// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package ethash implements the ethash proof-of-work consensus engine. package ethash import ( "errors" "fmt" "math" "math/big" "math/rand" "os" "path/filepath" "reflect" "strconv" "sync" "time" "unsafe" mmap "github.com/edsrzf/mmap-go" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rpc" metrics "github.com/rcrowley/go-metrics" ) var ErrInvalidDumpMagic = errors.New("invalid dump magic") var ( // maxUint256 is a big integer representing 2^256-1 maxUint256 = new(big.Int).Exp(big.NewInt(2), big.NewInt(256), big.NewInt(0)) // sharedEthash is a full instance that can be shared between multiple users. sharedEthash = New("", 3, 0, "", 1, 0) // algorithmRevision is the data structure version used for file naming. algorithmRevision = 23 // dumpMagic is a dataset dump header to sanity check a data dump. dumpMagic = []uint32{0xbaddcafe, 0xfee1dead} ) // isLittleEndian returns whether the local system is running in little or big // endian byte order. func isLittleEndian() bool { n := uint32(0x01020304) return *(*byte)(unsafe.Pointer(&n)) == 0x04 } // memoryMap tries to memory map a file of uint32s for read only access. func memoryMap(path string) (*os.File, mmap.MMap, []uint32, error) { file, err := os.OpenFile(path, os.O_RDONLY, 0644) if err != nil { return nil, nil, nil, err } mem, buffer, err := memoryMapFile(file, false) if err != nil { file.Close() return nil, nil, nil, err } for i, magic := range dumpMagic { if buffer[i] != magic { mem.Unmap() file.Close() return nil, nil, nil, ErrInvalidDumpMagic } } return file, mem, buffer[len(dumpMagic):], err } // memoryMapFile tries to memory map an already opened file descriptor. func memoryMapFile(file *os.File, write bool) (mmap.MMap, []uint32, error) { // Try to memory map the file flag := mmap.RDONLY if write { flag = mmap.RDWR } mem, err := mmap.Map(file, flag, 0) if err != nil { return nil, nil, err } // Yay, we managed to memory map the file, here be dragons header := *(*reflect.SliceHeader)(unsafe.Pointer(&mem)) header.Len /= 4 header.Cap /= 4 return mem, *(*[]uint32)(unsafe.Pointer(&header)), nil } // memoryMapAndGenerate tries to memory map a temporary file of uint32s for write // access, fill it with the data from a generator and then move it into the final // path requested. func memoryMapAndGenerate(path string, size uint64, generator func(buffer []uint32)) (*os.File, mmap.MMap, []uint32, error) { // Ensure the data folder exists if err := os.MkdirAll(filepath.Dir(path), 0755); err != nil { return nil, nil, nil, err } // Create a huge temporary empty file to fill with data temp := path + "." + strconv.Itoa(rand.Int()) dump, err := os.Create(temp) if err != nil { return nil, nil, nil, err } if err = dump.Truncate(int64(len(dumpMagic))*4 + int64(size)); err != nil { return nil, nil, nil, err } // Memory map the file for writing and fill it with the generator mem, buffer, err := memoryMapFile(dump, true) if err != nil { dump.Close() return nil, nil, nil, err } copy(buffer, dumpMagic) data := buffer[len(dumpMagic):] generator(data) if err := mem.Unmap(); err != nil { return nil, nil, nil, err } if err := dump.Close(); err != nil { return nil, nil, nil, err } if err := os.Rename(temp, path); err != nil { return nil, nil, nil, err } return memoryMap(path) } // cache wraps an ethash cache with some metadata to allow easier concurrent use. type cache struct { epoch uint64 // Epoch for which this cache is relevant dump *os.File // File descriptor of the memory mapped cache mmap mmap.MMap // Memory map itself to unmap before releasing cache []uint32 // The actual cache data content (may be memory mapped) used time.Time // Timestamp of the last use for smarter eviction once sync.Once // Ensures the cache is generated only once lock sync.Mutex // Ensures thread safety for updating the usage time } // generate ensures that the cache content is generated before use. func (c *cache) generate(dir string, limit int, test bool) { c.once.Do(func() { // If we have a testing cache, generate and return if test { c.cache = make([]uint32, 1024/4) generateCache(c.cache, c.epoch, seedHash(c.epoch*epochLength+1)) return } // If we don't store anything on disk, generate and return size := cacheSize(c.epoch*epochLength + 1) seed := seedHash(c.epoch*epochLength + 1) if dir == "" { c.cache = make([]uint32, size/4) generateCache(c.cache, c.epoch, seed) return } // Disk storage is needed, this will get fancy var endian string if !isLittleEndian() { endian = ".be" } path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x%s", algorithmRevision, seed[:8], endian)) logger := log.New("epoch", c.epoch) // Try to load the file from disk and memory map it var err error c.dump, c.mmap, c.cache, err = memoryMap(path) if err == nil { logger.Debug("Loaded old ethash cache from disk") return } logger.Debug("Failed to load old ethash cache", "err", err) // No previous cache available, create a new cache file to fill c.dump, c.mmap, c.cache, err = memoryMapAndGenerate(path, size, func(buffer []uint32) { generateCache(buffer, c.epoch, seed) }) if err != nil { logger.Error("Failed to generate mapped ethash cache", "err", err) c.cache = make([]uint32, size/4) generateCache(c.cache, c.epoch, seed) } // Iterate over all previous instances and delete old ones for ep := int(c.epoch) - limit; ep >= 0; ep-- { seed := seedHash(uint64(ep)*epochLength + 1) path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x%s", algorithmRevision, seed[:8], endian)) os.Remove(path) } }) } // release closes any file handlers and memory maps open. func (c *cache) release() { if c.mmap != nil { c.mmap.Unmap() c.mmap = nil } if c.dump != nil { c.dump.Close() c.dump = nil } } // dataset wraps an ethash dataset with some metadata to allow easier concurrent use. type dataset struct { epoch uint64 // Epoch for which this cache is relevant dump *os.File // File descriptor of the memory mapped cache mmap mmap.MMap // Memory map itself to unmap before releasing dataset []uint32 // The actual cache data content used time.Time // Timestamp of the last use for smarter eviction once sync.Once // Ensures the cache is generated only once lock sync.Mutex // Ensures thread safety for updating the usage time } // generate ensures that the dataset content is generated before use. func (d *dataset) generate(dir string, limit int, test bool) { d.once.Do(func() { // If we have a testing dataset, generate and return if test { cache := make([]uint32, 1024/4) generateCache(cache, d.epoch, seedHash(d.epoch*epochLength+1)) d.dataset = make([]uint32, 32*1024/4) generateDataset(d.dataset, d.epoch, cache) return } // If we don't store anything on disk, generate and return csize := cacheSize(d.epoch*epochLength + 1) dsize := datasetSize(d.epoch*epochLength + 1) seed := seedHash(d.epoch*epochLength + 1) if dir == "" { cache := make([]uint32, csize/4) generateCache(cache, d.epoch, seed) d.dataset = make([]uint32, dsize/4) generateDataset(d.dataset, d.epoch, cache) } // Disk storage is needed, this will get fancy var endian string if !isLittleEndian() { endian = ".be" } path := filepath.Join(dir, fmt.Sprintf("full-R%d-%x%s", algorithmRevision, seed[:8], endian)) logger := log.New("epoch", d.epoch) // Try to load the file from disk and memory map it var err error d.dump, d.mmap, d.dataset, err = memoryMap(path) if err == nil { logger.Debug("Loaded old ethash dataset from disk") return } logger.Debug("Failed to load old ethash dataset", "err", err) // No previous dataset available, create a new dataset file to fill cache := make([]uint32, csize/4) generateCache(cache, d.epoch, seed) d.dump, d.mmap, d.dataset, err = memoryMapAndGenerate(path, dsize, func(buffer []uint32) { generateDataset(buffer, d.epoch, cache) }) if err != nil { logger.Error("Failed to generate mapped ethash dataset", "err", err) d.dataset = make([]uint32, dsize/2) generateDataset(d.dataset, d.epoch, cache) } // Iterate over all previous instances and delete old ones for ep := int(d.epoch) - limit; ep >= 0; ep-- { seed := seedHash(uint64(ep)*epochLength + 1) path := filepath.Join(dir, fmt.Sprintf("full-R%d-%x%s", algorithmRevision, seed[:8], endian)) os.Remove(path) } }) } // release closes any file handlers and memory maps open. func (d *dataset) release() { if d.mmap != nil { d.mmap.Unmap() d.mmap = nil } if d.dump != nil { d.dump.Close() d.dump = nil } } // MakeCache generates a new ethash cache and optionally stores it to disk. func MakeCache(block uint64, dir string) { c := cache{epoch: block/epochLength + 1} c.generate(dir, math.MaxInt32, false) c.release() } // MakeDataset generates a new ethash dataset and optionally stores it to disk. func MakeDataset(block uint64, dir string) { d := dataset{epoch: block/epochLength + 1} d.generate(dir, math.MaxInt32, false) d.release() } // Ethash is a consensus engine based on proot-of-work implementing the ethash // algorithm. type Ethash struct { cachedir string // Data directory to store the verification caches cachesinmem int // Number of caches to keep in memory cachesondisk int // Number of caches to keep on disk dagdir string // Data directory to store full mining datasets dagsinmem int // Number of mining datasets to keep in memory dagsondisk int // Number of mining datasets to keep on disk caches map[uint64]*cache // In memory caches to avoid regenerating too often fcache *cache // Pre-generated cache for the estimated future epoch datasets map[uint64]*dataset // In memory datasets to avoid regenerating too often fdataset *dataset // Pre-generated dataset for the estimated future epoch // Mining related fields rand *rand.Rand // Properly seeded random source for nonces threads int // Number of threads to mine on if mining update chan struct{} // Notification channel to update mining parameters hashrate metrics.Meter // Meter tracking the average hashrate // The fields below are hooks for testing tester bool // Flag whether to use a smaller test dataset shared *Ethash // Shared PoW verifier to avoid cache regeneration fakeMode bool // Flag whether to disable PoW checking fakeFull bool // Flag whether to disable all consensus rules fakeFail uint64 // Block number which fails PoW check even in fake mode fakeDelay time.Duration // Time delay to sleep for before returning from verify lock sync.Mutex // Ensures thread safety for the in-memory caches and mining fields } // New creates a full sized ethash PoW scheme. func New(cachedir string, cachesinmem, cachesondisk int, dagdir string, dagsinmem, dagsondisk int) *Ethash { if cachesinmem <= 0 { log.Warn("One ethash cache must alwast be in memory", "requested", cachesinmem) cachesinmem = 1 } if cachedir != "" && cachesondisk > 0 { log.Info("Disk storage enabled for ethash caches", "dir", cachedir, "count", cachesondisk) } if dagdir != "" && dagsondisk > 0 { log.Info("Disk storage enabled for ethash DAGs", "dir", dagdir, "count", dagsondisk) } return &Ethash{ cachedir: cachedir, cachesinmem: cachesinmem, cachesondisk: cachesondisk, dagdir: dagdir, dagsinmem: dagsinmem, dagsondisk: dagsondisk, caches: make(map[uint64]*cache), datasets: make(map[uint64]*dataset), update: make(chan struct{}), hashrate: metrics.NewMeter(), } } // NewTester creates a small sized ethash PoW scheme useful only for testing // purposes. func NewTester() *Ethash { return &Ethash{ cachesinmem: 1, caches: make(map[uint64]*cache), datasets: make(map[uint64]*dataset), tester: true, update: make(chan struct{}), hashrate: metrics.NewMeter(), } } // NewFaker creates a ethash consensus engine with a fake PoW scheme that accepts // all blocks' seal as valid, though they still have to conform to the Ethereum // consensus rules. func NewFaker() *Ethash { return &Ethash{fakeMode: true} } // NewFakeFailer creates a ethash consensus engine with a fake PoW scheme that // accepts all blocks as valid apart from the single one specified, though they // still have to conform to the Ethereum consensus rules. func NewFakeFailer(fail uint64) *Ethash { return &Ethash{fakeMode: true, fakeFail: fail} } // NewFakeDelayer creates a ethash consensus engine with a fake PoW scheme that // accepts all blocks as valid, but delays verifications by some time, though // they still have to conform to the Ethereum consensus rules. func NewFakeDelayer(delay time.Duration) *Ethash { return &Ethash{fakeMode: true, fakeDelay: delay} } // NewFullFaker creates a ethash consensus engine with a full fake scheme that // accepts all blocks as valid, without checking any consensus rules whatsoever. func NewFullFaker() *Ethash { return &Ethash{fakeMode: true, fakeFull: true} } // NewShared creates a full sized ethash PoW shared between all requesters running // in the same process. func NewShared() *Ethash { return &Ethash{shared: sharedEthash} } // cache tries to retrieve a verification cache for the specified block number // by first checking against a list of in-memory caches, then against caches // stored on disk, and finally generating one if none can be found. func (ethash *Ethash) cache(block uint64) []uint32 { epoch := block / epochLength // If we have a PoW for that epoch, use that ethash.lock.Lock() current, future := ethash.caches[epoch], (*cache)(nil) if current == nil { // No in-memory cache, evict the oldest if the cache limit was reached for len(ethash.caches) > 0 && len(ethash.caches) >= ethash.cachesinmem { var evict *cache for _, cache := range ethash.caches { if evict == nil || evict.used.After(cache.used) { evict = cache } } delete(ethash.caches, evict.epoch) evict.release() log.Trace("Evicted ethash cache", "epoch", evict.epoch, "used", evict.used) } // If we have the new cache pre-generated, use that, otherwise create a new one if ethash.fcache != nil && ethash.fcache.epoch == epoch { log.Trace("Using pre-generated cache", "epoch", epoch) current, ethash.fcache = ethash.fcache, nil } else { log.Trace("Requiring new ethash cache", "epoch", epoch) current = &cache{epoch: epoch} } ethash.caches[epoch] = current // If we just used up the future cache, or need a refresh, regenerate if ethash.fcache == nil || ethash.fcache.epoch <= epoch { if ethash.fcache != nil { ethash.fcache.release() } log.Trace("Requiring new future ethash cache", "epoch", epoch+1) future = &cache{epoch: epoch + 1} ethash.fcache = future } // New current cache, set its initial timestamp current.used = time.Now() } ethash.lock.Unlock() // Wait for generation finish, bump the timestamp and finalize the cache current.generate(ethash.cachedir, ethash.cachesondisk, ethash.tester) current.lock.Lock() current.used = time.Now() current.lock.Unlock() // If we exhausted the future cache, now's a good time to regenerate it if future != nil { go future.generate(ethash.cachedir, ethash.cachesondisk, ethash.tester) } return current.cache } // dataset tries to retrieve a mining dataset for the specified block number // by first checking against a list of in-memory datasets, then against DAGs // stored on disk, and finally generating one if none can be found. func (ethash *Ethash) dataset(block uint64) []uint32 { epoch := block / epochLength // If we have a PoW for that epoch, use that ethash.lock.Lock() current, future := ethash.datasets[epoch], (*dataset)(nil) if current == nil { // No in-memory dataset, evict the oldest if the dataset limit was reached for len(ethash.datasets) > 0 && len(ethash.datasets) >= ethash.dagsinmem { var evict *dataset for _, dataset := range ethash.datasets { if evict == nil || evict.used.After(dataset.used) { evict = dataset } } delete(ethash.datasets, evict.epoch) evict.release() log.Trace("Evicted ethash dataset", "epoch", evict.epoch, "used", evict.used) } // If we have the new cache pre-generated, use that, otherwise create a new one if ethash.fdataset != nil && ethash.fdataset.epoch == epoch { log.Trace("Using pre-generated dataset", "epoch", epoch) current = &dataset{epoch: ethash.fdataset.epoch} // Reload from disk ethash.fdataset = nil } else { log.Trace("Requiring new ethash dataset", "epoch", epoch) current = &dataset{epoch: epoch} } ethash.datasets[epoch] = current // If we just used up the future dataset, or need a refresh, regenerate if ethash.fdataset == nil || ethash.fdataset.epoch <= epoch { if ethash.fdataset != nil { ethash.fdataset.release() } log.Trace("Requiring new future ethash dataset", "epoch", epoch+1) future = &dataset{epoch: epoch + 1} ethash.fdataset = future } // New current dataset, set its initial timestamp current.used = time.Now() } ethash.lock.Unlock() // Wait for generation finish, bump the timestamp and finalize the cache current.generate(ethash.dagdir, ethash.dagsondisk, ethash.tester) current.lock.Lock() current.used = time.Now() current.lock.Unlock() // If we exhausted the future dataset, now's a good time to regenerate it if future != nil { go future.generate(ethash.dagdir, ethash.dagsondisk, ethash.tester) } return current.dataset } // Threads returns the number of mining threads currently enabled. This doesn't // necessarily mean that mining is running! func (ethash *Ethash) Threads() int { ethash.lock.Lock() defer ethash.lock.Unlock() return ethash.threads } // SetThreads updates the number of mining threads currently enabled. Calling // this method does not start mining, only sets the thread count. If zero is // specified, the miner will use all cores of the machine. Setting a thread // count below zero is allowed and will cause the miner to idle, without any // work being done. func (ethash *Ethash) SetThreads(threads int) { ethash.lock.Lock() defer ethash.lock.Unlock() // If we're running a shared PoW, set the thread count on that instead if ethash.shared != nil { ethash.shared.SetThreads(threads) return } // Update the threads and ping any running seal to pull in any changes ethash.threads = threads select { case ethash.update <- struct{}{}: default: } } // Hashrate implements PoW, returning the measured rate of the search invocations // per second over the last minute. func (ethash *Ethash) Hashrate() float64 { return ethash.hashrate.Rate1() } // APIs implements consensus.Engine, returning the user facing RPC APIs. Currently // that is empty. func (ethash *Ethash) APIs(chain consensus.ChainReader) []rpc.API { return nil } // SeedHash is the seed to use for generating a verification cache and the mining // dataset. func SeedHash(block uint64) []byte { return seedHash(block) }