package p2p import ( "bytes" // "crypto/ecdsa" // "crypto/elliptic" // "crypto/rand" "fmt" "net" "testing" "time" "github.com/ethereum/go-ethereum/crypto" "github.com/obscuren/ecies" ) func TestPublicKeyEncoding(t *testing.T) { prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader) pub0 := &prv0.PublicKey pub0s := crypto.FromECDSAPub(pub0) pub1, err := ImportPublicKey(pub0s) if err != nil { t.Errorf("%v", err) } eciesPub1 := ecies.ImportECDSAPublic(pub1) if eciesPub1 == nil { t.Errorf("invalid ecdsa public key") } pub1s, err := ExportPublicKey(pub1) if err != nil { t.Errorf("%v", err) } if len(pub1s) != 64 { t.Errorf("wrong length expect 64, got", len(pub1s)) } pub2, err := ImportPublicKey(pub1s) if err != nil { t.Errorf("%v", err) } pub2s, err := ExportPublicKey(pub2) if err != nil { t.Errorf("%v", err) } if !bytes.Equal(pub1s, pub2s) { t.Errorf("exports dont match") } pub2sEC := crypto.FromECDSAPub(pub2) if !bytes.Equal(pub0s, pub2sEC) { t.Errorf("exports dont match") } } func TestSharedSecret(t *testing.T) { prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader) pub0 := &prv0.PublicKey prv1, _ := crypto.GenerateKey() pub1 := &prv1.PublicKey ss0, err := ecies.ImportECDSA(prv0).GenerateShared(ecies.ImportECDSAPublic(pub1), sskLen, sskLen) if err != nil { return } ss1, err := ecies.ImportECDSA(prv1).GenerateShared(ecies.ImportECDSAPublic(pub0), sskLen, sskLen) if err != nil { return } t.Logf("Secret:\n%v %x\n%v %x", len(ss0), ss0, len(ss0), ss1) if !bytes.Equal(ss0, ss1) { t.Errorf("dont match :(") } } func TestCryptoHandshake(t *testing.T) { var err error var sessionToken []byte prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader) pub0 := &prv0.PublicKey prv1, _ := crypto.GenerateKey() pub1 := &prv1.PublicKey pub0s := crypto.FromECDSAPub(pub0) pub1s := crypto.FromECDSAPub(pub1) // simulate handshake by feeding output to input // initiator sends handshake 'auth' auth, initNonce, randomPrivKey, _, err := startHandshake(prv0, pub1s, sessionToken) if err != nil { t.Errorf("%v", err) } // receiver reads auth and responds with response response, remoteRecNonce, remoteInitNonce, remoteRandomPrivKey, remoteInitRandomPubKey, err := respondToHandshake(auth, prv1, pub0s, sessionToken) if err != nil { t.Errorf("%v", err) } // initiator reads receiver's response and the key exchange completes recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prv0) if err != nil { t.Errorf("%v", err) } // now both parties should have the same session parameters initSessionToken, initSecretRW, err := newSession(true, initNonce, recNonce, auth, randomPrivKey, remoteRandomPubKey) if err != nil { t.Errorf("%v", err) } recSessionToken, recSecretRW, err := newSession(false, remoteInitNonce, remoteRecNonce, auth, remoteRandomPrivKey, remoteInitRandomPubKey) if err != nil { t.Errorf("%v", err) } fmt.Printf("\nauth (%v) %x\n\nresp (%v) %x\n\n", len(auth), auth, len(response), response) // fmt.Printf("\nauth %x\ninitNonce %x\nresponse%x\nremoteRecNonce %x\nremoteInitNonce %x\nremoteRandomPubKey %x\nrecNonce %x\nremoteInitRandomPubKey %x\ninitSessionToken %x\n\n", auth, initNonce, response, remoteRecNonce, remoteInitNonce, remoteRandomPubKey, recNonce, remoteInitRandomPubKey, initSessionToken) if !bytes.Equal(initNonce, remoteInitNonce) { t.Errorf("nonces do not match") } if !bytes.Equal(recNonce, remoteRecNonce) { t.Errorf("receiver nonces do not match") } if !bytes.Equal(initSessionToken, recSessionToken) { t.Errorf("session tokens do not match") } // aesSecret, macSecret, egressMac, ingressMac if !bytes.Equal(initSecretRW.aesSecret, recSecretRW.aesSecret) { t.Errorf("AES secrets do not match") } if !bytes.Equal(initSecretRW.macSecret, recSecretRW.macSecret) { t.Errorf("macSecrets do not match") } if !bytes.Equal(initSecretRW.egressMac, recSecretRW.ingressMac) { t.Errorf("initiator's egressMac do not match receiver's ingressMac") } if !bytes.Equal(initSecretRW.ingressMac, recSecretRW.egressMac) { t.Errorf("initiator's inressMac do not match receiver's egressMac") } } func TestPeersHandshake(t *testing.T) { defer testlog(t).detach() var err error // var sessionToken []byte prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader) pub0 := &prv0.PublicKey prv1, _ := crypto.GenerateKey() pub1 := &prv1.PublicKey prv0s := crypto.FromECDSA(prv0) pub0s := crypto.FromECDSAPub(pub0) prv1s := crypto.FromECDSA(prv1) pub1s := crypto.FromECDSAPub(pub1) conn1, conn2 := net.Pipe() initiator := newPeer(conn1, []Protocol{}, nil) receiver := newPeer(conn2, []Protocol{}, nil) initiator.dialAddr = &peerAddr{IP: net.ParseIP("1.2.3.4"), Port: 2222, Pubkey: pub1s[1:]} initiator.privateKey = prv0s // this is cheating. identity of initiator/dialler not available to listener/receiver // its public key should be looked up based on IP address receiver.identity = &peerId{nil, pub0s} receiver.privateKey = prv1s initiator.pubkeyHook = func(*peerAddr) error { return nil } receiver.pubkeyHook = func(*peerAddr) error { return nil } initiator.cryptoHandshake = true receiver.cryptoHandshake = true errc0 := make(chan error, 1) errc1 := make(chan error, 1) go func() { _, err := initiator.loop() errc0 <- err }() go func() { _, err := receiver.loop() errc1 <- err }() ready := make(chan bool) go func() { <-initiator.cryptoReady <-receiver.cryptoReady close(ready) }() timeout := time.After(10 * time.Second) select { case <-ready: case <-timeout: t.Errorf("crypto handshake hanging for too long") case err = <-errc0: t.Errorf("peer 0 quit with error: %v", err) case err = <-errc1: t.Errorf("peer 1 quit with error: %v", err) } }