package secp256k1 import ( crand "crypto/rand" "io" mrand "math/rand" "os" "strings" "time" ) /* Note: - On windows cryto/rand uses CrytoGenRandom which uses RC4 which is insecure - Android random number generator is known to be insecure. - Linux uses /dev/urandom , which is thought to be secure and uses entropy pool Therefore the output is salted. */ //finalizer from MurmerHash3 func mmh3f(key uint64) uint64 { key ^= key >> 33 key *= 0xff51afd7ed558ccd key ^= key >> 33 key *= 0xc4ceb9fe1a85ec53 key ^= key >> 33 return key } //knuth hash func knuth_hash(in []byte) uint64 { var acc uint64 = 3074457345618258791 for i := 0; i < len(in); i++ { acc += uint64(in[i]) acc *= 3074457345618258799 } return acc } var _rand *mrand.Rand func init() { var seed1 uint64 = mmh3f(uint64(time.Now().UnixNano())) var seed2 uint64 = knuth_hash([]byte(strings.Join(os.Environ(), ""))) var seed3 uint64 = mmh3f(uint64(os.Getpid())) _rand = mrand.New(mrand.NewSource(int64(seed1 ^ seed2 ^ seed3))) } func saltByte(n int) []byte { buff := make([]byte, n) for i := 0; i < len(buff); i++ { var v uint64 = uint64(_rand.Int63()) var b byte for j := 0; j < 8; j++ { b ^= byte(v & 0xff) v = v >> 8 } buff[i] = b } return buff } //On Unix-like systems, Reader reads from /dev/urandom. //On Windows systems, Reader uses the CryptGenRandom API. //use entropy pool etc and cryptographic random number generator //mix in time //mix in mix in cpu cycle count func RandByte(n int) []byte { buff := make([]byte, n) ret, err := io.ReadFull(crand.Reader, buff) if len(buff) != ret || err != nil { return nil } buff2 := saltByte(n) for i := 0; i < n; i++ { buff[i] ^= buff2[2] } return buff } /* On Unix-like systems, Reader reads from /dev/urandom. On Windows systems, Reader uses the CryptGenRandom API. */ func RandByteWeakCrypto(n int) []byte { buff := make([]byte, n) ret, err := io.ReadFull(crand.Reader, buff) if len(buff) != ret || err != nil { return nil } return buff }