package vm import ( "fmt" "math/big" "github.com/ethereum/go-ethereum/ethcrypto" "github.com/ethereum/go-ethereum/ethstate" "github.com/ethereum/go-ethereum/ethutil" ) type DebugVm struct { env Environment logTy byte logStr string err error // Debugging Dbg Debugger BreakPoints []int64 Stepping bool Fn string Recoverable bool depth int } func NewDebugVm(env Environment) *DebugVm { lt := LogTyPretty if ethutil.Config.Diff { lt = LogTyDiff } return &DebugVm{env: env, logTy: lt, Recoverable: true} } func (self *DebugVm) RunClosure(closure *Closure) (ret []byte, err error) { self.depth++ var ( op OpCode mem = &Memory{} stack = NewStack() pc = big.NewInt(0) step = 0 prevStep = 0 state = self.env.State() require = func(m int) { if stack.Len() < m { panic(fmt.Sprintf("%04v (%v) stack err size = %d, required = %d", pc, op, stack.Len(), m)) } } jump = func(pos *big.Int) { p := int(pos.Int64()) self.Printf(" ~> %v", pos) // Return to start if p == 0 { pc = big.NewInt(0) } else { nop := OpCode(closure.GetOp(p - 1)) if nop != JUMPDEST { panic(fmt.Sprintf("JUMP missed JUMPDEST (%v) %v", nop, p)) } pc = pos } self.Endl() } ) if self.Recoverable { // Recover from any require exception defer func() { if r := recover(); r != nil { self.Endl() ret = closure.Return(nil) // No error should be set. Recover is used with require // Is this too error prone? } }() } // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } // Don't bother with the execution if there's no code. if len(closure.Code) == 0 { return closure.Return(nil), nil } vmlogger.Debugf("(%d) %x gas: %v (d) %x\n", self.depth, closure.Address(), closure.Gas, closure.Args) for { prevStep = step // The base for all big integer arithmetic base := new(big.Int) step++ // Get the memory location of pc op = closure.GetOp(int(pc.Uint64())) // XXX Leave this Println intact. Don't change this to the log system. // Used for creating diffs between implementations if self.logTy == LogTyDiff { switch op { case STOP, RETURN, SUICIDE: state.GetStateObject(closure.Address()).EachStorage(func(key string, value *ethutil.Value) { value.Decode() fmt.Printf("%x %x\n", new(big.Int).SetBytes([]byte(key)).Bytes(), value.Bytes()) }) } b := pc.Bytes() if len(b) == 0 { b = []byte{0} } fmt.Printf("%x %x %x %x\n", closure.Address(), b, []byte{byte(op)}, closure.Gas.Bytes()) } gas := new(big.Int) addStepGasUsage := func(amount *big.Int) { if amount.Cmp(ethutil.Big0) >= 0 { gas.Add(gas, amount) } } addStepGasUsage(GasStep) var newMemSize *big.Int = ethutil.Big0 // Stack Check, memory resize & gas phase switch op { // Stack checks only case NOT, CALLDATALOAD, POP, JUMP, BNOT: // 1 require(1) case ADD, SUB, DIV, SDIV, MOD, SMOD, EXP, LT, GT, SLT, SGT, EQ, AND, OR, XOR, BYTE: // 2 require(2) case ADDMOD, MULMOD: // 3 require(3) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) require(n) case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) require(n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) require(n + 2) mSize, mStart := stack.Peekn() gas.Set(GasLog) addStepGasUsage(new(big.Int).Mul(big.NewInt(int64(n)), GasLog)) addStepGasUsage(new(big.Int).Add(mSize, mStart)) // Gas only case STOP: gas.Set(ethutil.Big0) case SUICIDE: require(1) gas.Set(ethutil.Big0) case SLOAD: require(1) gas.Set(GasSLoad) // Memory resize & Gas case SSTORE: require(2) var mult *big.Int y, x := stack.Peekn() val := closure.GetStorage(x) if val.BigInt().Cmp(ethutil.Big0) == 0 && len(y.Bytes()) > 0 { // 0 => non 0 mult = ethutil.Big3 } else if val.BigInt().Cmp(ethutil.Big0) != 0 && len(y.Bytes()) == 0 { state.Refund(closure.caller.Address(), GasSStoreRefund, closure.Price) mult = ethutil.Big0 } else { // non 0 => non 0 mult = ethutil.Big1 } gas.Set(new(big.Int).Mul(mult, GasSStore)) case BALANCE: require(1) gas.Set(GasBalance) case MSTORE: require(2) newMemSize = calcMemSize(stack.Peek(), u256(32)) case MLOAD: require(1) newMemSize = calcMemSize(stack.Peek(), u256(32)) case MSTORE8: require(2) newMemSize = calcMemSize(stack.Peek(), u256(1)) case RETURN: require(2) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-2]) case SHA3: require(2) gas.Set(GasSha) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-2]) case CALLDATACOPY: require(2) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-3]) case CODECOPY: require(3) newMemSize = calcMemSize(stack.Peek(), stack.data[stack.Len()-3]) case EXTCODECOPY: require(4) newMemSize = calcMemSize(stack.data[stack.Len()-2], stack.data[stack.Len()-4]) case CALL, CALLCODE: require(7) gas.Set(GasCall) addStepGasUsage(stack.data[stack.Len()-1]) x := calcMemSize(stack.data[stack.Len()-6], stack.data[stack.Len()-7]) y := calcMemSize(stack.data[stack.Len()-4], stack.data[stack.Len()-5]) newMemSize = ethutil.BigMax(x, y) case CREATE: require(3) gas.Set(GasCreate) newMemSize = calcMemSize(stack.data[stack.Len()-2], stack.data[stack.Len()-3]) } if newMemSize.Cmp(ethutil.Big0) > 0 { newMemSize.Add(newMemSize, u256(31)) newMemSize.Div(newMemSize, u256(32)) newMemSize.Mul(newMemSize, u256(32)) if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 { memGasUsage := new(big.Int).Sub(newMemSize, u256(int64(mem.Len()))) memGasUsage.Mul(GasMemory, memGasUsage) memGasUsage.Div(memGasUsage, u256(32)) addStepGasUsage(memGasUsage) } } self.Printf("(pc) %-3d -o- %-14s", pc, op.String()) self.Printf(" (g) %-3v (%v)", gas, closure.Gas) if !closure.UseGas(gas) { self.Endl() tmp := new(big.Int).Set(closure.Gas) closure.UseGas(closure.Gas) return closure.Return(nil), OOG(gas, tmp) } mem.Resize(newMemSize.Uint64()) switch op { // 0x20 range case ADD: x, y := stack.Popn() self.Printf(" %v + %v", y, x) base.Add(y, x) U256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case SUB: x, y := stack.Popn() self.Printf(" %v - %v", y, x) base.Sub(y, x) U256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case MUL: x, y := stack.Popn() self.Printf(" %v * %v", y, x) base.Mul(y, x) U256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case DIV: x, y := stack.Pop(), stack.Pop() self.Printf(" %v / %v", x, y) if y.Cmp(ethutil.Big0) != 0 { base.Div(x, y) } U256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case SDIV: x, y := S256(stack.Pop()), S256(stack.Pop()) self.Printf(" %v / %v", x, y) if y.Cmp(ethutil.Big0) == 0 { base.Set(ethutil.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(ethutil.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } self.Printf(" = %v", base) stack.Push(base) case MOD: x, y := stack.Pop(), stack.Pop() self.Printf(" %v %% %v", x, y) if y.Cmp(ethutil.Big0) == 0 { base.Set(ethutil.Big0) } else { base.Mod(x, y) } U256(base) self.Printf(" = %v", base) stack.Push(base) case SMOD: x, y := S256(stack.Pop()), S256(stack.Pop()) self.Printf(" %v %% %v", x, y) if y.Cmp(ethutil.Big0) == 0 { base.Set(ethutil.Big0) } else { n := new(big.Int) if x.Cmp(ethutil.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } self.Printf(" = %v", base) stack.Push(base) case EXP: x, y := stack.Popn() self.Printf(" %v ** %v", y, x) base.Exp(y, x, Pow256) U256(base) self.Printf(" = %v", base) stack.Push(base) case BNOT: base.Sub(Pow256, stack.Pop()).Sub(base, ethutil.Big1) // Not needed //base = U256(base) stack.Push(base) case LT: x, y := stack.Popn() self.Printf(" %v < %v", y, x) // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case GT: x, y := stack.Popn() self.Printf(" %v > %v", y, x) // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SLT: y, x := S256(stack.Pop()), S256(stack.Pop()) self.Printf(" %v < %v", y, x) // x < y if y.Cmp(S256(x)) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SGT: y, x := S256(stack.Pop()), S256(stack.Pop()) self.Printf(" %v > %v", y, x) // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case EQ: x, y := stack.Popn() self.Printf(" %v == %v", y, x) // x == y if x.Cmp(y) == 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case NOT: x := stack.Pop() if x.Cmp(ethutil.BigFalse) > 0 { stack.Push(ethutil.BigFalse) } else { stack.Push(ethutil.BigTrue) } // 0x10 range case AND: x, y := stack.Popn() self.Printf(" %v & %v", y, x) stack.Push(base.And(y, x)) case OR: x, y := stack.Popn() self.Printf(" %v | %v", y, x) stack.Push(base.Or(y, x)) case XOR: x, y := stack.Popn() self.Printf(" %v ^ %v", y, x) stack.Push(base.Xor(y, x)) case BYTE: val, th := stack.Popn() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(ethutil.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(ethutil.BigFalse) } self.Printf(" => 0x%x", base.Bytes()) stack.Push(base) case ADDMOD: x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Add(x, y) base.Mod(base, z) U256(base) self.Printf(" = %v", base) stack.Push(base) case MULMOD: x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Mul(x, y) base.Mod(base, z) U256(base) self.Printf(" = %v", base) stack.Push(base) // 0x20 range case SHA3: size, offset := stack.Popn() data := ethcrypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.Push(ethutil.BigD(data)) self.Printf(" => %x", data) // 0x30 range case ADDRESS: stack.Push(ethutil.BigD(closure.Address())) self.Printf(" => %x", closure.Address()) case BALANCE: addr := stack.Pop().Bytes() balance := state.GetBalance(addr) stack.Push(balance) self.Printf(" => %v (%x)", balance, addr) case ORIGIN: origin := self.env.Origin() stack.Push(ethutil.BigD(origin)) self.Printf(" => %x", origin) case CALLER: caller := closure.caller.Address() stack.Push(ethutil.BigD(caller)) self.Printf(" => %x", caller) case CALLVALUE: value := closure.exe.value stack.Push(value) self.Printf(" => %v", value) case CALLDATALOAD: var ( offset = stack.Pop() data = make([]byte, 32) lenData = big.NewInt(int64(len(closure.Args))) ) if lenData.Cmp(offset) >= 0 { length := new(big.Int).Add(offset, ethutil.Big32) length = ethutil.BigMin(length, lenData) copy(data, closure.Args[offset.Int64():length.Int64()]) } self.Printf(" => 0x%x", data) stack.Push(ethutil.BigD(data)) case CALLDATASIZE: l := int64(len(closure.Args)) stack.Push(big.NewInt(l)) self.Printf(" => %d", l) case CALLDATACOPY: var ( size = int64(len(closure.Args)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } code := closure.Args[cOff : cOff+l] mem.Set(mOff, l, code) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := stack.Pop().Bytes() code = state.GetCode(addr) } else { code = closure.Code } l := big.NewInt(int64(len(code))) stack.Push(l) self.Printf(" => %d", l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := stack.Pop().Bytes() code = state.GetCode(addr) } else { code = closure.Code } var ( size = int64(len(code)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } codeCopy := code[cOff : cOff+l] mem.Set(mOff, l, codeCopy) case GASPRICE: stack.Push(closure.Price) self.Printf(" => %v", closure.Price) // 0x40 range case PREVHASH: prevHash := self.env.PrevHash() stack.Push(ethutil.BigD(prevHash)) self.Printf(" => 0x%x", prevHash) case COINBASE: coinbase := self.env.Coinbase() stack.Push(ethutil.BigD(coinbase)) self.Printf(" => 0x%x", coinbase) case TIMESTAMP: time := self.env.Time() stack.Push(big.NewInt(time)) self.Printf(" => 0x%x", time) case NUMBER: number := self.env.BlockNumber() stack.Push(number) self.Printf(" => 0x%x", number.Bytes()) case DIFFICULTY: difficulty := self.env.Difficulty() stack.Push(difficulty) self.Printf(" => 0x%x", difficulty.Bytes()) case GASLIMIT: stack.Push(self.env.GasLimit()) // 0x50 range case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := big.NewInt(int64(op) - int64(PUSH1) + 1) pc.Add(pc, ethutil.Big1) data := closure.Gets(pc, a) val := ethutil.BigD(data.Bytes()) // Push value to stack stack.Push(val) pc.Add(pc, a.Sub(a, big.NewInt(1))) step += int(op) - int(PUSH1) + 1 self.Printf(" => 0x%x", data.Bytes()) case POP: stack.Pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) v := stack.Dupn(n) self.Printf(" => [%d] 0x%x", n, stack.Peek().Bytes()) if OpCode(closure.Get(new(big.Int).Add(pc, ethutil.Big1)).Uint()) == POP && OpCode(closure.Get(new(big.Int).Add(pc, big.NewInt(2))).Uint()) == POP { fmt.Println(toValue(v)) } case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) x, y := stack.Swapn(n) self.Printf(" => [%d] %x [0] %x", n, x.Bytes(), y.Bytes()) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([][]byte, n) mSize, mStart := stack.Pop().Int64(), stack.Pop().Int64() data := mem.Geti(mStart, mSize) for i := 0; i < n; i++ { topics[i] = stack.Pop().Bytes() } self.env.AddLog(ethstate.Log{closure.Address(), topics, data}) case MLOAD: offset := stack.Pop() val := ethutil.BigD(mem.Get(offset.Int64(), 32)) stack.Push(val) self.Printf(" => 0x%x", val.Bytes()) case MSTORE: // Store the value at stack top-1 in to memory at location stack top // Pop value of the stack val, mStart := stack.Popn() mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(val, 256)) self.Printf(" => 0x%x", val) case MSTORE8: off := stack.Pop() val := stack.Pop() mem.store[off.Int64()] = byte(val.Int64() & 0xff) self.Printf(" => [%v] 0x%x", off, val) case SLOAD: loc := stack.Pop() val := ethutil.BigD(state.GetState(closure.Address(), loc.Bytes())) stack.Push(val) self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes()) case SSTORE: val, loc := stack.Popn() state.SetState(closure.Address(), loc.Bytes(), val) // Debug sessions are allowed to run without message if closure.message != nil { closure.message.AddStorageChange(loc.Bytes()) } self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes()) case JUMP: jump(stack.Pop()) continue case JUMPI: cond, pos := stack.Popn() if cond.Cmp(ethutil.BigTrue) >= 0 { jump(pos) continue } case JUMPDEST: case PC: stack.Push(pc) case MSIZE: stack.Push(big.NewInt(int64(mem.Len()))) case GAS: stack.Push(closure.Gas) // 0x60 range case CREATE: var ( err error value = stack.Pop() size, offset = stack.Popn() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(closure.Gas) // Snapshot the current stack so we are able to // revert back to it later. //snapshot = self.env.State().Copy() ) // Generate a new address n := state.GetNonce(closure.Address()) addr := ethcrypto.CreateAddress(closure.Address(), n) state.SetNonce(closure.Address(), n+1) self.Printf(" (*) %x", addr).Endl() closure.UseGas(closure.Gas) msg := NewExecution(self, addr, input, gas, closure.Price, value) ret, err := msg.Create(closure) if err != nil { stack.Push(ethutil.BigFalse) // Revert the state as it was before. //self.env.State().Set(snapshot) self.Printf("CREATE err %v", err) } else { msg.object.Code = ret stack.Push(ethutil.BigD(addr)) } self.Endl() // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } case CALL, CALLCODE: self.Endl() gas := stack.Pop() // Pop gas and value of the stack. value, addr := stack.Popn() // Pop input size and offset inSize, inOffset := stack.Popn() // Pop return size and offset retSize, retOffset := stack.Popn() // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) var executeAddr []byte if op == CALLCODE { executeAddr = closure.Address() } else { executeAddr = addr.Bytes() } msg := NewExecution(self, executeAddr, args, gas, closure.Price, value) ret, err := msg.Exec(addr.Bytes(), closure) if err != nil { stack.Push(ethutil.BigFalse) vmlogger.Debugln(err) } else { stack.Push(ethutil.BigTrue) mem.Set(retOffset.Int64(), retSize.Int64(), ret) } self.Printf("resume %x", closure.Address()) // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } case RETURN: size, offset := stack.Popn() ret := mem.Get(offset.Int64(), size.Int64()) self.Printf(" => (%d) 0x%x", len(ret), ret).Endl() return closure.Return(ret), nil case SUICIDE: receiver := state.GetOrNewStateObject(stack.Pop().Bytes()) receiver.AddAmount(state.GetBalance(closure.Address())) state.Delete(closure.Address()) fallthrough case STOP: // Stop the closure self.Endl() return closure.Return(nil), nil default: vmlogger.Debugf("(pc) %-3v Invalid opcode %x\n", pc, op) //panic(fmt.Sprintf("Invalid opcode %x", op)) closure.ReturnGas(big.NewInt(1), nil) return closure.Return(nil), fmt.Errorf("Invalid opcode %x", op) } pc.Add(pc, ethutil.Big1) self.Endl() if self.Dbg != nil { for _, instrNo := range self.Dbg.BreakPoints() { if pc.Cmp(big.NewInt(instrNo)) == 0 { self.Stepping = true if !self.Dbg.BreakHook(prevStep, op, mem, stack, state.GetStateObject(closure.Address())) { return nil, nil } } else if self.Stepping { if !self.Dbg.StepHook(prevStep, op, mem, stack, state.GetStateObject(closure.Address())) { return nil, nil } } } } } } func (self *DebugVm) Printf(format string, v ...interface{}) VirtualMachine { if self.logTy == LogTyPretty { self.logStr += fmt.Sprintf(format, v...) } return self } func (self *DebugVm) Endl() VirtualMachine { if self.logTy == LogTyPretty { vmlogger.Debugln(self.logStr) self.logStr = "" } return self } func (self *DebugVm) Env() Environment { return self.env } func (self *DebugVm) Depth() int { return self.depth }