// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package secp256k1 import ( "bytes" "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "encoding/hex" "testing" "github.com/ethereum/go-ethereum/crypto/randentropy" ) const TestCount = 1000 func generateKeyPair() (pubkey, privkey []byte) { key, err := ecdsa.GenerateKey(S256(), rand.Reader) if err != nil { panic(err) } pubkey = elliptic.Marshal(S256(), key.X, key.Y) privkey = make([]byte, 32) readBits(privkey, key.D) return pubkey, privkey } func randSig() []byte { sig := randentropy.GetEntropyCSPRNG(65) sig[32] &= 0x70 sig[64] %= 4 return sig } // tests for malleability // highest bit of signature ECDSA s value must be 0, in the 33th byte func compactSigCheck(t *testing.T, sig []byte) { var b int = int(sig[32]) if b < 0 { t.Errorf("highest bit is negative: %d", b) } if ((b >> 7) == 1) != ((b & 0x80) == 0x80) { t.Errorf("highest bit: %d bit >> 7: %d", b, b>>7) } if (b & 0x80) == 0x80 { t.Errorf("highest bit: %d bit & 0x80: %d", b, b&0x80) } } func TestSignatureValidity(t *testing.T) { pubkey, seckey := generateKeyPair() msg := randentropy.GetEntropyCSPRNG(32) sig, err := Sign(msg, seckey) if err != nil { t.Errorf("signature error: %s", err) } compactSigCheck(t, sig) if len(pubkey) != 65 { t.Errorf("pubkey length mismatch: want: 65 have: %d", len(pubkey)) } if len(seckey) != 32 { t.Errorf("seckey length mismatch: want: 32 have: %d", len(seckey)) } if len(sig) != 65 { t.Errorf("sig length mismatch: want: 65 have: %d", len(sig)) } recid := int(sig[64]) if recid > 4 || recid < 0 { t.Errorf("sig recid mismatch: want: within 0 to 4 have: %d", int(sig[64])) } } func TestInvalidRecoveryID(t *testing.T) { _, seckey := generateKeyPair() msg := randentropy.GetEntropyCSPRNG(32) sig, _ := Sign(msg, seckey) sig[64] = 99 _, err := RecoverPubkey(msg, sig) if err != ErrInvalidRecoveryID { t.Fatalf("got %q, want %q", err, ErrInvalidRecoveryID) } } func TestSignAndRecover(t *testing.T) { pubkey1, seckey := generateKeyPair() msg := randentropy.GetEntropyCSPRNG(32) sig, err := Sign(msg, seckey) if err != nil { t.Errorf("signature error: %s", err) } pubkey2, err := RecoverPubkey(msg, sig) if err != nil { t.Errorf("recover error: %s", err) } if !bytes.Equal(pubkey1, pubkey2) { t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2) } } func TestRandomMessagesWithSameKey(t *testing.T) { pubkey, seckey := generateKeyPair() keys := func() ([]byte, []byte) { return pubkey, seckey } signAndRecoverWithRandomMessages(t, keys) } func TestRandomMessagesWithRandomKeys(t *testing.T) { keys := func() ([]byte, []byte) { pubkey, seckey := generateKeyPair() return pubkey, seckey } signAndRecoverWithRandomMessages(t, keys) } func signAndRecoverWithRandomMessages(t *testing.T, keys func() ([]byte, []byte)) { for i := 0; i < TestCount; i++ { pubkey1, seckey := keys() msg := randentropy.GetEntropyCSPRNG(32) sig, err := Sign(msg, seckey) if err != nil { t.Fatalf("signature error: %s", err) } if sig == nil { t.Fatal("signature is nil") } compactSigCheck(t, sig) // TODO: why do we flip around the recovery id? sig[len(sig)-1] %= 4 pubkey2, err := RecoverPubkey(msg, sig) if err != nil { t.Fatalf("recover error: %s", err) } if pubkey2 == nil { t.Error("pubkey is nil") } if !bytes.Equal(pubkey1, pubkey2) { t.Fatalf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2) } } } func TestRecoveryOfRandomSignature(t *testing.T) { pubkey1, _ := generateKeyPair() msg := randentropy.GetEntropyCSPRNG(32) for i := 0; i < TestCount; i++ { // recovery can sometimes work, but if so should always give wrong pubkey pubkey2, _ := RecoverPubkey(msg, randSig()) if bytes.Equal(pubkey1, pubkey2) { t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2) } } } func TestRandomMessagesAgainstValidSig(t *testing.T) { pubkey1, seckey := generateKeyPair() msg := randentropy.GetEntropyCSPRNG(32) sig, _ := Sign(msg, seckey) for i := 0; i < TestCount; i++ { msg = randentropy.GetEntropyCSPRNG(32) pubkey2, _ := RecoverPubkey(msg, sig) // recovery can sometimes work, but if so should always give wrong pubkey if bytes.Equal(pubkey1, pubkey2) { t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2) } } } // Useful when the underlying libsecp256k1 API changes to quickly // check only recover function without use of signature function func TestRecoverSanity(t *testing.T) { msg, _ := hex.DecodeString("ce0677bb30baa8cf067c88db9811f4333d131bf8bcf12fe7065d211dce971008") sig, _ := hex.DecodeString("90f27b8b488db00b00606796d2987f6a5f59ae62ea05effe84fef5b8b0e549984a691139ad57a3f0b906637673aa2f63d1f55cb1a69199d4009eea23ceaddc9301") pubkey1, _ := hex.DecodeString("04e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652") pubkey2, err := RecoverPubkey(msg, sig) if err != nil { t.Fatalf("recover error: %s", err) } if !bytes.Equal(pubkey1, pubkey2) { t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2) } } func BenchmarkSign(b *testing.B) { _, seckey := generateKeyPair() msg := randentropy.GetEntropyCSPRNG(32) b.ResetTimer() for i := 0; i < b.N; i++ { Sign(msg, seckey) } } func BenchmarkRecover(b *testing.B) { msg := randentropy.GetEntropyCSPRNG(32) _, seckey := generateKeyPair() sig, _ := Sign(msg, seckey) b.ResetTimer() for i := 0; i < b.N; i++ { RecoverPubkey(msg, sig) } }