// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package network import ( "fmt" "net" "time" "github.com/ethereum/go-ethereum/contracts/chequebook" "github.com/ethereum/go-ethereum/p2p/discover" "github.com/ethereum/go-ethereum/swarm/network/kademlia" "github.com/ethereum/go-ethereum/swarm/services/swap" "github.com/ethereum/go-ethereum/swarm/storage" ) /* BZZ protocol Message Types and Message Data Types */ // bzz protocol message codes const ( statusMsg = iota // 0x01 storeRequestMsg // 0x02 retrieveRequestMsg // 0x03 peersMsg // 0x04 syncRequestMsg // 0x05 deliveryRequestMsg // 0x06 unsyncedKeysMsg // 0x07 paymentMsg // 0x08 ) /* Handshake * Version: 8 byte integer version of the protocol * ID: arbitrary byte sequence client identifier human readable * Addr: the address advertised by the node, format similar to DEVp2p wire protocol * Swap: info for the swarm accounting protocol * NetworkID: 8 byte integer network identifier * Caps: swarm-specific capabilities, format identical to devp2p * SyncState: syncronisation state (db iterator key and address space etc) persisted about the peer */ type statusMsgData struct { Version uint64 ID string Addr *peerAddr Swap *swap.SwapProfile NetworkId uint64 } func (self *statusMsgData) String() string { return fmt.Sprintf("Status: Version: %v, ID: %v, Addr: %v, Swap: %v, NetworkId: %v", self.Version, self.ID, self.Addr, self.Swap, self.NetworkId) } /* store requests are forwarded to the peers in their kademlia proximity bin if they are distant if they are within our storage radius or have any incentive to store it then attach your nodeID to the metadata if the storage request is sufficiently close (within our proxLimit, i. e., the last row of the routing table) */ type storeRequestMsgData struct { Key storage.Key // hash of datasize | data SData []byte // the actual chunk Data // optional Id uint64 // request ID. if delivery, the ID is retrieve request ID requestTimeout *time.Time // expiry for forwarding - [not serialised][not currently used] storageTimeout *time.Time // expiry of content - [not serialised][not currently used] from *peer // [not serialised] protocol registers the requester } func (self storeRequestMsgData) String() string { var from string if self.from == nil { from = "self" } else { from = self.from.Addr().String() } end := len(self.SData) if len(self.SData) > 10 { end = 10 } return fmt.Sprintf("from: %v, Key: %v; ID: %v, requestTimeout: %v, storageTimeout: %v, SData %x", from, self.Key, self.Id, self.requestTimeout, self.storageTimeout, self.SData[:end]) } /* Retrieve request Timeout in milliseconds. Note that zero timeout retrieval requests do not request forwarding, but prompt for a peers message response. therefore they serve also as messages to retrieve peers. MaxSize specifies the maximum size that the peer will accept. This is useful in particular if we allow storage and delivery of multichunk payload representing the entire or partial subtree unfolding from the requested root key. So when only interested in limited part of a stream (infinite trees) or only testing chunk availability etc etc, we can indicate it by limiting the size here. Request ID can be newly generated or kept from the request originator. If request ID Is missing or zero, the request is handled as a lookup only prompting a peers response but not launching a search. Lookup requests are meant to be used to bootstrap kademlia tables. In the special case that the key is the zero value as well, the remote peer's address is assumed (the message is to be handled as a self lookup request). The response is a PeersMsg with the peers in the kademlia proximity bin corresponding to the address. */ type retrieveRequestMsgData struct { Key storage.Key // target Key address of chunk to be retrieved Id uint64 // request id, request is a lookup if missing or zero MaxSize uint64 // maximum size of delivery accepted MaxPeers uint64 // maximum number of peers returned Timeout uint64 // the longest time we are expecting a response timeout *time.Time // [not serialied] from *peer // } func (self *retrieveRequestMsgData) String() string { var from string if self.from == nil { from = "ourselves" } else { from = self.from.Addr().String() } var target []byte if len(self.Key) > 3 { target = self.Key[:4] } return fmt.Sprintf("from: %v, Key: %x; ID: %v, MaxSize: %v, MaxPeers: %d", from, target, self.Id, self.MaxSize, self.MaxPeers) } // lookups are encoded by missing request ID func (self *retrieveRequestMsgData) isLookup() bool { return self.Id == 0 } // sets timeout fields func (self *retrieveRequestMsgData) setTimeout(t *time.Time) { self.timeout = t if t != nil { self.Timeout = uint64(t.UnixNano()) } else { self.Timeout = 0 } } func (self *retrieveRequestMsgData) getTimeout() (t *time.Time) { if self.Timeout > 0 && self.timeout == nil { timeout := time.Unix(int64(self.Timeout), 0) t = &timeout self.timeout = t } return } // peerAddr is sent in StatusMsg as part of the handshake type peerAddr struct { IP net.IP Port uint16 ID []byte // the 64 byte NodeID (ECDSA Public Key) Addr kademlia.Address } // peerAddr pretty prints as enode func (self *peerAddr) String() string { var nodeid discover.NodeID copy(nodeid[:], self.ID) return discover.NewNode(nodeid, self.IP, 0, self.Port).String() } /* peers Msg is one response to retrieval; it is always encouraged after a retrieval request to respond with a list of peers in the same kademlia proximity bin. The encoding of a peer is identical to that in the devp2p base protocol peers messages: [IP, Port, NodeID] note that a node's DPA address is not the NodeID but the hash of the NodeID. Timeout serves to indicate whether the responder is forwarding the query within the timeout or not. NodeID serves as the owner of payment contracts and signer of proofs of transfer. The Key is the target (if response to a retrieval request) or missing (zero value) peers address (hash of NodeID) if retrieval request was a self lookup. Peers message is requested by retrieval requests with a missing or zero value request ID */ type peersMsgData struct { Peers []*peerAddr // Timeout uint64 // timeout *time.Time // indicate whether responder is expected to deliver content Key storage.Key // present if a response to a retrieval request Id uint64 // present if a response to a retrieval request from *peer } // peers msg pretty printer func (self *peersMsgData) String() string { var from string if self.from == nil { from = "ourselves" } else { from = self.from.Addr().String() } var target []byte if len(self.Key) > 3 { target = self.Key[:4] } return fmt.Sprintf("from: %v, Key: %x; ID: %v, Peers: %v", from, target, self.Id, self.Peers) } func (self *peersMsgData) setTimeout(t *time.Time) { self.timeout = t if t != nil { self.Timeout = uint64(t.UnixNano()) } else { self.Timeout = 0 } } /* syncRequest is sent after the handshake to initiate syncing the syncState of the remote node is persisted in kaddb and set on the peer/protocol instance when the node is registered by hive as online{ */ type syncRequestMsgData struct { SyncState *syncState `rlp:"nil"` } func (self *syncRequestMsgData) String() string { return fmt.Sprintf("%v", self.SyncState) } /* deliveryRequest is sent once a batch of sync keys is filtered. The ones not found are sent as a list of syncReuest (hash, priority) in the Deliver field. When the source receives the sync request it continues to iterate and fetch at most N items as yet unsynced. At the same time responds with deliveries of the items. */ type deliveryRequestMsgData struct { Deliver []*syncRequest } func (self *deliveryRequestMsgData) String() string { return fmt.Sprintf("sync request for new chunks\ndelivery request for %v chunks", len(self.Deliver)) } /* unsyncedKeys is sent first after the handshake if SyncState iterator brings up hundreds, thousands? and subsequently sent as a response to deliveryRequestMsgData. Syncing is the iterative process of exchanging unsyncedKeys and deliveryRequestMsgs both ways. State contains the sync state sent by the source. When the source receives the sync state it continues to iterate and fetch at most N items as yet unsynced. At the same time responds with deliveries of the items. */ type unsyncedKeysMsgData struct { Unsynced []*syncRequest State *syncState } func (self *unsyncedKeysMsgData) String() string { return fmt.Sprintf("sync: keys of %d new chunks (state %v) => synced: %v", len(self.Unsynced), self.State, self.State.Synced) } /* payment is sent when the swap balance is tilted in favour of the remote peer and in absolute units exceeds the PayAt parameter in the remote peer's profile */ type paymentMsgData struct { Units uint // units actually paid for (checked against amount by swap) Promise *chequebook.Cheque // payment with cheque } func (self *paymentMsgData) String() string { return fmt.Sprintf("payment for %d units: %v", self.Units, self.Promise) }