// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package abi import ( "encoding/json" "fmt" "reflect" "strings" ) // Argument holds the name of the argument and the corresponding type. // Types are used when packing and testing arguments. type Argument struct { Name string Type Type Indexed bool // indexed is only used by events } type Arguments []Argument // UnmarshalJSON implements json.Unmarshaler interface func (argument *Argument) UnmarshalJSON(data []byte) error { var extarg struct { Name string Type string Indexed bool } err := json.Unmarshal(data, &extarg) if err != nil { return fmt.Errorf("argument json err: %v", err) } argument.Type, err = NewType(extarg.Type) if err != nil { return err } argument.Name = extarg.Name argument.Indexed = extarg.Indexed return nil } // LengthNonIndexed returns the number of arguments when not counting 'indexed' ones. Only events // can ever have 'indexed' arguments, it should always be false on arguments for method input/output func (arguments Arguments) LengthNonIndexed() int { out := 0 for _, arg := range arguments { if !arg.Indexed { out++ } } return out } func (arguments Arguments) NonIndexed() Arguments{ var ret []Argument for _,arg := range arguments{ if !arg.Indexed{ ret = append(ret, arg) } } return ret } // isTuple returns true for non-atomic constructs, like (uint,uint) or uint[] func (arguments Arguments) isTuple() bool { return len(arguments) > 1 } // Unpack performs the operation hexdata -> Go format func (arguments Arguments) Unpack(v interface{}, data []byte) error { if arguments.isTuple() { return arguments.unpackTuple(v, data) } return arguments.unpackAtomic(v, data) } func (arguments Arguments) unpackTuple(v interface{}, output []byte) error { // make sure the passed value is arguments pointer valueOf := reflect.ValueOf(v) if reflect.Ptr != valueOf.Kind() { return fmt.Errorf("abi: Unpack(non-pointer %T)", v) } var ( value = valueOf.Elem() typ = value.Type() kind = value.Kind() ) if err := requireUnpackKind(value, typ, kind, arguments); err != nil { return err } // If the output interface is a struct, make sure names don't collide if kind == reflect.Struct { exists := make(map[string]bool) for _, arg := range arguments { field := capitalise(arg.Name) if field == "" { return fmt.Errorf("abi: purely underscored output cannot unpack to struct") } if exists[field] { return fmt.Errorf("abi: multiple outputs mapping to the same struct field '%s'", field) } exists[field] = true } } // `i` counts the nonindexed arguments. // `j` counts the number of complex types. // both `i` and `j` are used to to correctly compute `data` offset. j := 0 for i, arg := range arguments.NonIndexed() { marshalledValue, err := toGoType((i+j)*32, arg.Type, output) if err != nil { return err } if arg.Type.T == ArrayTy { // combined index ('i' + 'j') need to be adjusted only by size of array, thus // we need to decrement 'j' because 'i' was incremented j += arg.Type.Size - 1 } reflectValue := reflect.ValueOf(marshalledValue) switch kind { case reflect.Struct: name := capitalise(arg.Name) for j := 0; j < typ.NumField(); j++ { // TODO read tags: `abi:"fieldName"` if typ.Field(j).Name == name { if err := set(value.Field(j), reflectValue, arg); err != nil { return err } } } case reflect.Slice, reflect.Array: if value.Len() < i { return fmt.Errorf("abi: insufficient number of arguments for unpack, want %d, got %d", len(arguments), value.Len()) } v := value.Index(i) if err := requireAssignable(v, reflectValue); err != nil { return err } if err := set(v.Elem(), reflectValue, arg); err != nil { return err } default: return fmt.Errorf("abi:[2] cannot unmarshal tuple in to %v", typ) } } return nil } // unpackAtomic unpacks ( hexdata -> go ) a single value func (arguments Arguments) unpackAtomic(v interface{}, output []byte) error { // make sure the passed value is arguments pointer valueOf := reflect.ValueOf(v) if reflect.Ptr != valueOf.Kind() { return fmt.Errorf("abi: Unpack(non-pointer %T)", v) } arg := arguments[0] if arg.Indexed { return fmt.Errorf("abi: attempting to unpack indexed variable into element.") } value := valueOf.Elem() marshalledValue, err := toGoType(0, arg.Type, output) if err != nil { return err } return set(value, reflect.ValueOf(marshalledValue), arg) } // UnpackValues can be used to unpack ABI-encoded hexdata according to the ABI-specification, // without supplying a struct to unpack into. Instead, this method returns a list containing the // values. An atomic argument will be a list with one element. func (arguments Arguments) UnpackValues(data []byte) ([]interface{}, error){ retval := make([]interface{},0,arguments.LengthNonIndexed()) virtualArgs := 0 for index,arg:= range arguments.NonIndexed(){ marshalledValue, err := toGoType((index + virtualArgs) * 32, arg.Type, data) if arg.Type.T == ArrayTy { //If we have a static array, like [3]uint256, these are coded as // just like uint256,uint256,uint256. // This means that we need to add two 'virtual' arguments when // we count the index from now on virtualArgs += arg.Type.Size - 1 } if err != nil{ return nil, err } retval = append(retval, marshalledValue) } return retval, nil } // UnpackValues performs the operation Go format -> Hexdata // It is the semantic opposite of UnpackValues func (arguments Arguments) PackValues(args []interface{}) ([]byte, error) { return arguments.Pack(args...) } // Pack performs the operation Go format -> Hexdata func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) { // Make sure arguments match up and pack them abiArgs := arguments if len(args) != len(abiArgs) { return nil, fmt.Errorf("argument count mismatch: %d for %d", len(args), len(abiArgs)) } // variable input is the output appended at the end of packed // output. This is used for strings and bytes types input. var variableInput []byte // input offset is the bytes offset for packed output inputOffset := 0 for _, abiArg := range abiArgs { if abiArg.Type.T == ArrayTy { inputOffset += 32 * abiArg.Type.Size } else { inputOffset += 32 } } var ret []byte for i, a := range args { input := abiArgs[i] // pack the input packed, err := input.Type.pack(reflect.ValueOf(a)) if err != nil { return nil, err } // check for a slice type (string, bytes, slice) if input.Type.requiresLengthPrefix() { // calculate the offset offset := inputOffset + len(variableInput) // set the offset ret = append(ret, packNum(reflect.ValueOf(offset))...) // Append the packed output to the variable input. The variable input // will be appended at the end of the input. variableInput = append(variableInput, packed...) } else { // append the packed value to the input ret = append(ret, packed...) } } // append the variable input at the end of the packed input ret = append(ret, variableInput...) return ret, nil } // capitalise makes the first character of a string upper case, also removing any // prefixing underscores from the variable names. func capitalise(input string) string { for len(input) > 0 && input[0] == '_' { input = input[1:] } if len(input) == 0 { return "" } return strings.ToUpper(input[:1]) + input[1:] }