// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "crypto/ecdsa" "math/big" "math/rand" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" ) func transaction(nonce uint64, gaslimit *big.Int, key *ecdsa.PrivateKey) *types.Transaction { tx, _ := types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, big.NewInt(1), nil).SignECDSA(types.HomesteadSigner{}, key) return tx } func setupTxPool() (*TxPool, *ecdsa.PrivateKey) { db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) key, _ := crypto.GenerateKey() newPool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) }) newPool.resetState() return newPool, key } func deriveSender(tx *types.Transaction) (common.Address, error) { return types.Sender(types.HomesteadSigner{}, tx) } func TestInvalidTransactions(t *testing.T) { pool, key := setupTxPool() tx := transaction(0, big.NewInt(100), key) if err := pool.Add(tx); err != ErrNonExistentAccount { t.Error("expected", ErrNonExistentAccount) } from, _ := deriveSender(tx) currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1)) if err := pool.Add(tx); err != ErrInsufficientFunds { t.Error("expected", ErrInsufficientFunds) } balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(tx.Gas(), tx.GasPrice())) currentState.AddBalance(from, balance) if err := pool.Add(tx); err != ErrIntrinsicGas { t.Error("expected", ErrIntrinsicGas, "got", err) } currentState.SetNonce(from, 1) currentState.AddBalance(from, big.NewInt(0xffffffffffffff)) tx = transaction(0, big.NewInt(100000), key) if err := pool.Add(tx); err != ErrNonce { t.Error("expected", ErrNonce) } tx = transaction(1, big.NewInt(100000), key) pool.minGasPrice = big.NewInt(1000) if err := pool.Add(tx); err != ErrCheap { t.Error("expected", ErrCheap, "got", err) } pool.SetLocal(tx) if err := pool.Add(tx); err != nil { t.Error("expected", nil, "got", err) } } func TestTransactionQueue(t *testing.T) { pool, key := setupTxPool() tx := transaction(0, big.NewInt(100), key) from, _ := deriveSender(tx) currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1000)) pool.enqueueTx(tx.Hash(), tx) pool.promoteExecutables() if len(pool.pending) != 1 { t.Error("expected valid txs to be 1 is", len(pool.pending)) } tx = transaction(1, big.NewInt(100), key) from, _ = deriveSender(tx) currentState.SetNonce(from, 2) pool.enqueueTx(tx.Hash(), tx) pool.promoteExecutables() if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok { t.Error("expected transaction to be in tx pool") } if len(pool.queue) > 0 { t.Error("expected transaction queue to be empty. is", len(pool.queue)) } pool, key = setupTxPool() tx1 := transaction(0, big.NewInt(100), key) tx2 := transaction(10, big.NewInt(100), key) tx3 := transaction(11, big.NewInt(100), key) from, _ = deriveSender(tx1) currentState, _ = pool.currentState() currentState.AddBalance(from, big.NewInt(1000)) pool.enqueueTx(tx1.Hash(), tx1) pool.enqueueTx(tx2.Hash(), tx2) pool.enqueueTx(tx3.Hash(), tx3) pool.promoteExecutables() if len(pool.pending) != 1 { t.Error("expected tx pool to be 1, got", len(pool.pending)) } if pool.queue[from].Len() != 2 { t.Error("expected len(queue) == 2, got", pool.queue[from].Len()) } } func TestRemoveTx(t *testing.T) { pool, key := setupTxPool() tx := transaction(0, big.NewInt(100), key) from, _ := deriveSender(tx) currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1)) pool.enqueueTx(tx.Hash(), tx) pool.promoteTx(from, tx.Hash(), tx) if len(pool.queue) != 1 { t.Error("expected queue to be 1, got", len(pool.queue)) } if len(pool.pending) != 1 { t.Error("expected pending to be 1, got", len(pool.pending)) } pool.Remove(tx.Hash()) if len(pool.queue) > 0 { t.Error("expected queue to be 0, got", len(pool.queue)) } if len(pool.pending) > 0 { t.Error("expected pending to be 0, got", len(pool.pending)) } } func TestNegativeValue(t *testing.T) { pool, key := setupTxPool() tx, _ := types.NewTransaction(0, common.Address{}, big.NewInt(-1), big.NewInt(100), big.NewInt(1), nil).SignECDSA(types.HomesteadSigner{}, key) from, _ := deriveSender(tx) currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1)) if err := pool.Add(tx); err != ErrNegativeValue { t.Error("expected", ErrNegativeValue, "got", err) } } func TestTransactionChainFork(t *testing.T) { pool, key := setupTxPool() addr := crypto.PubkeyToAddress(key.PublicKey) resetState := func() { db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) pool.currentState = func() (*state.StateDB, error) { return statedb, nil } currentState, _ := pool.currentState() currentState.AddBalance(addr, big.NewInt(100000000000000)) pool.resetState() } resetState() tx := transaction(0, big.NewInt(100000), key) if err := pool.add(tx); err != nil { t.Error("didn't expect error", err) } pool.RemoveBatch([]*types.Transaction{tx}) // reset the pool's internal state resetState() if err := pool.add(tx); err != nil { t.Error("didn't expect error", err) } } func TestTransactionDoubleNonce(t *testing.T) { pool, key := setupTxPool() addr := crypto.PubkeyToAddress(key.PublicKey) resetState := func() { db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) pool.currentState = func() (*state.StateDB, error) { return statedb, nil } currentState, _ := pool.currentState() currentState.AddBalance(addr, big.NewInt(100000000000000)) pool.resetState() } resetState() signer := types.HomesteadSigner{} tx1, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(100000), big.NewInt(1), nil).SignECDSA(signer, key) tx2, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(2), nil).SignECDSA(signer, key) tx3, _ := types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(1), nil).SignECDSA(signer, key) // Add the first two transaction, ensure higher priced stays only if err := pool.add(tx1); err != nil { t.Error("didn't expect error", err) } if err := pool.add(tx2); err != nil { t.Error("didn't expect error", err) } pool.promoteExecutables() if pool.pending[addr].Len() != 1 { t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) } if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) } // Add the thid transaction and ensure it's not saved (smaller price) if err := pool.add(tx3); err != nil { t.Error("didn't expect error", err) } pool.promoteExecutables() if pool.pending[addr].Len() != 1 { t.Error("expected 1 pending transactions, got", pool.pending[addr].Len()) } if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() { t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash()) } // Ensure the total transaction count is correct if len(pool.all) != 1 { t.Error("expected 1 total transactions, got", len(pool.all)) } } func TestMissingNonce(t *testing.T) { pool, key := setupTxPool() addr := crypto.PubkeyToAddress(key.PublicKey) currentState, _ := pool.currentState() currentState.AddBalance(addr, big.NewInt(100000000000000)) tx := transaction(1, big.NewInt(100000), key) if err := pool.add(tx); err != nil { t.Error("didn't expect error", err) } if len(pool.pending) != 0 { t.Error("expected 0 pending transactions, got", len(pool.pending)) } if pool.queue[addr].Len() != 1 { t.Error("expected 1 queued transaction, got", pool.queue[addr].Len()) } if len(pool.all) != 1 { t.Error("expected 1 total transactions, got", len(pool.all)) } } func TestNonceRecovery(t *testing.T) { const n = 10 pool, key := setupTxPool() addr := crypto.PubkeyToAddress(key.PublicKey) currentState, _ := pool.currentState() currentState.SetNonce(addr, n) currentState.AddBalance(addr, big.NewInt(100000000000000)) pool.resetState() tx := transaction(n, big.NewInt(100000), key) if err := pool.Add(tx); err != nil { t.Error(err) } // simulate some weird re-order of transactions and missing nonce(s) currentState.SetNonce(addr, n-1) pool.resetState() if fn := pool.pendingState.GetNonce(addr); fn != n+1 { t.Errorf("expected nonce to be %d, got %d", n+1, fn) } } func TestRemovedTxEvent(t *testing.T) { pool, key := setupTxPool() tx := transaction(0, big.NewInt(1000000), key) from, _ := deriveSender(tx) currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1000000000000)) pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}}) pool.eventMux.Post(ChainHeadEvent{nil}) if pool.pending[from].Len() != 1 { t.Error("expected 1 pending tx, got", pool.pending[from].Len()) } if len(pool.all) != 1 { t.Error("expected 1 total transactions, got", len(pool.all)) } } // Tests that if an account runs out of funds, any pending and queued transactions // are dropped. func TestTransactionDropping(t *testing.T) { // Create a test account and fund it pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000)) // Add some pending and some queued transactions var ( tx0 = transaction(0, big.NewInt(100), key) tx1 = transaction(1, big.NewInt(200), key) tx10 = transaction(10, big.NewInt(100), key) tx11 = transaction(11, big.NewInt(200), key) ) pool.promoteTx(account, tx0.Hash(), tx0) pool.promoteTx(account, tx1.Hash(), tx1) pool.enqueueTx(tx10.Hash(), tx10) pool.enqueueTx(tx11.Hash(), tx11) // Check that pre and post validations leave the pool as is if pool.pending[account].Len() != 2 { t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2) } if pool.queue[account].Len() != 2 { t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2) } if len(pool.all) != 4 { t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4) } pool.resetState() if pool.pending[account].Len() != 2 { t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2) } if pool.queue[account].Len() != 2 { t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2) } if len(pool.all) != 4 { t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4) } // Reduce the balance of the account, and check that invalidated transactions are dropped state.AddBalance(account, big.NewInt(-750)) pool.resetState() if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok { t.Errorf("funded pending transaction missing: %v", tx0) } if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok { t.Errorf("out-of-fund pending transaction present: %v", tx1) } if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok { t.Errorf("funded queued transaction missing: %v", tx10) } if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok { t.Errorf("out-of-fund queued transaction present: %v", tx11) } if len(pool.all) != 2 { t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2) } } // Tests that if a transaction is dropped from the current pending pool (e.g. out // of fund), all consecutive (still valid, but not executable) transactions are // postponed back into the future queue to prevent broadcasting them. func TestTransactionPostponing(t *testing.T) { // Create a test account and fund it pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000)) // Add a batch consecutive pending transactions for validation txns := []*types.Transaction{} for i := 0; i < 100; i++ { var tx *types.Transaction if i%2 == 0 { tx = transaction(uint64(i), big.NewInt(100), key) } else { tx = transaction(uint64(i), big.NewInt(500), key) } pool.promoteTx(account, tx.Hash(), tx) txns = append(txns, tx) } // Check that pre and post validations leave the pool as is if pool.pending[account].Len() != len(txns) { t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns)) } if len(pool.queue) != 0 { t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0) } if len(pool.all) != len(txns) { t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)) } pool.resetState() if pool.pending[account].Len() != len(txns) { t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns)) } if len(pool.queue) != 0 { t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0) } if len(pool.all) != len(txns) { t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)) } // Reduce the balance of the account, and check that transactions are reorganised state.AddBalance(account, big.NewInt(-750)) pool.resetState() if _, ok := pool.pending[account].txs.items[txns[0].Nonce()]; !ok { t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0]) } if _, ok := pool.queue[account].txs.items[txns[0].Nonce()]; ok { t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0]) } for i, tx := range txns[1:] { if i%2 == 1 { if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx) } if _, ok := pool.queue[account].txs.items[tx.Nonce()]; !ok { t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx) } } else { if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx) } if _, ok := pool.queue[account].txs.items[tx.Nonce()]; ok { t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx) } } } if len(pool.all) != len(txns)/2 { t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)/2) } } // Tests that if the transaction count belonging to a single account goes above // some threshold, the higher transactions are dropped to prevent DOS attacks. func TestTransactionQueueAccountLimiting(t *testing.T) { // Create a test account and fund it pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) // Keep queuing up transactions and make sure all above a limit are dropped for i := uint64(1); i <= maxQueuedPerAccount+5; i++ { if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } if len(pool.pending) != 0 { t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0) } if i <= maxQueuedPerAccount { if pool.queue[account].Len() != int(i) { t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i) } } else { if pool.queue[account].Len() != int(maxQueuedPerAccount) { t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), maxQueuedPerAccount) } } } if len(pool.all) != int(maxQueuedPerAccount) { t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount) } } // Tests that if the transaction count belonging to multiple accounts go above // some threshold, the higher transactions are dropped to prevent DOS attacks. func TestTransactionQueueGlobalLimiting(t *testing.T) { // Reduce the queue limits to shorten test time defer func(old uint64) { maxQueuedInTotal = old }(maxQueuedInTotal) maxQueuedInTotal = maxQueuedPerAccount * 3 // Create the pool to test the limit enforcement with db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) }) pool.resetState() // Create a number of test accounts and fund them state, _ := pool.currentState() keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) } // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := make(types.Transactions, 0, 3*maxQueuedInTotal) for len(txs) < cap(txs) { key := keys[rand.Intn(len(keys))] addr := crypto.PubkeyToAddress(key.PublicKey) txs = append(txs, transaction(nonces[addr]+1, big.NewInt(100000), key)) nonces[addr]++ } // Import the batch and verify that limits have been enforced pool.AddBatch(txs) queued := 0 for addr, list := range pool.queue { if list.Len() > int(maxQueuedPerAccount) { t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), maxQueuedPerAccount) } queued += list.Len() } if queued > int(maxQueuedInTotal) { t.Fatalf("total transactions overflow allowance: %d > %d", queued, maxQueuedInTotal) } } // Tests that if an account remains idle for a prolonged amount of time, any // non-executable transactions queued up are dropped to prevent wasting resources // on shuffling them around. func TestTransactionQueueTimeLimiting(t *testing.T) { // Reduce the queue limits to shorten test time defer func(old time.Duration) { maxQueuedLifetime = old }(maxQueuedLifetime) defer func(old time.Duration) { evictionInterval = old }(evictionInterval) maxQueuedLifetime = time.Second evictionInterval = time.Second // Create a test account and fund it pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) // Queue up a batch of transactions for i := uint64(1); i <= maxQueuedPerAccount; i++ { if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } } // Wait until at least two expiration cycles hit and make sure the transactions are gone time.Sleep(2 * evictionInterval) if len(pool.queue) > 0 { t.Fatalf("old transactions remained after eviction") } } // Tests that even if the transaction count belonging to a single account goes // above some threshold, as long as the transactions are executable, they are // accepted. func TestTransactionPendingLimiting(t *testing.T) { // Create a test account and fund it pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) // Keep queuing up transactions and make sure all above a limit are dropped for i := uint64(0); i < maxQueuedPerAccount+5; i++ { if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } if pool.pending[account].Len() != int(i)+1 { t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1) } if len(pool.queue) != 0 { t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0) } } if len(pool.all) != int(maxQueuedPerAccount+5) { t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount+5) } } // Tests that the transaction limits are enforced the same way irrelevant whether // the transactions are added one by one or in batches. func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) } func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) } func testTransactionLimitingEquivalency(t *testing.T, origin uint64) { // Add a batch of transactions to a pool one by one pool1, key1 := setupTxPool() account1, _ := deriveSender(transaction(0, big.NewInt(0), key1)) state1, _ := pool1.currentState() state1.AddBalance(account1, big.NewInt(1000000)) for i := uint64(0); i < maxQueuedPerAccount+5; i++ { if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } } // Add a batch of transactions to a pool in one big batch pool2, key2 := setupTxPool() account2, _ := deriveSender(transaction(0, big.NewInt(0), key2)) state2, _ := pool2.currentState() state2.AddBalance(account2, big.NewInt(1000000)) txns := []*types.Transaction{} for i := uint64(0); i < maxQueuedPerAccount+5; i++ { txns = append(txns, transaction(origin+i, big.NewInt(100000), key2)) } pool2.AddBatch(txns) // Ensure the batch optimization honors the same pool mechanics if len(pool1.pending) != len(pool2.pending) { t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending)) } if len(pool1.queue) != len(pool2.queue) { t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue)) } if len(pool1.all) != len(pool2.all) { t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all)) } } // Tests that if the transaction count belonging to multiple accounts go above // some hard threshold, the higher transactions are dropped to prevent DOS // attacks. func TestTransactionPendingGlobalLimiting(t *testing.T) { // Reduce the queue limits to shorten test time defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal) maxPendingTotal = minPendingPerAccount * 10 // Create the pool to test the limit enforcement with db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) }) pool.resetState() // Create a number of test accounts and fund them state, _ := pool.currentState() keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) } // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := types.Transactions{} for _, key := range keys { addr := crypto.PubkeyToAddress(key.PublicKey) for j := 0; j < int(maxPendingTotal)/len(keys)*2; j++ { txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key)) nonces[addr]++ } } // Import the batch and verify that limits have been enforced pool.AddBatch(txs) pending := 0 for _, list := range pool.pending { pending += list.Len() } if pending > int(maxPendingTotal) { t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, maxPendingTotal) } } // Tests that if the transaction count belonging to multiple accounts go above // some hard threshold, if they are under the minimum guaranteed slot count then // the transactions are still kept. func TestTransactionPendingMinimumAllowance(t *testing.T) { // Reduce the queue limits to shorten test time defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal) maxPendingTotal = 0 // Create the pool to test the limit enforcement with db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) }) pool.resetState() // Create a number of test accounts and fund them state, _ := pool.currentState() keys := make([]*ecdsa.PrivateKey, 5) for i := 0; i < len(keys); i++ { keys[i], _ = crypto.GenerateKey() state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000)) } // Generate and queue a batch of transactions nonces := make(map[common.Address]uint64) txs := types.Transactions{} for _, key := range keys { addr := crypto.PubkeyToAddress(key.PublicKey) for j := 0; j < int(minPendingPerAccount)*2; j++ { txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key)) nonces[addr]++ } } // Import the batch and verify that limits have been enforced pool.AddBatch(txs) for addr, list := range pool.pending { if list.Len() != int(minPendingPerAccount) { t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), minPendingPerAccount) } } } // Benchmarks the speed of validating the contents of the pending queue of the // transaction pool. func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) } func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) } func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) } func benchmarkPendingDemotion(b *testing.B, size int) { // Add a batch of transactions to a pool one by one pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) for i := 0; i < size; i++ { tx := transaction(uint64(i), big.NewInt(100000), key) pool.promoteTx(account, tx.Hash(), tx) } // Benchmark the speed of pool validation b.ResetTimer() for i := 0; i < b.N; i++ { pool.demoteUnexecutables() } } // Benchmarks the speed of scheduling the contents of the future queue of the // transaction pool. func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) } func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) } func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) } func benchmarkFuturePromotion(b *testing.B, size int) { // Add a batch of transactions to a pool one by one pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) for i := 0; i < size; i++ { tx := transaction(uint64(1+i), big.NewInt(100000), key) pool.enqueueTx(tx.Hash(), tx) } // Benchmark the speed of pool validation b.ResetTimer() for i := 0; i < b.N; i++ { pool.promoteExecutables() } } // Benchmarks the speed of iterative transaction insertion. func BenchmarkPoolInsert(b *testing.B) { // Generate a batch of transactions to enqueue into the pool pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) txs := make(types.Transactions, b.N) for i := 0; i < b.N; i++ { txs[i] = transaction(uint64(i), big.NewInt(100000), key) } // Benchmark importing the transactions into the queue b.ResetTimer() for _, tx := range txs { pool.Add(tx) } } // Benchmarks the speed of batched transaction insertion. func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) } func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) } func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) } func benchmarkPoolBatchInsert(b *testing.B, size int) { // Generate a batch of transactions to enqueue into the pool pool, key := setupTxPool() account, _ := deriveSender(transaction(0, big.NewInt(0), key)) state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) batches := make([]types.Transactions, b.N) for i := 0; i < b.N; i++ { batches[i] = make(types.Transactions, size) for j := 0; j < size; j++ { batches[i][j] = transaction(uint64(size*i+j), big.NewInt(100000), key) } } // Benchmark importing the transactions into the queue b.ResetTimer() for _, batch := range batches { pool.AddBatch(batch) } }