aboutsummaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/github.com/syndtr/goleveldb/leveldb/db_write.go
blob: 4660e840ca9a3d424916fc850add5ab0fe1ab974 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// Copyright (c) 2012, Suryandaru Triandana <syndtr@gmail.com>
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

package leveldb

import (
    "time"

    "github.com/syndtr/goleveldb/leveldb/memdb"
    "github.com/syndtr/goleveldb/leveldb/opt"
    "github.com/syndtr/goleveldb/leveldb/util"
)

func (d *DB) writeJournal(b *Batch) error {
    w, err := d.journal.Next()
    if err != nil {
        return err
    }
    if _, err := w.Write(b.encode()); err != nil {
        return err
    }
    if err := d.journal.Flush(); err != nil {
        return err
    }
    if b.sync {
        return d.journalWriter.Sync()
    }
    return nil
}

func (d *DB) jWriter() {
    defer d.closeW.Done()
    for {
        select {
        case b := <-d.journalC:
            if b != nil {
                d.journalAckC <- d.writeJournal(b)
            }
        case _, _ = <-d.closeC:
            return
        }
    }
}

func (d *DB) rotateMem(n int) (mem *memdb.DB, err error) {
    // Wait for pending memdb compaction.
    err = d.compSendIdle(d.mcompCmdC)
    if err != nil {
        return
    }

    // Create new memdb and journal.
    mem, err = d.newMem(n)
    if err != nil {
        return
    }

    // Schedule memdb compaction.
    d.compTrigger(d.mcompTriggerC)
    return
}

func (d *DB) flush(n int) (mem *memdb.DB, nn int, err error) {
    s := d.s

    delayed := false
    flush := func() bool {
        v := s.version()
        defer v.release()
        mem = d.getEffectiveMem()
        nn = mem.Free()
        switch {
        case v.tLen(0) >= kL0_SlowdownWritesTrigger && !delayed:
            delayed = true
            time.Sleep(time.Millisecond)
        case nn >= n:
            return false
        case v.tLen(0) >= kL0_StopWritesTrigger:
            delayed = true
            err = d.compSendIdle(d.tcompCmdC)
            if err != nil {
                return false
            }
        default:
            // Allow memdb to grow if it has no entry.
            if mem.Len() == 0 {
                nn = n
                return false
            }
            mem, err = d.rotateMem(n)
            nn = mem.Free()
            return false
        }
        return true
    }
    start := time.Now()
    for flush() {
    }
    if delayed {
        s.logf("db@write delayed T·%v", time.Since(start))
    }
    return
}

// Write apply the given batch to the DB. The batch will be applied
// sequentially.
//
// It is safe to modify the contents of the arguments after Write returns.
func (d *DB) Write(b *Batch, wo *opt.WriteOptions) (err error) {
    err = d.ok()
    if err != nil || b == nil || b.len() == 0 {
        return
    }

    b.init(wo.GetSync())

    // The write happen synchronously.
retry:
    select {
    case d.writeC <- b:
        if <-d.writeMergedC {
            return <-d.writeAckC
        }
        goto retry
    case d.writeLockC <- struct{}{}:
    case _, _ = <-d.closeC:
        return ErrClosed
    }

    merged := 0
    defer func() {
        <-d.writeLockC
        for i := 0; i < merged; i++ {
            d.writeAckC <- err
        }
    }()

    mem, memFree, err := d.flush(b.size())
    if err != nil {
        return
    }

    // Calculate maximum size of the batch.
    m := 1 << 20
    if x := b.size(); x <= 128<<10 {
        m = x + (128 << 10)
    }
    m = minInt(m, memFree)

    // Merge with other batch.
drain:
    for b.size() < m && !b.sync {
        select {
        case nb := <-d.writeC:
            if b.size()+nb.size() <= m {
                b.append(nb)
                d.writeMergedC <- true
                merged++
            } else {
                d.writeMergedC <- false
                break drain
            }
        default:
            break drain
        }
    }

    // Set batch first seq number relative from last seq.
    b.seq = d.seq + 1

    // Write journal concurrently if it is large enough.
    if b.size() >= (128 << 10) {
        // Push the write batch to the journal writer
        select {
        case _, _ = <-d.closeC:
            err = ErrClosed
            return
        case d.journalC <- b:
            // Write into memdb
            b.memReplay(mem)
        }
        // Wait for journal writer
        select {
        case _, _ = <-d.closeC:
            err = ErrClosed
            return
        case err = <-d.journalAckC:
            if err != nil {
                // Revert memdb if error detected
                b.revertMemReplay(mem)
                return
            }
        }
    } else {
        err = d.writeJournal(b)
        if err != nil {
            return
        }
        b.memReplay(mem)
    }

    // Set last seq number.
    d.addSeq(uint64(b.len()))

    if b.size() >= memFree {
        d.rotateMem(0)
    }
    return
}

// Put sets the value for the given key. It overwrites any previous value
// for that key; a DB is not a multi-map.
//
// It is safe to modify the contents of the arguments after Put returns.
func (d *DB) Put(key, value []byte, wo *opt.WriteOptions) error {
    b := new(Batch)
    b.Put(key, value)
    return d.Write(b, wo)
}

// Delete deletes the value for the given key. It returns ErrNotFound if
// the DB does not contain the key.
//
// It is safe to modify the contents of the arguments after Delete returns.
func (d *DB) Delete(key []byte, wo *opt.WriteOptions) error {
    b := new(Batch)
    b.Delete(key)
    return d.Write(b, wo)
}

func isMemOverlaps(icmp *iComparer, mem *memdb.DB, min, max []byte) bool {
    iter := mem.NewIterator(nil)
    defer iter.Release()
    return (max == nil || (iter.First() && icmp.uCompare(max, iKey(iter.Key()).ukey()) >= 0)) &&
        (min == nil || (iter.Last() && icmp.uCompare(min, iKey(iter.Key()).ukey()) <= 0))
}

// CompactRange compacts the underlying DB for the given key range.
// In particular, deleted and overwritten versions are discarded,
// and the data is rearranged to reduce the cost of operations
// needed to access the data. This operation should typically only
// be invoked by users who understand the underlying implementation.
//
// A nil Range.Start is treated as a key before all keys in the DB.
// And a nil Range.Limit is treated as a key after all keys in the DB.
// Therefore if both is nil then it will compact entire DB.
func (d *DB) CompactRange(r util.Range) error {
    if err := d.ok(); err != nil {
        return err
    }

    select {
    case d.writeLockC <- struct{}{}:
    case _, _ = <-d.closeC:
        return ErrClosed
    }

    // Check for overlaps in memdb.
    mem := d.getEffectiveMem()
    if isMemOverlaps(d.s.icmp, mem, r.Start, r.Limit) {
        // Memdb compaction.
        if _, err := d.rotateMem(0); err != nil {
            <-d.writeLockC
            return err
        }
        <-d.writeLockC
        if err := d.compSendIdle(d.mcompCmdC); err != nil {
            return err
        }
    } else {
        <-d.writeLockC
    }

    // Table compaction.
    return d.compSendRange(d.tcompCmdC, -1, r.Start, r.Limit)
}