# Additive homomorphic encryption which supports one-time multiplication 

Mitsunari Shigeo

July 20, 2016

## 1 Lifted ElGamal Encryption

Let $G$ be an additive cyclic group generated by $P$ and let $r:=|G|$ be a prime.

- KeyGen: Take a random number $x \in \mathbb{Z} / p \mathbb{Z}$ and compute $x P . x$ is a secret key and $x P$ is a public key.
- Encrypt: For a message $m \in \mathbb{Z} / p \mathbb{Z}$, take a random number $r$ and

$$
\operatorname{Enc}(m):=(S, T):=(m P+r(x P), r P)
$$

- Decrypt: For a ciphertext $c:=(S, T)$, compute

$$
S-x T=(m P+r x P)-x(r P)=m P
$$

and find $m$ by computing the discrete $\log$ of $m P$ base $P$.
We can not take a large plaintext $m$ because we should solve this DLP. We use a notation of $m=\log _{P}(m P)$.

## 2 Additive homomorphic encryption

Lifted ElGamal encryption is additively homomorphic as the following: For two plaintext $m_{1}$ and $m_{2}$, define

$$
c_{i}:=\operatorname{Enc}\left(m_{i}\right)=\left(S_{i}, T_{i}\right)=\left(m_{i} P+r_{i}(x P), r_{i} P\right)
$$

where $r_{i}$ is a random number. Let

$$
\operatorname{Add}\left(c_{1}, c_{2}\right):=\left(S_{1}+S_{2}, T_{1}+T_{2}\right)
$$

Then, we get

$$
\operatorname{Add}\left(c_{1}, c_{2}\right)=\left(\left(m_{1}+m_{2}\right) P+\left(r_{1}+r_{2}\right) x P,\left(r_{1}+r_{2}\right) P\right)=\operatorname{Enc}\left(m_{1}+m_{2}\right)
$$

## 3 Pairing

Let $G_{1}$ and $G_{2}$ be additive cyclic groups generated by $P_{1}$ and $P_{2}$, and $G_{T}$ be an multiplicative cyclic group of order $r$ and take a pairing

$$
e: G_{1} \times G_{2} \rightarrow G_{T}
$$

For any $a, b \in \mathbb{Z} / p \mathbb{Z}, e\left(a P_{1}, b P_{2}\right)=e\left(P_{1}, P_{2}\right)^{a b}$. Let $g:=e\left(P_{1}, P_{2}\right)$.

## 4 Multiplicative homomorphic encryption

Let $x_{i}$ be a secret key of an lifted ElGamal encryption for $G_{i}$ and $\operatorname{Enc}_{i}\left(m_{i}\right)$ be a ciphertext for $m_{i}$ according to $G_{i}$. We define multiplication of $\operatorname{Enc}_{1}\left(m_{1}\right)$ and $\operatorname{Enc}_{2}\left(m_{2}\right)$ as the following:

Let $c_{i}:=\operatorname{Enc}_{i}\left(m_{i}\right)=\left(S_{i}, T_{i}\right)$ where $S_{i}, T_{i} \in G_{i}$.

$$
\operatorname{Mul}\left(c_{1}, c_{2}\right):=(s, t, u, v):=\left(e\left(S_{1}, S_{2}\right), e\left(S_{1}, T_{2}\right), e\left(T_{1}, S_{2}\right), e\left(T_{1}, T_{2}\right)\right) \in G_{T}{ }^{4}
$$

Decrypt of $\operatorname{Mul}\left(c_{1}, c_{2}\right):=(s, t, u, v)$ is as the following:

$$
\begin{aligned}
s v^{x_{1} x_{2}} /\left(t^{x_{2}} u^{x_{1}}\right) & =e\left(S_{1}, S_{2}\right) e\left(T_{1}, T_{2}\right)^{x_{1} x_{2}} / e\left(S_{1}, T_{2}\right)^{x_{2}} / e\left(T_{1}, S_{2}\right)^{x_{1}} \\
& =e\left(S_{1}, S_{2}\right) e\left(x_{1} T_{1}, x_{2} T_{2}\right) e\left(S_{1},-x_{2} T_{2}\right) e\left(-x_{1} T_{1}, S_{2}\right) \\
& =e\left(S_{1}-x_{1} T_{1}, S_{2}-x_{2} T_{2}\right) \\
& =e\left(m_{1} P_{1}, m_{2} P_{2}\right)=e\left(P_{1}, P_{2}\right)^{m_{1} m_{2}}=g^{m_{1} m_{2}} .
\end{aligned}
$$

Then we solve a DLP of $\log _{g}\left(g^{m_{1} m_{2}}\right)$ and get $m_{1} m_{2}$.
So define $\operatorname{Enc}(m):=\left(E n c_{1}(m), E n c_{2}(m)\right) \in G_{1}{ }^{2} \times G_{2}{ }^{2}$, then we get additive homomorphic encryption which supports one multiplication.

