// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package network import ( "bytes" "fmt" "math/rand" "strings" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/swarm/log" "github.com/ethereum/go-ethereum/swarm/pot" ) /* Taking the proximity order relative to a fix point x classifies the points in the space (n byte long byte sequences) into bins. Items in each are at most half as distant from x as items in the previous bin. Given a sample of uniformly distributed items (a hash function over arbitrary sequence) the proximity scale maps onto series of subsets with cardinalities on a negative exponential scale. It also has the property that any two item belonging to the same bin are at most half as distant from each other as they are from x. If we think of random sample of items in the bins as connections in a network of interconnected nodes then relative proximity can serve as the basis for local decisions for graph traversal where the task is to find a route between two points. Since in every hop, the finite distance halves, there is a guaranteed constant maximum limit on the number of hops needed to reach one node from the other. */ var pof = pot.DefaultPof(256) // KadParams holds the config params for Kademlia type KadParams struct { // adjustable parameters MaxProxDisplay int // number of rows the table shows MinProxBinSize int // nearest neighbour core minimum cardinality MinBinSize int // minimum number of peers in a row MaxBinSize int // maximum number of peers in a row before pruning RetryInterval int64 // initial interval before a peer is first redialed RetryExponent int // exponent to multiply retry intervals with MaxRetries int // maximum number of redial attempts // function to sanction or prevent suggesting a peer Reachable func(*BzzAddr) bool } // NewKadParams returns a params struct with default values func NewKadParams() *KadParams { return &KadParams{ MaxProxDisplay: 16, MinProxBinSize: 2, MinBinSize: 2, MaxBinSize: 4, RetryInterval: 4200000000, // 4.2 sec MaxRetries: 42, RetryExponent: 2, } } // Kademlia is a table of live peers and a db of known peers (node records) type Kademlia struct { lock sync.RWMutex *KadParams // Kademlia configuration parameters base []byte // immutable baseaddress of the table addrs *pot.Pot // pots container for known peer addresses conns *pot.Pot // pots container for live peer connections depth uint8 // stores the last current depth of saturation nDepth int // stores the last neighbourhood depth nDepthC chan int // returned by DepthC function to signal neighbourhood depth change addrCountC chan int // returned by AddrCountC function to signal peer count change } // NewKademlia creates a Kademlia table for base address addr // with parameters as in params // if params is nil, it uses default values func NewKademlia(addr []byte, params *KadParams) *Kademlia { if params == nil { params = NewKadParams() } return &Kademlia{ base: addr, KadParams: params, addrs: pot.NewPot(nil, 0), conns: pot.NewPot(nil, 0), } } // entry represents a Kademlia table entry (an extension of BzzAddr) type entry struct { *BzzAddr conn *Peer seenAt time.Time retries int } // newEntry creates a kademlia peer from a *Peer func newEntry(p *BzzAddr) *entry { return &entry{ BzzAddr: p, seenAt: time.Now(), } } // Label is a short tag for the entry for debug func Label(e *entry) string { return fmt.Sprintf("%s (%d)", e.Hex()[:4], e.retries) } // Hex is the hexadecimal serialisation of the entry address func (e *entry) Hex() string { return fmt.Sprintf("%x", e.Address()) } // Register enters each address as kademlia peer record into the // database of known peer addresses func (k *Kademlia) Register(peers ...*BzzAddr) error { k.lock.Lock() defer k.lock.Unlock() var known, size int for _, p := range peers { // error if self received, peer should know better // and should be punished for this if bytes.Equal(p.Address(), k.base) { return fmt.Errorf("add peers: %x is self", k.base) } var found bool k.addrs, _, found, _ = pot.Swap(k.addrs, p, pof, func(v pot.Val) pot.Val { // if not found if v == nil { // insert new offline peer into conns return newEntry(p) } // found among known peers, do nothing return v }) if found { known++ } size++ } // send new address count value only if there are new addresses if k.addrCountC != nil && size-known > 0 { k.addrCountC <- k.addrs.Size() } k.sendNeighbourhoodDepthChange() return nil } // SuggestPeer returns a known peer for the lowest proximity bin for the // lowest bincount below depth // naturally if there is an empty row it returns a peer for that func (k *Kademlia) SuggestPeer() (a *BzzAddr, o int, want bool) { k.lock.Lock() defer k.lock.Unlock() minsize := k.MinBinSize depth := k.neighbourhoodDepth() // if there is a callable neighbour within the current proxBin, connect // this makes sure nearest neighbour set is fully connected var ppo int k.addrs.EachNeighbour(k.base, pof, func(val pot.Val, po int) bool { if po < depth { return false } e := val.(*entry) c := k.callable(e) if c { a = e.BzzAddr } ppo = po return !c }) if a != nil { log.Trace(fmt.Sprintf("%08x candidate nearest neighbour found: %v (%v)", k.BaseAddr()[:4], a, ppo)) return a, 0, false } var bpo []int prev := -1 k.conns.EachBin(k.base, pof, 0, func(po, size int, f func(func(val pot.Val, i int) bool) bool) bool { prev++ for ; prev < po; prev++ { bpo = append(bpo, prev) minsize = 0 } if size < minsize { bpo = append(bpo, po) minsize = size } return size > 0 && po < depth }) // all buckets are full, ie., minsize == k.MinBinSize if len(bpo) == 0 { return nil, 0, false } // as long as we got candidate peers to connect to // dont ask for new peers (want = false) // try to select a candidate peer // find the first callable peer nxt := bpo[0] k.addrs.EachBin(k.base, pof, nxt, func(po, _ int, f func(func(pot.Val, int) bool) bool) bool { // for each bin (up until depth) we find callable candidate peers if po >= depth { return false } return f(func(val pot.Val, _ int) bool { e := val.(*entry) c := k.callable(e) if c { a = e.BzzAddr } return !c }) }) // found a candidate if a != nil { return a, 0, false } // no candidate peer found, request for the short bin var changed bool if uint8(nxt) < k.depth { k.depth = uint8(nxt) changed = true } return a, nxt, changed } // On inserts the peer as a kademlia peer into the live peers func (k *Kademlia) On(p *Peer) (uint8, bool) { k.lock.Lock() defer k.lock.Unlock() var ins bool k.conns, _, _, _ = pot.Swap(k.conns, p, pof, func(v pot.Val) pot.Val { // if not found live if v == nil { ins = true // insert new online peer into conns return p } // found among live peers, do nothing return v }) if ins { a := newEntry(p.BzzAddr) a.conn = p // insert new online peer into addrs k.addrs, _, _, _ = pot.Swap(k.addrs, p, pof, func(v pot.Val) pot.Val { return a }) // send new address count value only if the peer is inserted if k.addrCountC != nil { k.addrCountC <- k.addrs.Size() } } log.Trace(k.string()) // calculate if depth of saturation changed depth := uint8(k.saturation(k.MinBinSize)) var changed bool if depth != k.depth { changed = true k.depth = depth } k.sendNeighbourhoodDepthChange() return k.depth, changed } // NeighbourhoodDepthC returns the channel that sends a new kademlia // neighbourhood depth on each change. // Not receiving from the returned channel will block On function // when the neighbourhood depth is changed. func (k *Kademlia) NeighbourhoodDepthC() <-chan int { k.lock.Lock() defer k.lock.Unlock() if k.nDepthC == nil { k.nDepthC = make(chan int) } return k.nDepthC } // sendNeighbourhoodDepthChange sends new neighbourhood depth to k.nDepth channel // if it is initialized. func (k *Kademlia) sendNeighbourhoodDepthChange() { // nDepthC is initialized when NeighbourhoodDepthC is called and returned by it. // It provides signaling of neighbourhood depth change. // This part of the code is sending new neighbourhood depth to nDepthC if that condition is met. if k.nDepthC != nil { nDepth := k.neighbourhoodDepth() if nDepth != k.nDepth { k.nDepth = nDepth k.nDepthC <- nDepth } } } // AddrCountC returns the channel that sends a new // address count value on each change. // Not receiving from the returned channel will block Register function // when address count value changes. func (k *Kademlia) AddrCountC() <-chan int { if k.addrCountC == nil { k.addrCountC = make(chan int) } return k.addrCountC } // Off removes a peer from among live peers func (k *Kademlia) Off(p *Peer) { k.lock.Lock() defer k.lock.Unlock() var del bool k.addrs, _, _, _ = pot.Swap(k.addrs, p, pof, func(v pot.Val) pot.Val { // v cannot be nil, must check otherwise we overwrite entry if v == nil { panic(fmt.Sprintf("connected peer not found %v", p)) } del = true return newEntry(p.BzzAddr) }) if del { k.conns, _, _, _ = pot.Swap(k.conns, p, pof, func(_ pot.Val) pot.Val { // v cannot be nil, but no need to check return nil }) // send new address count value only if the peer is deleted if k.addrCountC != nil { k.addrCountC <- k.addrs.Size() } k.sendNeighbourhoodDepthChange() } } func (k *Kademlia) EachBin(base []byte, pof pot.Pof, o int, eachBinFunc func(conn *Peer, po int) bool) { k.lock.RLock() defer k.lock.RUnlock() var startPo int var endPo int kadDepth := k.neighbourhoodDepth() k.conns.EachBin(base, pof, o, func(po, size int, f func(func(val pot.Val, i int) bool) bool) bool { if startPo > 0 && endPo != k.MaxProxDisplay { startPo = endPo + 1 } if po < kadDepth { endPo = po } else { endPo = k.MaxProxDisplay } for bin := startPo; bin <= endPo; bin++ { f(func(val pot.Val, _ int) bool { return eachBinFunc(val.(*Peer), bin) }) } return true }) } // EachConn is an iterator with args (base, po, f) applies f to each live peer // that has proximity order po or less as measured from the base // if base is nil, kademlia base address is used func (k *Kademlia) EachConn(base []byte, o int, f func(*Peer, int, bool) bool) { k.lock.RLock() defer k.lock.RUnlock() k.eachConn(base, o, f) } func (k *Kademlia) eachConn(base []byte, o int, f func(*Peer, int, bool) bool) { if len(base) == 0 { base = k.base } depth := k.neighbourhoodDepth() k.conns.EachNeighbour(base, pof, func(val pot.Val, po int) bool { if po > o { return true } return f(val.(*Peer), po, po >= depth) }) } // EachAddr called with (base, po, f) is an iterator applying f to each known peer // that has proximity order po or less as measured from the base // if base is nil, kademlia base address is used func (k *Kademlia) EachAddr(base []byte, o int, f func(*BzzAddr, int, bool) bool) { k.lock.RLock() defer k.lock.RUnlock() k.eachAddr(base, o, f) } func (k *Kademlia) eachAddr(base []byte, o int, f func(*BzzAddr, int, bool) bool) { if len(base) == 0 { base = k.base } depth := k.neighbourhoodDepth() k.addrs.EachNeighbour(base, pof, func(val pot.Val, po int) bool { if po > o { return true } return f(val.(*entry).BzzAddr, po, po >= depth) }) } // neighbourhoodDepth returns the proximity order that defines the distance of // the nearest neighbour set with cardinality >= MinProxBinSize // if there is altogether less than MinProxBinSize peers it returns 0 // caller must hold the lock func (k *Kademlia) neighbourhoodDepth() (depth int) { if k.conns.Size() < k.MinProxBinSize { return 0 } var size int f := func(v pot.Val, i int) bool { size++ depth = i return size < k.MinProxBinSize } k.conns.EachNeighbour(k.base, pof, f) return depth } // callable decides if an address entry represents a callable peer func (k *Kademlia) callable(e *entry) bool { // not callable if peer is live or exceeded maxRetries if e.conn != nil || e.retries > k.MaxRetries { return false } // calculate the allowed number of retries based on time lapsed since last seen timeAgo := int64(time.Since(e.seenAt)) div := int64(k.RetryExponent) div += (150000 - rand.Int63n(300000)) * div / 1000000 var retries int for delta := timeAgo; delta > k.RetryInterval; delta /= div { retries++ } // this is never called concurrently, so safe to increment // peer can be retried again if retries < e.retries { log.Trace(fmt.Sprintf("%08x: %v long time since last try (at %v) needed before retry %v, wait only warrants %v", k.BaseAddr()[:4], e, timeAgo, e.retries, retries)) return false } // function to sanction or prevent suggesting a peer if k.Reachable != nil && !k.Reachable(e.BzzAddr) { log.Trace(fmt.Sprintf("%08x: peer %v is temporarily not callable", k.BaseAddr()[:4], e)) return false } e.retries++ log.Trace(fmt.Sprintf("%08x: peer %v is callable", k.BaseAddr()[:4], e)) return true } // BaseAddr return the kademlia base address func (k *Kademlia) BaseAddr() []byte { return k.base } // String returns kademlia table + kaddb table displayed with ascii func (k *Kademlia) String() string { k.lock.RLock() defer k.lock.RUnlock() return k.string() } // string returns kademlia table + kaddb table displayed with ascii // caller must hold the lock func (k *Kademlia) string() string { wsrow := " " var rows []string rows = append(rows, "=========================================================================") rows = append(rows, fmt.Sprintf("%v KΛÐΞMLIΛ hive: queen's address: %x", time.Now().UTC().Format(time.UnixDate), k.BaseAddr()[:3])) rows = append(rows, fmt.Sprintf("population: %d (%d), MinProxBinSize: %d, MinBinSize: %d, MaxBinSize: %d", k.conns.Size(), k.addrs.Size(), k.MinProxBinSize, k.MinBinSize, k.MaxBinSize)) liverows := make([]string, k.MaxProxDisplay) peersrows := make([]string, k.MaxProxDisplay) depth := k.neighbourhoodDepth() rest := k.conns.Size() k.conns.EachBin(k.base, pof, 0, func(po, size int, f func(func(val pot.Val, i int) bool) bool) bool { var rowlen int if po >= k.MaxProxDisplay { po = k.MaxProxDisplay - 1 } row := []string{fmt.Sprintf("%2d", size)} rest -= size f(func(val pot.Val, vpo int) bool { e := val.(*Peer) row = append(row, fmt.Sprintf("%x", e.Address()[:2])) rowlen++ return rowlen < 4 }) r := strings.Join(row, " ") r = r + wsrow liverows[po] = r[:31] return true }) k.addrs.EachBin(k.base, pof, 0, func(po, size int, f func(func(val pot.Val, i int) bool) bool) bool { var rowlen int if po >= k.MaxProxDisplay { po = k.MaxProxDisplay - 1 } if size < 0 { panic("wtf") } row := []string{fmt.Sprintf("%2d", size)} // we are displaying live peers too f(func(val pot.Val, vpo int) bool { e := val.(*entry) row = append(row, Label(e)) rowlen++ return rowlen < 4 }) peersrows[po] = strings.Join(row, " ") return true }) for i := 0; i < k.MaxProxDisplay; i++ { if i == depth { rows = append(rows, fmt.Sprintf("============ DEPTH: %d ==========================================", i)) } left := liverows[i] right := peersrows[i] if len(left) == 0 { left = " 0 " } if len(right) == 0 { right = " 0" } rows = append(rows, fmt.Sprintf("%03d %v | %v", i, left, right)) } rows = append(rows, "=========================================================================") return "\n" + strings.Join(rows, "\n") } // PeerPot keeps info about expected nearest neighbours and empty bins // used for testing only type PeerPot struct { NNSet [][]byte EmptyBins []int } // NewPeerPotMap creates a map of pot record of *BzzAddr with keys // as hexadecimal representations of the address. // used for testing only func NewPeerPotMap(kadMinProxSize int, addrs [][]byte) map[string]*PeerPot { // create a table of all nodes for health check np := pot.NewPot(nil, 0) for _, addr := range addrs { np, _, _ = pot.Add(np, addr, pof) } ppmap := make(map[string]*PeerPot) for i, a := range addrs { pl := 256 prev := 256 var emptyBins []int var nns [][]byte np.EachNeighbour(addrs[i], pof, func(val pot.Val, po int) bool { a := val.([]byte) if po == 256 { return true } if pl == 256 || pl == po { nns = append(nns, a) } if pl == 256 && len(nns) >= kadMinProxSize { pl = po prev = po } if prev < pl { for j := prev; j > po; j-- { emptyBins = append(emptyBins, j) } } prev = po - 1 return true }) for j := prev; j >= 0; j-- { emptyBins = append(emptyBins, j) } log.Trace(fmt.Sprintf("%x NNS: %s", addrs[i][:4], LogAddrs(nns))) ppmap[common.Bytes2Hex(a)] = &PeerPot{nns, emptyBins} } return ppmap } // saturation returns the lowest proximity order that the bin for that order // has less than n peers // It is used in Healthy function for testing only func (k *Kademlia) saturation(n int) int { prev := -1 k.addrs.EachBin(k.base, pof, 0, func(po, size int, f func(func(val pot.Val, i int) bool) bool) bool { prev++ return prev == po && size >= n }) depth := k.neighbourhoodDepth() if depth < prev { return depth } return prev } // full returns true if all required bins have connected peers. // It is used in Healthy function for testing only func (k *Kademlia) full(emptyBins []int) (full bool) { prev := 0 e := len(emptyBins) ok := true depth := k.neighbourhoodDepth() k.conns.EachBin(k.base, pof, 0, func(po, _ int, _ func(func(val pot.Val, i int) bool) bool) bool { if prev == depth+1 { return true } for i := prev; i < po; i++ { e-- if e < 0 { ok = false return false } if emptyBins[e] != i { log.Trace(fmt.Sprintf("%08x po: %d, i: %d, e: %d, emptybins: %v", k.BaseAddr()[:4], po, i, e, logEmptyBins(emptyBins))) if emptyBins[e] < i { panic("incorrect peerpot") } ok = false return false } } prev = po + 1 return true }) if !ok { return false } return e == 0 } // knowNearestNeighbours tests if all known nearest neighbours given as arguments // are found in the addressbook // It is used in Healthy function for testing only func (k *Kademlia) knowNearestNeighbours(peers [][]byte) bool { pm := make(map[string]bool) k.eachAddr(nil, 255, func(p *BzzAddr, po int, nn bool) bool { if !nn { return false } pk := fmt.Sprintf("%x", p.Address()) pm[pk] = true return true }) for _, p := range peers { pk := fmt.Sprintf("%x", p) if !pm[pk] { log.Trace(fmt.Sprintf("%08x: known nearest neighbour %s not found", k.BaseAddr()[:4], pk[:8])) return false } } return true } // gotNearestNeighbours tests if all known nearest neighbours given as arguments // are connected peers // It is used in Healthy function for testing only func (k *Kademlia) gotNearestNeighbours(peers [][]byte) (got bool, n int, missing [][]byte) { pm := make(map[string]bool) k.eachConn(nil, 255, func(p *Peer, po int, nn bool) bool { if !nn { return false } pk := fmt.Sprintf("%x", p.Address()) pm[pk] = true return true }) var gots int var culprits [][]byte for _, p := range peers { pk := fmt.Sprintf("%x", p) if pm[pk] { gots++ } else { log.Trace(fmt.Sprintf("%08x: ExpNN: %s not found", k.BaseAddr()[:4], pk[:8])) culprits = append(culprits, p) } } return gots == len(peers), gots, culprits } // Health state of the Kademlia // used for testing only type Health struct { KnowNN bool // whether node knows all its nearest neighbours GotNN bool // whether node is connected to all its nearest neighbours CountNN int // amount of nearest neighbors connected to CulpritsNN [][]byte // which known NNs are missing Full bool // whether node has a peer in each kademlia bin (where there is such a peer) Hive string } // Healthy reports the health state of the kademlia connectivity // returns a Health struct // used for testing only func (k *Kademlia) Healthy(pp *PeerPot) *Health { k.lock.RLock() defer k.lock.RUnlock() gotnn, countnn, culpritsnn := k.gotNearestNeighbours(pp.NNSet) knownn := k.knowNearestNeighbours(pp.NNSet) full := k.full(pp.EmptyBins) log.Trace(fmt.Sprintf("%08x: healthy: knowNNs: %v, gotNNs: %v, full: %v\n", k.BaseAddr()[:4], knownn, gotnn, full)) return &Health{knownn, gotnn, countnn, culpritsnn, full, k.string()} } func logEmptyBins(ebs []int) string { var ebss []string for _, eb := range ebs { ebss = append(ebss, fmt.Sprintf("%d", eb)) } return strings.Join(ebss, ", ") }