aboutsummaryrefslogtreecommitdiffstats
path: root/whisper/envelope.go
diff options
context:
space:
mode:
Diffstat (limited to 'whisper/envelope.go')
-rw-r--r--whisper/envelope.go123
1 files changed, 66 insertions, 57 deletions
diff --git a/whisper/envelope.go b/whisper/envelope.go
index 65dc89936..6ad48dd25 100644
--- a/whisper/envelope.go
+++ b/whisper/envelope.go
@@ -1,3 +1,6 @@
+// Contains the Whisper protocol Envelope element. For formal details please see
+// the specs at https://github.com/ethereum/wiki/wiki/Whisper-PoC-1-Protocol-Spec#envelopes.
+
package whisper
import (
@@ -12,10 +15,8 @@ import (
"github.com/ethereum/go-ethereum/rlp"
)
-const (
- DefaultPow = 50 * time.Millisecond
-)
-
+// Envelope represents a clear-text data packet to transmit through the Whisper
+// network. Its contents may or may not be encrypted and signed.
type Envelope struct {
Expiry uint32 // Whisper protocol specifies int32, really should be int64
TTL uint32 // ^^^^^^
@@ -26,33 +27,60 @@ type Envelope struct {
hash common.Hash
}
-func (self *Envelope) Hash() common.Hash {
- if (self.hash == common.Hash{}) {
- enc, _ := rlp.EncodeToBytes(self)
- self.hash = crypto.Sha3Hash(enc)
- }
- return self.hash
-}
-
-func NewEnvelope(ttl time.Duration, topics [][]byte, data *Message) *Envelope {
- exp := time.Now().Add(ttl)
+// NewEnvelope wraps a Whisper message with expiration and destination data
+// included into an envelope for network forwarding.
+func NewEnvelope(ttl time.Duration, topics [][]byte, msg *Message) *Envelope {
return &Envelope{
- Expiry: uint32(exp.Unix()),
+ Expiry: uint32(time.Now().Add(ttl).Unix()),
TTL: uint32(ttl.Seconds()),
Topics: topics,
- Data: data.bytes(),
+ Data: msg.bytes(),
Nonce: 0,
}
}
+// Seal closes the envelope by spending the requested amount of time as a proof
+// of work on hashing the data.
func (self *Envelope) Seal(pow time.Duration) {
- self.proveWork(pow)
+ d := make([]byte, 64)
+ copy(d[:32], self.rlpWithoutNonce())
+
+ finish, bestBit := time.Now().Add(pow).UnixNano(), 0
+ for nonce := uint32(0); time.Now().UnixNano() < finish; {
+ for i := 0; i < 1024; i++ {
+ binary.BigEndian.PutUint32(d[60:], nonce)
+
+ firstBit := common.FirstBitSet(common.BigD(crypto.Sha3(d)))
+ if firstBit > bestBit {
+ self.Nonce, bestBit = nonce, firstBit
+ }
+ nonce++
+ }
+ }
}
+// Valid checks whether the claimed proof of work was indeed executed.
+// TODO: Is this really useful? Isn't this always true?
+func (self *Envelope) valid() bool {
+ d := make([]byte, 64)
+ copy(d[:32], self.rlpWithoutNonce())
+ binary.BigEndian.PutUint32(d[60:], self.Nonce)
+
+ return common.FirstBitSet(common.BigD(crypto.Sha3(d))) > 0
+}
+
+// RlpWithoutNonce returns the RLP encoded envelope contents, except the nonce.
+func (self *Envelope) rlpWithoutNonce() []byte {
+ enc, _ := rlp.EncodeToBytes([]interface{}{self.Expiry, self.TTL, self.Topics, self.Data})
+ return enc
+}
+
+// Open extracts the message contained within a potentially encrypted envelope.
func (self *Envelope) Open(key *ecdsa.PrivateKey) (msg *Message, err error) {
+ // Split open the payload into a message construct
data := self.Data
- message := Message{
+ message := &Message{
Flags: data[0],
}
data = data[1:]
@@ -65,57 +93,38 @@ func (self *Envelope) Open(key *ecdsa.PrivateKey) (msg *Message, err error) {
}
message.Payload = data
- if key != nil {
- message.Payload, err = crypto.Decrypt(key, message.Payload)
- switch err {
- case nil: // OK
- case ecies.ErrInvalidPublicKey: // Payload isn't encrypted
- return &message, err
- default:
- return nil, fmt.Errorf("unable to open envelope. Decrypt failed: %v", err)
- }
+ // Short circuit if the encryption was requested
+ if key == nil {
+ return message, nil
}
- return &message, nil
-}
-
-func (self *Envelope) proveWork(dura time.Duration) {
- var bestBit int
- d := make([]byte, 64)
- enc, _ := rlp.EncodeToBytes(self.withoutNonce())
- copy(d[:32], enc)
-
- then := time.Now().Add(dura).UnixNano()
- for n := uint32(0); time.Now().UnixNano() < then; {
- for i := 0; i < 1024; i++ {
- binary.BigEndian.PutUint32(d[60:], n)
+ // Otherwise try to decrypt the message
+ message.Payload, err = crypto.Decrypt(key, message.Payload)
+ switch err {
+ case nil:
+ return message, nil
- fbs := common.FirstBitSet(common.BigD(crypto.Sha3(d)))
- if fbs > bestBit {
- bestBit = fbs
- self.Nonce = n
- }
+ case ecies.ErrInvalidPublicKey: // Payload isn't encrypted
+ return message, err
- n++
- }
+ default:
+ return nil, fmt.Errorf("unable to open envelope, decrypt failed: %v", err)
}
}
-func (self *Envelope) valid() bool {
- d := make([]byte, 64)
- enc, _ := rlp.EncodeToBytes(self.withoutNonce())
- copy(d[:32], enc)
- binary.BigEndian.PutUint32(d[60:], self.Nonce)
- return common.FirstBitSet(common.BigD(crypto.Sha3(d))) > 0
-}
-
-func (self *Envelope) withoutNonce() interface{} {
- return []interface{}{self.Expiry, self.TTL, self.Topics, self.Data}
+// Hash returns the SHA3 hash of the envelope, calculating it if not yet done.
+func (self *Envelope) Hash() common.Hash {
+ if (self.hash == common.Hash{}) {
+ enc, _ := rlp.EncodeToBytes(self)
+ self.hash = crypto.Sha3Hash(enc)
+ }
+ return self.hash
}
// rlpenv is an Envelope but is not an rlp.Decoder.
// It is used for decoding because we need to
type rlpenv Envelope
+// DecodeRLP decodes an Envelope from an RLP data stream.
func (self *Envelope) DecodeRLP(s *rlp.Stream) error {
raw, err := s.Raw()
if err != nil {