// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package abi import ( "fmt" "reflect" "regexp" "strconv" "strings" ) // Type enumerator const ( IntTy byte = iota UintTy BoolTy StringTy SliceTy ArrayTy AddressTy FixedBytesTy BytesTy HashTy FixedPointTy FunctionTy ) // Type is the reflection of the supported argument type type Type struct { Elem *Type Kind reflect.Kind Type reflect.Type Size int T byte // Our own type checking stringKind string // holds the unparsed string for deriving signatures } var ( // typeRegex parses the abi sub types typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?") ) // NewType creates a new reflection type of abi type given in t. func NewType(t string) (typ Type, err error) { // check that array brackets are equal if they exist if strings.Count(t, "[") != strings.Count(t, "]") { return Type{}, fmt.Errorf("invalid arg type in abi") } typ.stringKind = t // if there are brackets, get ready to go into slice/array mode and // recursively create the type if strings.Count(t, "[") != 0 { i := strings.LastIndex(t, "[") // recursively embed the type embeddedType, err := NewType(t[:i]) if err != nil { return Type{}, err } // grab the last cell and create a type from there sliced := t[i:] // grab the slice size with regexp re := regexp.MustCompile("[0-9]+") intz := re.FindAllString(sliced, -1) if len(intz) == 0 { // is a slice typ.T = SliceTy typ.Kind = reflect.Slice typ.Elem = &embeddedType typ.Type = reflect.SliceOf(embeddedType.Type) } else if len(intz) == 1 { // is a array typ.T = ArrayTy typ.Kind = reflect.Array typ.Elem = &embeddedType typ.Size, err = strconv.Atoi(intz[0]) if err != nil { return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) } typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type) } else { return Type{}, fmt.Errorf("invalid formatting of array type") } return typ, err } // parse the type and size of the abi-type. matches := typeRegex.FindAllStringSubmatch(t, -1) if len(matches) == 0 { return Type{}, fmt.Errorf("invalid type '%v'", t) } parsedType := matches[0] // varSize is the size of the variable var varSize int if len(parsedType[3]) > 0 { var err error varSize, err = strconv.Atoi(parsedType[2]) if err != nil { return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) } } else { if parsedType[0] == "uint" || parsedType[0] == "int" { // this should fail because it means that there's something wrong with // the abi type (the compiler should always format it to the size...always) return Type{}, fmt.Errorf("unsupported arg type: %s", t) } } // varType is the parsed abi type switch varType := parsedType[1]; varType { case "int": typ.Kind, typ.Type = reflectIntKindAndType(false, varSize) typ.Size = varSize typ.T = IntTy case "uint": typ.Kind, typ.Type = reflectIntKindAndType(true, varSize) typ.Size = varSize typ.T = UintTy case "bool": typ.Kind = reflect.Bool typ.T = BoolTy typ.Type = reflect.TypeOf(bool(false)) case "address": typ.Kind = reflect.Array typ.Type = addressT typ.Size = 20 typ.T = AddressTy case "string": typ.Kind = reflect.String typ.Type = reflect.TypeOf("") typ.T = StringTy case "bytes": if varSize == 0 { typ.T = BytesTy typ.Kind = reflect.Slice typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0))) } else { typ.T = FixedBytesTy typ.Kind = reflect.Array typ.Size = varSize typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0))) } case "function": typ.Kind = reflect.Array typ.T = FunctionTy typ.Size = 24 typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0))) default: return Type{}, fmt.Errorf("unsupported arg type: %s", t) } return } // String implements Stringer func (t Type) String() (out string) { return t.stringKind } func (t Type) pack(v reflect.Value) ([]byte, error) { // dereference pointer first if it's a pointer v = indirect(v) if err := typeCheck(t, v); err != nil { return nil, err } switch t.T { case SliceTy, ArrayTy: var ret []byte if t.requiresLengthPrefix() { // append length ret = append(ret, packNum(reflect.ValueOf(v.Len()))...) } // calculate offset if any offset := 0 offsetReq := isDynamicType(*t.Elem) if offsetReq { offset = getDynamicTypeOffset(*t.Elem) * v.Len() } var tail []byte for i := 0; i < v.Len(); i++ { val, err := t.Elem.pack(v.Index(i)) if err != nil { return nil, err } if !offsetReq { ret = append(ret, val...) continue } ret = append(ret, packNum(reflect.ValueOf(offset))...) offset += len(val) tail = append(tail, val...) } return append(ret, tail...), nil default: return packElement(t, v), nil } } // requireLengthPrefix returns whether the type requires any sort of length // prefixing. func (t Type) requiresLengthPrefix() bool { return t.T == StringTy || t.T == BytesTy || t.T == SliceTy } // isDynamicType returns true if the type is dynamic. // StringTy, BytesTy, and SliceTy(irrespective of slice element type) are dynamic types // ArrayTy is considered dynamic if and only if the Array element is a dynamic type. // This function recursively checks the type for slice and array elements. func isDynamicType(t Type) bool { // dynamic types // array is also a dynamic type if the array type is dynamic return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem)) } // getDynamicTypeOffset returns the offset for the type. // See `isDynamicType` to know which types are considered dynamic. // If the type t is an array and element type is not a dynamic type, then we consider it a static type and // return 32 * size of array since length prefix is not required. // If t is a dynamic type or element type(for slices and arrays) is dynamic, then we simply return 32 as offset. func getDynamicTypeOffset(t Type) int { // if it is an array and there are no dynamic types // then the array is static type if t.T == ArrayTy && !isDynamicType(*t.Elem) { return 32 * t.Size } return 32 }