//  APDU length (big endian) | 2 bytes
//  APDU CLA                 | 1 byte
//  APDU INS                 | 1 byte
//  APDU P1                  | 1 byte
//  APDU P2                  | 1 byte
//  APDU length              | 1 byte
//  Optional APDU data       | arbitrary
func (w *ledgerWallet) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) {
    // Construct the message payload, possibly split into multiple chunks
    apdu := make([]byte, 2, 7+len(data))

    binary.BigEndian.PutUint16(apdu, uint16(5+len(data)))
    apdu = append(apdu, []byte{0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}...)
    apdu = append(apdu, data...)

    // Stream all the chunks to the device
    header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended
    chunk := make([]byte, 64)
    space := len(chunk) - len(header)

    for i := 0; len(apdu) > 0; i++ {
        // Construct the new message to stream
        chunk = append(chunk[:0], header...)
        binary.BigEndian.PutUint16(chunk[3:], uint16(i))

        if len(apdu) > space {
            chunk = append(chunk, apdu[:space]...)
            apdu = apdu[space:]
        } else {
            chunk = append(chunk, apdu...)
            apdu = nil
        }
        // Send over to the device
        w.log.Trace("Data chunk sent to the Ledger", "chunk", hexutil.Bytes(chunk))
        if _, err := w.device.Write(chunk); err != nil {
            return nil, err
        }
    }
    // Stream the reply back from the wallet in 64 byte chunks
    var reply []byte
    chunk = chunk[:64] // Yeah, we surely have enough space
    for {
        // Read the next chunk from the Ledger wallet
        if _, err := io.ReadFull(w.device, chunk); err != nil {
            return nil, err
        }
        w.log.Trace("Data chunk received from the Ledger", "chunk", hexutil.Bytes(chunk))

        // Make sure the transport header matches
        if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 {
            return nil, errReplyInvalidHeader
        }
        // If it's the first chunk, retrieve the total message length
        var payload []byte

        if chunk[3] == 0x00 && chunk[4] == 0x00 {
            reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7])))
            payload = chunk[7:]
        } else {
            payload = chunk[5:]
        }
        // Append to the reply and stop when filled up
        if left := cap(reply) - len(reply); left > len(payload) {
            reply = append(reply, payload...)
        } else {
            reply = append(reply, payload[:left]...)
            break
        }
    }
    return reply[:len(reply)-2], nil
}