// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package p2p import ( "container/heap" "crypto/rand" "errors" "fmt" "net" "time" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p/discover" "github.com/ethereum/go-ethereum/p2p/netutil" ) const ( // This is the amount of time spent waiting in between // redialing a certain node. dialHistoryExpiration = 30 * time.Second // Discovery lookups are throttled and can only run // once every few seconds. lookupInterval = 4 * time.Second // Endpoint resolution is throttled with bounded backoff. initialResolveDelay = 60 * time.Second maxResolveDelay = time.Hour ) // dialstate schedules dials and discovery lookups. // it get's a chance to compute new tasks on every iteration // of the main loop in Server.run. type dialstate struct { maxDynDials int ntab discoverTable netrestrict *netutil.Netlist lookupRunning bool dialing map[discover.NodeID]connFlag lookupBuf []*discover.Node // current discovery lookup results randomNodes []*discover.Node // filled from Table static map[discover.NodeID]*dialTask hist *dialHistory } type discoverTable interface { Self() *discover.Node Close() Resolve(target discover.NodeID) *discover.Node Lookup(target discover.NodeID) []*discover.Node ReadRandomNodes([]*discover.Node) int } // the dial history remembers recent dials. type dialHistory []pastDial // pastDial is an entry in the dial history. type pastDial struct { id discover.NodeID exp time.Time } type task interface { Do(*Server) } // A dialTask is generated for each node that is dialed. Its // fields cannot be accessed while the task is running. type dialTask struct { flags connFlag dest *discover.Node lastResolved time.Time resolveDelay time.Duration } // discoverTask runs discovery table operations. // Only one discoverTask is active at any time. // discoverTask.Do performs a random lookup. type discoverTask struct { results []*discover.Node } // A waitExpireTask is generated if there are no other tasks // to keep the loop in Server.run ticking. type waitExpireTask struct { time.Duration } func newDialState(static []*discover.Node, ntab discoverTable, maxdyn int, netrestrict *netutil.Netlist) *dialstate { s := &dialstate{ maxDynDials: maxdyn, ntab: ntab, netrestrict: netrestrict, static: make(map[discover.NodeID]*dialTask), dialing: make(map[discover.NodeID]connFlag), randomNodes: make([]*discover.Node, maxdyn/2), hist: new(dialHistory), } for _, n := range static { s.addStatic(n) } return s } func (s *dialstate) addStatic(n *discover.Node) { // This overwites the task instead of updating an existing // entry, giving users the opportunity to force a resolve operation. s.static[n.ID] = &dialTask{flags: staticDialedConn, dest: n} } func (s *dialstate) removeStatic(n *discover.Node) { // This removes a task so future attempts to connect will not be made. delete(s.static, n.ID) } func (s *dialstate) newTasks(nRunning int, peers map[discover.NodeID]*Peer, now time.Time) []task { var newtasks []task addDial := func(flag connFlag, n *discover.Node) bool { if err := s.checkDial(n, peers); err != nil { log.Trace("Skipping dial candidate", "id", n.ID, "addr", &net.TCPAddr{IP: n.IP, Port: int(n.TCP)}, "err", err) return false } s.dialing[n.ID] = flag newtasks = append(newtasks, &dialTask{flags: flag, dest: n}) return true } // Compute number of dynamic dials necessary at this point. needDynDials := s.maxDynDials for _, p := range peers { if p.rw.is(dynDialedConn) { needDynDials-- } } for _, flag := range s.dialing { if flag&dynDialedConn != 0 { needDynDials-- } } // Expire the dial history on every invocation. s.hist.expire(now) // Create dials for static nodes if they are not connected. for id, t := range s.static { err := s.checkDial(t.dest, peers) switch err { case errNotWhitelisted, errSelf: log.Warn("Removing static dial candidate", "id", t.dest.ID, "addr", &net.TCPAddr{IP: t.dest.IP, Port: int(t.dest.TCP)}, "err", err) delete(s.static, t.dest.ID) case nil: s.dialing[id] = t.flags newtasks = append(newtasks, t) } } // Use random nodes from the table for half of the necessary // dynamic dials. randomCandidates := needDynDials / 2 if randomCandidates > 0 { n := s.ntab.ReadRandomNodes(s.randomNodes) for i := 0; i < randomCandidates && i < n; i++ { if addDial(dynDialedConn, s.randomNodes[i]) { needDynDials-- } } } // Create dynamic dials from random lookup results, removing tried // items from the result buffer. i := 0 for ; i < len(s.lookupBuf) && needDynDials > 0; i++ { if addDial(dynDialedConn, s.lookupBuf[i]) { needDynDials-- } } s.lookupBuf = s.lookupBuf[:copy(s.lookupBuf, s.lookupBuf[i:])] // Launch a discovery lookup if more candidates are needed. if len(s.lookupBuf) < needDynDials && !s.lookupRunning { s.lookupRunning = true newtasks = append(newtasks, &discoverTask{}) } // Launch a timer to wait for the next node to expire if all // candidates have been tried and no task is currently active. // This should prevent cases where the dialer logic is not ticked // because there are no pending events. if nRunning == 0 && len(newtasks) == 0 && s.hist.Len() > 0 { t := &waitExpireTask{s.hist.min().exp.Sub(now)} newtasks = append(newtasks, t) } return newtasks } var ( errSelf = errors.New("is self") errAlreadyDialing = errors.New("already dialing") errAlreadyConnected = errors.New("already connected") errRecentlyDialed = errors.New("recently dialed") errNotWhitelisted = errors.New("not contained in netrestrict whitelist") ) func (s *dialstate) checkDial(n *discover.Node, peers map[discover.NodeID]*Peer) error { _, dialing := s.dialing[n.ID] switch { case dialing: return errAlreadyDialing case peers[n.ID] != nil: return errAlreadyConnected case s.ntab != nil && n.ID == s.ntab.Self().ID: return errSelf case s.netrestrict != nil && !s.netrestrict.Contains(n.IP): return errNotWhitelisted case s.hist.contains(n.ID): return errRecentlyDialed } return nil } func (s *dialstate) taskDone(t task, now time.Time) { switch t := t.(type) { case *dialTask: s.hist.add(t.dest.ID, now.Add(dialHistoryExpiration)) delete(s.dialing, t.dest.ID) case *discoverTask: s.lookupRunning = false s.lookupBuf = append(s.lookupBuf, t.results...) } } func (t *dialTask) Do(srv *Server) { if t.dest.Incomplete() { if !t.resolve(srv) { return } } success := t.dial(srv, t.dest) // Try resolving the ID of static nodes if dialing failed. if !success && t.flags&staticDialedConn != 0 { if t.resolve(srv) { t.dial(srv, t.dest) } } } // resolve attempts to find the current endpoint for the destination // using discovery. // // Resolve operations are throttled with backoff to avoid flooding the // discovery network with useless queries for nodes that don't exist. // The backoff delay resets when the node is found. func (t *dialTask) resolve(srv *Server) bool { if srv.ntab == nil { log.Debug("Can't resolve node", "id", t.dest.ID, "err", "discovery is disabled") return false } if t.resolveDelay == 0 { t.resolveDelay = initialResolveDelay } if time.Since(t.lastResolved) < t.resolveDelay { return false } resolved := srv.ntab.Resolve(t.dest.ID) t.lastResolved = time.Now() if resolved == nil { t.resolveDelay *= 2 if t.resolveDelay > maxResolveDelay { t.resolveDelay = maxResolveDelay } log.Debug("Resolving node failed", "id", t.dest.ID, "newdelay", t.resolveDelay) return false } // The node was found. t.resolveDelay = initialResolveDelay t.dest = resolved log.Debug("Resolved node", "id", t.dest.ID, "addr", &net.TCPAddr{IP: t.dest.IP, Port: int(t.dest.TCP)}) return true } // dial performs the actual connection attempt. func (t *dialTask) dial(srv *Server, dest *discover.Node) bool { addr := &net.TCPAddr{IP: dest.IP, Port: int(dest.TCP)} fd, err := srv.Dialer.Dial("tcp", addr.String()) if err != nil { log.Trace("Dial error", "task", t, "err", err) return false } mfd := newMeteredConn(fd, false) srv.setupConn(mfd, t.flags, dest) return true } func (t *dialTask) String() string { return fmt.Sprintf("%v %x %v:%d", t.flags, t.dest.ID[:8], t.dest.IP, t.dest.TCP) } func (t *discoverTask) Do(srv *Server) { // newTasks generates a lookup task whenever dynamic dials are // necessary. Lookups need to take some time, otherwise the // event loop spins too fast. next := srv.lastLookup.Add(lookupInterval) if now := time.Now(); now.Before(next) { time.Sleep(next.Sub(now)) } srv.lastLookup = time.Now() var target discover.NodeID rand.Read(target[:]) t.results = srv.ntab.Lookup(target) } func (t *discoverTask) String() string { s := "discovery lookup" if len(t.results) > 0 { s += fmt.Sprintf(" (%d results)", len(t.results)) } return s } func (t waitExpireTask) Do(*Server) { time.Sleep(t.Duration) } func (t waitExpireTask) String() string { return fmt.Sprintf("wait for dial hist expire (%v)", t.Duration) } // Use only these methods to access or modify dialHistory. func (h dialHistory) min() pastDial { return h[0] } func (h *dialHistory) add(id discover.NodeID, exp time.Time) { heap.Push(h, pastDial{id, exp}) } func (h dialHistory) contains(id discover.NodeID) bool { for _, v := range h { if v.id == id { return true } } return false } func (h *dialHistory) expire(now time.Time) { for h.Len() > 0 && h.min().exp.Before(now) { heap.Pop(h) } } // heap.Interface boilerplate func (h dialHistory) Len() int { return len(h) } func (h dialHistory) Less(i, j int) bool { return h[i].exp.Before(h[j].exp) } func (h dialHistory) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *dialHistory) Push(x interface{}) { *h = append(*h, x.(pastDial)) } func (h *dialHistory) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x }