aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/byzantine-lab/mcl/src/xbyak/xbyak.h
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/byzantine-lab/mcl/src/xbyak/xbyak.h')
-rw-r--r--vendor/github.com/byzantine-lab/mcl/src/xbyak/xbyak.h2611
1 files changed, 2611 insertions, 0 deletions
diff --git a/vendor/github.com/byzantine-lab/mcl/src/xbyak/xbyak.h b/vendor/github.com/byzantine-lab/mcl/src/xbyak/xbyak.h
new file mode 100644
index 000000000..bcfeb34bf
--- /dev/null
+++ b/vendor/github.com/byzantine-lab/mcl/src/xbyak/xbyak.h
@@ -0,0 +1,2611 @@
+#pragma once
+#ifndef XBYAK_XBYAK_H_
+#define XBYAK_XBYAK_H_
+/*!
+ @file xbyak.h
+ @brief Xbyak ; JIT assembler for x86(IA32)/x64 by C++
+ @author herumi
+ @url https://github.com/herumi/xbyak
+ @note modified new BSD license
+ http://opensource.org/licenses/BSD-3-Clause
+*/
+#ifndef XBYAK_NO_OP_NAMES
+ #if not +0 // trick to detect whether 'not' is operator or not
+ #error "use -fno-operator-names option if you want to use and(), or(), xor(), not() as function names, Or define XBYAK_NO_OP_NAMES and use and_(), or_(), xor_(), not_()."
+ #endif
+#endif
+
+#include <stdio.h> // for debug print
+#include <assert.h>
+#include <list>
+#include <string>
+#include <algorithm>
+#ifndef NDEBUG
+#include <iostream>
+#endif
+
+// #define XBYAK_DISABLE_AVX512
+
+//#define XBYAK_USE_MMAP_ALLOCATOR
+#if !defined(__GNUC__) || defined(__MINGW32__)
+ #undef XBYAK_USE_MMAP_ALLOCATOR
+#endif
+
+#ifdef __GNUC__
+ #define XBYAK_GNUC_PREREQ(major, minor) ((__GNUC__) * 100 + (__GNUC_MINOR__) >= (major) * 100 + (minor))
+#else
+ #define XBYAK_GNUC_PREREQ(major, minor) 0
+#endif
+
+// This covers -std=(gnu|c)++(0x|11|1y), -stdlib=libc++, and modern Microsoft.
+#if ((defined(_MSC_VER) && (_MSC_VER >= 1600)) || defined(_LIBCPP_VERSION) ||\
+ ((__cplusplus >= 201103) || defined(__GXX_EXPERIMENTAL_CXX0X__)))
+ #include <unordered_set>
+ #define XBYAK_STD_UNORDERED_SET std::unordered_set
+ #include <unordered_map>
+ #define XBYAK_STD_UNORDERED_MAP std::unordered_map
+ #define XBYAK_STD_UNORDERED_MULTIMAP std::unordered_multimap
+
+/*
+ Clang/llvm-gcc and ICC-EDG in 'GCC-mode' always claim to be GCC 4.2, using
+ libstdcxx 20070719 (from GCC 4.2.1, the last GPL 2 version).
+*/
+#elif XBYAK_GNUC_PREREQ(4, 5) || (XBYAK_GNUC_PREREQ(4, 2) && __GLIBCXX__ >= 20070719) || defined(__INTEL_COMPILER) || defined(__llvm__)
+ #include <tr1/unordered_set>
+ #define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set
+ #include <tr1/unordered_map>
+ #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map
+ #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap
+
+#elif defined(_MSC_VER) && (_MSC_VER >= 1500) && (_MSC_VER < 1600)
+ #include <unordered_set>
+ #define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set
+ #include <unordered_map>
+ #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map
+ #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap
+
+#else
+ #include <set>
+ #define XBYAK_STD_UNORDERED_SET std::set
+ #include <map>
+ #define XBYAK_STD_UNORDERED_MAP std::map
+ #define XBYAK_STD_UNORDERED_MULTIMAP std::multimap
+#endif
+#ifdef _WIN32
+ #include <winsock2.h>
+ #include <windows.h>
+ #include <malloc.h>
+#elif defined(__GNUC__)
+ #include <unistd.h>
+ #include <sys/mman.h>
+ #include <stdlib.h>
+#endif
+#if !defined(_MSC_VER) || (_MSC_VER >= 1600)
+ #include <stdint.h>
+#endif
+
+#if defined(_WIN64) || defined(__MINGW64__) || (defined(__CYGWIN__) && defined(__x86_64__))
+ #define XBYAK64_WIN
+#elif defined(__x86_64__)
+ #define XBYAK64_GCC
+#endif
+#if !defined(XBYAK64) && !defined(XBYAK32)
+ #if defined(XBYAK64_GCC) || defined(XBYAK64_WIN)
+ #define XBYAK64
+ #else
+ #define XBYAK32
+ #endif
+#endif
+
+#if (__cplusplus >= 201103) || (_MSC_VER >= 1800)
+ #define XBYAK_VARIADIC_TEMPLATE
+#endif
+
+#ifdef _MSC_VER
+ #pragma warning(push)
+ #pragma warning(disable : 4514) /* remove inline function */
+ #pragma warning(disable : 4786) /* identifier is too long */
+ #pragma warning(disable : 4503) /* name is too long */
+ #pragma warning(disable : 4127) /* constant expresison */
+#endif
+
+namespace Xbyak {
+
+enum {
+ DEFAULT_MAX_CODE_SIZE = 4096,
+ VERSION = 0x5751 /* 0xABCD = A.BC(D) */
+};
+
+#ifndef MIE_INTEGER_TYPE_DEFINED
+#define MIE_INTEGER_TYPE_DEFINED
+#ifdef _MSC_VER
+ typedef unsigned __int64 uint64;
+ typedef __int64 sint64;
+#else
+ typedef uint64_t uint64;
+ typedef int64_t sint64;
+#endif
+typedef unsigned int uint32;
+typedef unsigned short uint16;
+typedef unsigned char uint8;
+#endif
+
+#ifndef MIE_ALIGN
+ #ifdef _MSC_VER
+ #define MIE_ALIGN(x) __declspec(align(x))
+ #else
+ #define MIE_ALIGN(x) __attribute__((aligned(x)))
+ #endif
+#endif
+#ifndef MIE_PACK // for shufps
+ #define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w))
+#endif
+
+enum {
+ ERR_NONE = 0,
+ ERR_BAD_ADDRESSING,
+ ERR_CODE_IS_TOO_BIG,
+ ERR_BAD_SCALE,
+ ERR_ESP_CANT_BE_INDEX,
+ ERR_BAD_COMBINATION,
+ ERR_BAD_SIZE_OF_REGISTER,
+ ERR_IMM_IS_TOO_BIG,
+ ERR_BAD_ALIGN,
+ ERR_LABEL_IS_REDEFINED,
+ ERR_LABEL_IS_TOO_FAR,
+ ERR_LABEL_IS_NOT_FOUND,
+ ERR_CODE_ISNOT_COPYABLE,
+ ERR_BAD_PARAMETER,
+ ERR_CANT_PROTECT,
+ ERR_CANT_USE_64BIT_DISP,
+ ERR_OFFSET_IS_TOO_BIG,
+ ERR_MEM_SIZE_IS_NOT_SPECIFIED,
+ ERR_BAD_MEM_SIZE,
+ ERR_BAD_ST_COMBINATION,
+ ERR_OVER_LOCAL_LABEL, // not used
+ ERR_UNDER_LOCAL_LABEL,
+ ERR_CANT_ALLOC,
+ ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW,
+ ERR_BAD_PROTECT_MODE,
+ ERR_BAD_PNUM,
+ ERR_BAD_TNUM,
+ ERR_BAD_VSIB_ADDRESSING,
+ ERR_CANT_CONVERT,
+ ERR_LABEL_ISNOT_SET_BY_L,
+ ERR_LABEL_IS_ALREADY_SET_BY_L,
+ ERR_BAD_LABEL_STR,
+ ERR_MUNMAP,
+ ERR_OPMASK_IS_ALREADY_SET,
+ ERR_ROUNDING_IS_ALREADY_SET,
+ ERR_K0_IS_INVALID,
+ ERR_EVEX_IS_INVALID,
+ ERR_SAE_IS_INVALID,
+ ERR_ER_IS_INVALID,
+ ERR_INVALID_BROADCAST,
+ ERR_INVALID_OPMASK_WITH_MEMORY,
+ ERR_INVALID_ZERO,
+ ERR_INVALID_RIP_IN_AUTO_GROW,
+ ERR_INVALID_MIB_ADDRESS,
+ ERR_INTERNAL
+};
+
+class Error : public std::exception {
+ int err_;
+public:
+ explicit Error(int err) : err_(err)
+ {
+ if (err_ < 0 || err_ > ERR_INTERNAL) {
+ fprintf(stderr, "bad err=%d in Xbyak::Error\n", err_);
+ exit(1);
+ }
+ }
+ operator int() const { return err_; }
+ const char *what() const throw()
+ {
+ static const char *errTbl[] = {
+ "none",
+ "bad addressing",
+ "code is too big",
+ "bad scale",
+ "esp can't be index",
+ "bad combination",
+ "bad size of register",
+ "imm is too big",
+ "bad align",
+ "label is redefined",
+ "label is too far",
+ "label is not found",
+ "code is not copyable",
+ "bad parameter",
+ "can't protect",
+ "can't use 64bit disp(use (void*))",
+ "offset is too big",
+ "MEM size is not specified",
+ "bad mem size",
+ "bad st combination",
+ "over local label",
+ "under local label",
+ "can't alloc",
+ "T_SHORT is not supported in AutoGrow",
+ "bad protect mode",
+ "bad pNum",
+ "bad tNum",
+ "bad vsib addressing",
+ "can't convert",
+ "label is not set by L()",
+ "label is already set by L()",
+ "bad label string",
+ "err munmap",
+ "opmask is already set",
+ "rounding is already set",
+ "k0 is invalid",
+ "evex is invalid",
+ "sae(suppress all exceptions) is invalid",
+ "er(embedded rounding) is invalid",
+ "invalid broadcast",
+ "invalid opmask with memory",
+ "invalid zero",
+ "invalid rip in AutoGrow",
+ "invalid mib address",
+ "internal error",
+ };
+ assert((size_t)err_ < sizeof(errTbl) / sizeof(*errTbl));
+ return errTbl[err_];
+ }
+};
+
+inline const char *ConvertErrorToString(const Error& err)
+{
+ return err.what();
+}
+
+inline void *AlignedMalloc(size_t size, size_t alignment)
+{
+#ifdef __MINGW32__
+ return __mingw_aligned_malloc(size, alignment);
+#elif defined(_WIN32)
+ return _aligned_malloc(size, alignment);
+#else
+ void *p;
+ int ret = posix_memalign(&p, alignment, size);
+ return (ret == 0) ? p : 0;
+#endif
+}
+
+inline void AlignedFree(void *p)
+{
+#ifdef __MINGW32__
+ __mingw_aligned_free(p);
+#elif defined(_MSC_VER)
+ _aligned_free(p);
+#else
+ free(p);
+#endif
+}
+
+template<class To, class From>
+inline const To CastTo(From p) throw()
+{
+ return (const To)(size_t)(p);
+}
+namespace inner {
+
+static const size_t ALIGN_PAGE_SIZE = 4096;
+
+inline bool IsInDisp8(uint32 x) { return 0xFFFFFF80 <= x || x <= 0x7F; }
+inline bool IsInInt32(uint64 x) { return ~uint64(0x7fffffffu) <= x || x <= 0x7FFFFFFFU; }
+
+inline uint32 VerifyInInt32(uint64 x)
+{
+#ifdef XBYAK64
+ if (!IsInInt32(x)) throw Error(ERR_OFFSET_IS_TOO_BIG);
+#endif
+ return static_cast<uint32>(x);
+}
+
+enum LabelMode {
+ LasIs, // as is
+ Labs, // absolute
+ LaddTop // (addr + top) for mov(reg, label) with AutoGrow
+};
+
+} // inner
+
+/*
+ custom allocator
+*/
+struct Allocator {
+ virtual uint8 *alloc(size_t size) { return reinterpret_cast<uint8*>(AlignedMalloc(size, inner::ALIGN_PAGE_SIZE)); }
+ virtual void free(uint8 *p) { AlignedFree(p); }
+ virtual ~Allocator() {}
+ /* override to return false if you call protect() manually */
+ virtual bool useProtect() const { return true; }
+};
+
+#ifdef XBYAK_USE_MMAP_ALLOCATOR
+class MmapAllocator : Allocator {
+ typedef XBYAK_STD_UNORDERED_MAP<uintptr_t, size_t> SizeList;
+ SizeList sizeList_;
+public:
+ uint8 *alloc(size_t size)
+ {
+ const size_t alignedSizeM1 = inner::ALIGN_PAGE_SIZE - 1;
+ size = (size + alignedSizeM1) & ~alignedSizeM1;
+#ifdef MAP_ANONYMOUS
+ const int mode = MAP_PRIVATE | MAP_ANONYMOUS;
+#elif defined(MAP_ANON)
+ const int mode = MAP_PRIVATE | MAP_ANON;
+#else
+ #error "not supported"
+#endif
+ void *p = mmap(NULL, size, PROT_READ | PROT_WRITE, mode, -1, 0);
+ if (p == MAP_FAILED) throw Error(ERR_CANT_ALLOC);
+ assert(p);
+ sizeList_[(uintptr_t)p] = size;
+ return (uint8*)p;
+ }
+ void free(uint8 *p)
+ {
+ if (p == 0) return;
+ SizeList::iterator i = sizeList_.find((uintptr_t)p);
+ if (i == sizeList_.end()) throw Error(ERR_BAD_PARAMETER);
+ if (munmap((void*)i->first, i->second) < 0) throw Error(ERR_MUNMAP);
+ sizeList_.erase(i);
+ }
+};
+#endif
+
+class Address;
+class Reg;
+
+class Operand {
+ static const uint8 EXT8BIT = 0x20;
+ unsigned int idx_:6; // 0..31 + EXT8BIT = 1 if spl/bpl/sil/dil
+ unsigned int kind_:9;
+ unsigned int bit_:10;
+protected:
+ unsigned int zero_:1;
+ unsigned int mask_:3;
+ unsigned int rounding_:3;
+ void setIdx(int idx) { idx_ = idx; }
+public:
+ enum Kind {
+ NONE = 0,
+ MEM = 1 << 0,
+ REG = 1 << 1,
+ MMX = 1 << 2,
+ FPU = 1 << 3,
+ XMM = 1 << 4,
+ YMM = 1 << 5,
+ ZMM = 1 << 6,
+ OPMASK = 1 << 7,
+ BNDREG = 1 << 8
+ };
+ enum Code {
+#ifdef XBYAK64
+ RAX = 0, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15,
+ R8D = 8, R9D, R10D, R11D, R12D, R13D, R14D, R15D,
+ R8W = 8, R9W, R10W, R11W, R12W, R13W, R14W, R15W,
+ R8B = 8, R9B, R10B, R11B, R12B, R13B, R14B, R15B,
+ SPL = 4, BPL, SIL, DIL,
+#endif
+ EAX = 0, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
+ AX = 0, CX, DX, BX, SP, BP, SI, DI,
+ AL = 0, CL, DL, BL, AH, CH, DH, BH
+ };
+ Operand() : idx_(0), kind_(0), bit_(0), zero_(0), mask_(0), rounding_(0) { }
+ Operand(int idx, Kind kind, int bit, bool ext8bit = 0)
+ : idx_(static_cast<uint8>(idx | (ext8bit ? EXT8BIT : 0)))
+ , kind_(kind)
+ , bit_(bit)
+ , zero_(0), mask_(0), rounding_(0)
+ {
+ assert((bit_ & (bit_ - 1)) == 0); // bit must be power of two
+ }
+ Kind getKind() const { return static_cast<Kind>(kind_); }
+ int getIdx() const { return idx_ & (EXT8BIT - 1); }
+ bool isNone() const { return kind_ == 0; }
+ bool isMMX() const { return is(MMX); }
+ bool isXMM() const { return is(XMM); }
+ bool isYMM() const { return is(YMM); }
+ bool isZMM() const { return is(ZMM); }
+ bool isXMEM() const { return is(XMM | MEM); }
+ bool isYMEM() const { return is(YMM | MEM); }
+ bool isZMEM() const { return is(ZMM | MEM); }
+ bool isOPMASK() const { return is(OPMASK); }
+ bool isBNDREG() const { return is(BNDREG); }
+ bool isREG(int bit = 0) const { return is(REG, bit); }
+ bool isMEM(int bit = 0) const { return is(MEM, bit); }
+ bool isFPU() const { return is(FPU); }
+ bool isExt8bit() const { return (idx_ & EXT8BIT) != 0; }
+ bool isExtIdx() const { return (getIdx() & 8) != 0; }
+ bool isExtIdx2() const { return (getIdx() & 16) != 0; }
+ bool hasEvex() const { return isZMM() || isExtIdx2() || getOpmaskIdx() || getRounding(); }
+ bool hasRex() const { return isExt8bit() || isREG(64) || isExtIdx(); }
+ bool hasZero() const { return zero_; }
+ int getOpmaskIdx() const { return mask_; }
+ int getRounding() const { return rounding_; }
+ void setKind(Kind kind)
+ {
+ if ((kind & (XMM|YMM|ZMM)) == 0) return;
+ kind_ = kind;
+ bit_ = kind == XMM ? 128 : kind == YMM ? 256 : 512;
+ }
+ void setBit(int bit) { bit_ = bit; }
+ void setOpmaskIdx(int idx, bool ignore_idx0 = false)
+ {
+ if (!ignore_idx0 && idx == 0) throw Error(ERR_K0_IS_INVALID);
+ if (mask_) throw Error(ERR_OPMASK_IS_ALREADY_SET);
+ mask_ = idx;
+ }
+ void setRounding(int idx)
+ {
+ if (rounding_) throw Error(ERR_ROUNDING_IS_ALREADY_SET);
+ rounding_ = idx;
+ }
+ void setZero() { zero_ = true; }
+ // ah, ch, dh, bh?
+ bool isHigh8bit() const
+ {
+ if (!isBit(8)) return false;
+ if (isExt8bit()) return false;
+ const int idx = getIdx();
+ return AH <= idx && idx <= BH;
+ }
+ // any bit is accetable if bit == 0
+ bool is(int kind, uint32 bit = 0) const
+ {
+ return (kind == 0 || (kind_ & kind)) && (bit == 0 || (bit_ & bit)); // cf. you can set (8|16)
+ }
+ bool isBit(uint32 bit) const { return (bit_ & bit) != 0; }
+ uint32 getBit() const { return bit_; }
+ const char *toString() const
+ {
+ const int idx = getIdx();
+ if (kind_ == REG) {
+ if (isExt8bit()) {
+ static const char *tbl[4] = { "spl", "bpl", "sil", "dil" };
+ return tbl[idx - 4];
+ }
+ static const char *tbl[4][16] = {
+ { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b" },
+ { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" },
+ { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d" },
+ { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" },
+ };
+ return tbl[bit_ == 8 ? 0 : bit_ == 16 ? 1 : bit_ == 32 ? 2 : 3][idx];
+ } else if (isOPMASK()) {
+ static const char *tbl[8] = { "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" };
+ return tbl[idx];
+ } else if (isZMM()) {
+ static const char *tbl[32] = {
+ "zmm0", "zmm1", "zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "zmm9", "zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15",
+ "zmm16", "zmm17", "zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", "zmm24", "zmm25", "zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31"
+ };
+ return tbl[idx];
+ } else if (isYMM()) {
+ static const char *tbl[32] = {
+ "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15",
+ "ymm16", "ymm17", "ymm18", "ymm19", "ymm20", "ymm21", "ymm22", "ymm23", "ymm24", "ymm25", "ymm26", "ymm27", "ymm28", "ymm29", "ymm30", "ymm31"
+ };
+ return tbl[idx];
+ } else if (isXMM()) {
+ static const char *tbl[32] = {
+ "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
+ "xmm16", "xmm17", "xmm18", "xmm19", "xmm20", "xmm21", "xmm22", "xmm23", "xmm24", "xmm25", "xmm26", "xmm27", "xmm28", "xmm29", "xmm30", "xmm31"
+ };
+ return tbl[idx];
+ } else if (isMMX()) {
+ static const char *tbl[8] = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" };
+ return tbl[idx];
+ } else if (isFPU()) {
+ static const char *tbl[8] = { "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7" };
+ return tbl[idx];
+ } else if (isBNDREG()) {
+ static const char *tbl[4] = { "bnd0", "bnd1", "bnd2", "bnd3" };
+ return tbl[idx];
+ }
+ throw Error(ERR_INTERNAL);
+ }
+ bool isEqualIfNotInherited(const Operand& rhs) const { return idx_ == rhs.idx_ && kind_ == rhs.kind_ && bit_ == rhs.bit_ && zero_ == rhs.zero_ && mask_ == rhs.mask_ && rounding_ == rhs.rounding_; }
+ bool operator==(const Operand& rhs) const;
+ bool operator!=(const Operand& rhs) const { return !operator==(rhs); }
+ const Address& getAddress() const;
+ const Reg& getReg() const;
+};
+
+class Label;
+
+struct Reg8;
+struct Reg16;
+struct Reg32;
+#ifdef XBYAK64
+struct Reg64;
+#endif
+class Reg : public Operand {
+public:
+ Reg() { }
+ Reg(int idx, Kind kind, int bit = 0, bool ext8bit = false) : Operand(idx, kind, bit, ext8bit) { }
+ Reg changeBit(int bit) const { return Reg(getIdx(), getKind(), bit, isExt8bit()); }
+ uint8 getRexW() const { return isREG(64) ? 8 : 0; }
+ uint8 getRexR() const { return isExtIdx() ? 4 : 0; }
+ uint8 getRexX() const { return isExtIdx() ? 2 : 0; }
+ uint8 getRexB() const { return isExtIdx() ? 1 : 0; }
+ uint8 getRex(const Reg& base = Reg()) const
+ {
+ uint8 rex = getRexW() | getRexR() | base.getRexW() | base.getRexB();
+ if (rex || isExt8bit() || base.isExt8bit()) rex |= 0x40;
+ return rex;
+ }
+ Reg8 cvt8() const;
+ Reg16 cvt16() const;
+ Reg32 cvt32() const;
+#ifdef XBYAK64
+ Reg64 cvt64() const;
+#endif
+};
+
+inline const Reg& Operand::getReg() const
+{
+ assert(!isMEM());
+ return static_cast<const Reg&>(*this);
+}
+
+struct Reg8 : public Reg {
+ explicit Reg8(int idx = 0, bool ext8bit = false) : Reg(idx, Operand::REG, 8, ext8bit) { }
+};
+
+struct Reg16 : public Reg {
+ explicit Reg16(int idx = 0) : Reg(idx, Operand::REG, 16) { }
+};
+
+struct Mmx : public Reg {
+ explicit Mmx(int idx = 0, Kind kind = Operand::MMX, int bit = 64) : Reg(idx, kind, bit) { }
+};
+
+struct EvexModifierRounding {
+ enum {
+ T_RN_SAE = 1,
+ T_RD_SAE = 2,
+ T_RU_SAE = 3,
+ T_RZ_SAE = 4,
+ T_SAE = 5
+ };
+ explicit EvexModifierRounding(int rounding) : rounding(rounding) {}
+ int rounding;
+};
+struct EvexModifierZero{EvexModifierZero() {}};
+
+struct Xmm : public Mmx {
+ explicit Xmm(int idx = 0, Kind kind = Operand::XMM, int bit = 128) : Mmx(idx, kind, bit) { }
+ Xmm(Kind kind, int idx) : Mmx(idx, kind, kind == XMM ? 128 : kind == YMM ? 256 : 512) { }
+ Xmm operator|(const EvexModifierRounding& emr) const { Xmm r(*this); r.setRounding(emr.rounding); return r; }
+ Xmm copyAndSetIdx(int idx) const { Xmm ret(*this); ret.setIdx(idx); return ret; }
+ Xmm copyAndSetKind(Operand::Kind kind) const { Xmm ret(*this); ret.setKind(kind); return ret; }
+};
+
+struct Ymm : public Xmm {
+ explicit Ymm(int idx = 0, Kind kind = Operand::YMM, int bit = 256) : Xmm(idx, kind, bit) { }
+ Ymm operator|(const EvexModifierRounding& emr) const { Ymm r(*this); r.setRounding(emr.rounding); return r; }
+};
+
+struct Zmm : public Ymm {
+ explicit Zmm(int idx = 0) : Ymm(idx, Operand::ZMM, 512) { }
+ Zmm operator|(const EvexModifierRounding& emr) const { Zmm r(*this); r.setRounding(emr.rounding); return r; }
+};
+
+struct Opmask : public Reg {
+ explicit Opmask(int idx = 0) : Reg(idx, Operand::OPMASK, 64) {}
+};
+
+struct BoundsReg : public Reg {
+ explicit BoundsReg(int idx = 0) : Reg(idx, Operand::BNDREG, 128) {}
+};
+
+template<class T>T operator|(const T& x, const Opmask& k) { T r(x); r.setOpmaskIdx(k.getIdx()); return r; }
+template<class T>T operator|(const T& x, const EvexModifierZero&) { T r(x); r.setZero(); return r; }
+template<class T>T operator|(const T& x, const EvexModifierRounding& emr) { T r(x); r.setRounding(emr.rounding); return r; }
+
+struct Fpu : public Reg {
+ explicit Fpu(int idx = 0) : Reg(idx, Operand::FPU, 32) { }
+};
+
+struct Reg32e : public Reg {
+ explicit Reg32e(int idx, int bit) : Reg(idx, Operand::REG, bit) {}
+};
+struct Reg32 : public Reg32e {
+ explicit Reg32(int idx = 0) : Reg32e(idx, 32) {}
+};
+#ifdef XBYAK64
+struct Reg64 : public Reg32e {
+ explicit Reg64(int idx = 0) : Reg32e(idx, 64) {}
+};
+struct RegRip {
+ sint64 disp_;
+ const Label* label_;
+ bool isAddr_;
+ explicit RegRip(sint64 disp = 0, const Label* label = 0, bool isAddr = false) : disp_(disp), label_(label), isAddr_(isAddr) {}
+ friend const RegRip operator+(const RegRip& r, int disp) {
+ return RegRip(r.disp_ + disp, r.label_, r.isAddr_);
+ }
+ friend const RegRip operator-(const RegRip& r, int disp) {
+ return RegRip(r.disp_ - disp, r.label_, r.isAddr_);
+ }
+ friend const RegRip operator+(const RegRip& r, sint64 disp) {
+ return RegRip(r.disp_ + disp, r.label_, r.isAddr_);
+ }
+ friend const RegRip operator-(const RegRip& r, sint64 disp) {
+ return RegRip(r.disp_ - disp, r.label_, r.isAddr_);
+ }
+ friend const RegRip operator+(const RegRip& r, const Label& label) {
+ if (r.label_ || r.isAddr_) throw Error(ERR_BAD_ADDRESSING);
+ return RegRip(r.disp_, &label);
+ }
+ friend const RegRip operator+(const RegRip& r, const void *addr) {
+ if (r.label_ || r.isAddr_) throw Error(ERR_BAD_ADDRESSING);
+ return RegRip(r.disp_ + (sint64)addr, 0, true);
+ }
+};
+#endif
+
+inline Reg8 Reg::cvt8() const
+{
+ const int idx = getIdx();
+ if (isBit(8)) return Reg8(idx, isExt8bit());
+#ifdef XBYAK32
+ if (idx >= 4) throw Error(ERR_CANT_CONVERT);
+#endif
+ return Reg8(idx, 4 <= idx && idx < 8);
+}
+
+inline Reg16 Reg::cvt16() const
+{
+ const int idx = getIdx();
+ if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT);
+ return Reg16(idx);
+}
+
+inline Reg32 Reg::cvt32() const
+{
+ const int idx = getIdx();
+ if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT);
+ return Reg32(idx);
+}
+
+#ifdef XBYAK64
+inline Reg64 Reg::cvt64() const
+{
+ const int idx = getIdx();
+ if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT);
+ return Reg64(idx);
+}
+#endif
+
+#ifndef XBYAK_DISABLE_SEGMENT
+// not derived from Reg
+class Segment {
+ int idx_;
+public:
+ enum {
+ es, cs, ss, ds, fs, gs
+ };
+ explicit Segment(int idx) : idx_(idx) { assert(0 <= idx_ && idx_ < 6); }
+ int getIdx() const { return idx_; }
+ const char *toString() const
+ {
+ static const char tbl[][3] = {
+ "es", "cs", "ss", "ds", "fs", "gs"
+ };
+ return tbl[idx_];
+ }
+};
+#endif
+
+class RegExp {
+public:
+#ifdef XBYAK64
+ enum { i32e = 32 | 64 };
+#else
+ enum { i32e = 32 };
+#endif
+ RegExp(size_t disp = 0) : scale_(0), disp_(disp) { }
+ RegExp(const Reg& r, int scale = 1)
+ : scale_(scale)
+ , disp_(0)
+ {
+ if (!r.isREG(i32e) && !r.is(Reg::XMM|Reg::YMM|Reg::ZMM)) throw Error(ERR_BAD_SIZE_OF_REGISTER);
+ if (scale == 0) return;
+ if (scale != 1 && scale != 2 && scale != 4 && scale != 8) throw Error(ERR_BAD_SCALE);
+ if (r.getBit() >= 128 || scale != 1) { // xmm/ymm is always index
+ index_ = r;
+ } else {
+ base_ = r;
+ }
+ }
+ bool isVsib(int bit = 128 | 256 | 512) const { return index_.isBit(bit); }
+ RegExp optimize() const
+ {
+ RegExp exp = *this;
+ // [reg * 2] => [reg + reg]
+ if (index_.isBit(i32e) && !base_.getBit() && scale_ == 2) {
+ exp.base_ = index_;
+ exp.scale_ = 1;
+ }
+ return exp;
+ }
+ bool operator==(const RegExp& rhs) const
+ {
+ return base_ == rhs.base_ && index_ == rhs.index_ && disp_ == rhs.disp_ && scale_ == rhs.scale_;
+ }
+ const Reg& getBase() const { return base_; }
+ const Reg& getIndex() const { return index_; }
+ int getScale() const { return scale_; }
+ size_t getDisp() const { return disp_; }
+ void verify() const
+ {
+ if (base_.getBit() >= 128) throw Error(ERR_BAD_SIZE_OF_REGISTER);
+ if (index_.getBit() && index_.getBit() <= 64) {
+ if (index_.getIdx() == Operand::ESP) throw Error(ERR_ESP_CANT_BE_INDEX);
+ if (base_.getBit() && base_.getBit() != index_.getBit()) throw Error(ERR_BAD_SIZE_OF_REGISTER);
+ }
+ }
+ friend RegExp operator+(const RegExp& a, const RegExp& b);
+ friend RegExp operator-(const RegExp& e, size_t disp);
+ uint8 getRex() const
+ {
+ uint8 rex = index_.getRexX() | base_.getRexB();
+ return rex ? uint8(rex | 0x40) : 0;
+ }
+private:
+ /*
+ [base_ + index_ * scale_ + disp_]
+ base : Reg32e, index : Reg32e(w/o esp), Xmm, Ymm
+ */
+ Reg base_;
+ Reg index_;
+ int scale_;
+ size_t disp_;
+};
+
+inline RegExp operator+(const RegExp& a, const RegExp& b)
+{
+ if (a.index_.getBit() && b.index_.getBit()) throw Error(ERR_BAD_ADDRESSING);
+ RegExp ret = a;
+ if (!ret.index_.getBit()) { ret.index_ = b.index_; ret.scale_ = b.scale_; }
+ if (b.base_.getBit()) {
+ if (ret.base_.getBit()) {
+ if (ret.index_.getBit()) throw Error(ERR_BAD_ADDRESSING);
+ // base + base => base + index * 1
+ ret.index_ = b.base_;
+ // [reg + esp] => [esp + reg]
+ if (ret.index_.getIdx() == Operand::ESP) std::swap(ret.base_, ret.index_);
+ ret.scale_ = 1;
+ } else {
+ ret.base_ = b.base_;
+ }
+ }
+ ret.disp_ += b.disp_;
+ return ret;
+}
+inline RegExp operator*(const Reg& r, int scale)
+{
+ return RegExp(r, scale);
+}
+inline RegExp operator-(const RegExp& e, size_t disp)
+{
+ RegExp ret = e;
+ ret.disp_ -= disp;
+ return ret;
+}
+
+// 2nd parameter for constructor of CodeArray(maxSize, userPtr, alloc)
+void *const AutoGrow = (void*)1; //-V566
+void *const DontSetProtectRWE = (void*)2; //-V566
+
+class CodeArray {
+ enum Type {
+ USER_BUF = 1, // use userPtr(non alignment, non protect)
+ ALLOC_BUF, // use new(alignment, protect)
+ AUTO_GROW // automatically move and grow memory if necessary
+ };
+ CodeArray(const CodeArray& rhs);
+ void operator=(const CodeArray&);
+ bool isAllocType() const { return type_ == ALLOC_BUF || type_ == AUTO_GROW; }
+ struct AddrInfo {
+ size_t codeOffset; // position to write
+ size_t jmpAddr; // value to write
+ int jmpSize; // size of jmpAddr
+ inner::LabelMode mode;
+ AddrInfo(size_t _codeOffset, size_t _jmpAddr, int _jmpSize, inner::LabelMode _mode)
+ : codeOffset(_codeOffset), jmpAddr(_jmpAddr), jmpSize(_jmpSize), mode(_mode) {}
+ uint64 getVal(const uint8 *top) const
+ {
+ uint64 disp = (mode == inner::LaddTop) ? jmpAddr + size_t(top) : (mode == inner::LasIs) ? jmpAddr : jmpAddr - size_t(top);
+ if (jmpSize == 4) disp = inner::VerifyInInt32(disp);
+ return disp;
+ }
+ };
+ typedef std::list<AddrInfo> AddrInfoList;
+ AddrInfoList addrInfoList_;
+ const Type type_;
+#ifdef XBYAK_USE_MMAP_ALLOCATOR
+ MmapAllocator defaultAllocator_;
+#else
+ Allocator defaultAllocator_;
+#endif
+ Allocator *alloc_;
+protected:
+ size_t maxSize_;
+ uint8 *top_;
+ size_t size_;
+ bool isCalledCalcJmpAddress_;
+
+ bool useProtect() const { return alloc_->useProtect(); }
+ /*
+ allocate new memory and copy old data to the new area
+ */
+ void growMemory()
+ {
+ const size_t newSize = (std::max<size_t>)(DEFAULT_MAX_CODE_SIZE, maxSize_ * 2);
+ uint8 *newTop = alloc_->alloc(newSize);
+ if (newTop == 0) throw Error(ERR_CANT_ALLOC);
+ for (size_t i = 0; i < size_; i++) newTop[i] = top_[i];
+ alloc_->free(top_);
+ top_ = newTop;
+ maxSize_ = newSize;
+ }
+ /*
+ calc jmp address for AutoGrow mode
+ */
+ void calcJmpAddress()
+ {
+ if (isCalledCalcJmpAddress_) return;
+ for (AddrInfoList::const_iterator i = addrInfoList_.begin(), ie = addrInfoList_.end(); i != ie; ++i) {
+ uint64 disp = i->getVal(top_);
+ rewrite(i->codeOffset, disp, i->jmpSize);
+ }
+ isCalledCalcJmpAddress_ = true;
+ }
+public:
+ enum ProtectMode {
+ PROTECT_RW = 0, // read/write
+ PROTECT_RWE = 1, // read/write/exec
+ PROTECT_RE = 2 // read/exec
+ };
+ explicit CodeArray(size_t maxSize, void *userPtr = 0, Allocator *allocator = 0)
+ : type_(userPtr == AutoGrow ? AUTO_GROW : (userPtr == 0 || userPtr == DontSetProtectRWE) ? ALLOC_BUF : USER_BUF)
+ , alloc_(allocator ? allocator : (Allocator*)&defaultAllocator_)
+ , maxSize_(maxSize)
+ , top_(type_ == USER_BUF ? reinterpret_cast<uint8*>(userPtr) : alloc_->alloc((std::max<size_t>)(maxSize, 1)))
+ , size_(0)
+ , isCalledCalcJmpAddress_(false)
+ {
+ if (maxSize_ > 0 && top_ == 0) throw Error(ERR_CANT_ALLOC);
+ if ((type_ == ALLOC_BUF && userPtr != DontSetProtectRWE && useProtect()) && !setProtectMode(PROTECT_RWE, false)) {
+ alloc_->free(top_);
+ throw Error(ERR_CANT_PROTECT);
+ }
+ }
+ virtual ~CodeArray()
+ {
+ if (isAllocType()) {
+ if (useProtect()) setProtectModeRW(false);
+ alloc_->free(top_);
+ }
+ }
+ bool setProtectMode(ProtectMode mode, bool throwException = true)
+ {
+ bool isOK = protect(top_, maxSize_, mode);
+ if (isOK) return true;
+ if (throwException) throw Error(ERR_CANT_PROTECT);
+ return false;
+ }
+ bool setProtectModeRE(bool throwException = true) { return setProtectMode(PROTECT_RE, throwException); }
+ bool setProtectModeRW(bool throwException = true) { return setProtectMode(PROTECT_RW, throwException); }
+ void resetSize()
+ {
+ size_ = 0;
+ addrInfoList_.clear();
+ isCalledCalcJmpAddress_ = false;
+ }
+ void db(int code)
+ {
+ if (size_ >= maxSize_) {
+ if (type_ == AUTO_GROW) {
+ growMemory();
+ } else {
+ throw Error(ERR_CODE_IS_TOO_BIG);
+ }
+ }
+ top_[size_++] = static_cast<uint8>(code);
+ }
+ void db(const uint8 *code, size_t codeSize)
+ {
+ for (size_t i = 0; i < codeSize; i++) db(code[i]);
+ }
+ void db(uint64 code, size_t codeSize)
+ {
+ if (codeSize > 8) throw Error(ERR_BAD_PARAMETER);
+ for (size_t i = 0; i < codeSize; i++) db(static_cast<uint8>(code >> (i * 8)));
+ }
+ void dw(uint32 code) { db(code, 2); }
+ void dd(uint32 code) { db(code, 4); }
+ void dq(uint64 code) { db(code, 8); }
+ const uint8 *getCode() const { return top_; }
+ template<class F>
+ const F getCode() const { return reinterpret_cast<F>(top_); }
+ const uint8 *getCurr() const { return &top_[size_]; }
+ template<class F>
+ const F getCurr() const { return reinterpret_cast<F>(&top_[size_]); }
+ size_t getSize() const { return size_; }
+ void setSize(size_t size)
+ {
+ if (size > maxSize_) throw Error(ERR_OFFSET_IS_TOO_BIG);
+ size_ = size;
+ }
+ void dump() const
+ {
+ const uint8 *p = getCode();
+ size_t bufSize = getSize();
+ size_t remain = bufSize;
+ for (int i = 0; i < 4; i++) {
+ size_t disp = 16;
+ if (remain < 16) {
+ disp = remain;
+ }
+ for (size_t j = 0; j < 16; j++) {
+ if (j < disp) {
+ printf("%02X", p[i * 16 + j]);
+ }
+ }
+ putchar('\n');
+ remain -= disp;
+ if (remain == 0) {
+ break;
+ }
+ }
+ }
+ /*
+ @param offset [in] offset from top
+ @param disp [in] offset from the next of jmp
+ @param size [in] write size(1, 2, 4, 8)
+ */
+ void rewrite(size_t offset, uint64 disp, size_t size)
+ {
+ assert(offset < maxSize_);
+ if (size != 1 && size != 2 && size != 4 && size != 8) throw Error(ERR_BAD_PARAMETER);
+ uint8 *const data = top_ + offset;
+ for (size_t i = 0; i < size; i++) {
+ data[i] = static_cast<uint8>(disp >> (i * 8));
+ }
+ }
+ void save(size_t offset, size_t val, int size, inner::LabelMode mode)
+ {
+ addrInfoList_.push_back(AddrInfo(offset, val, size, mode));
+ }
+ bool isAutoGrow() const { return type_ == AUTO_GROW; }
+ bool isCalledCalcJmpAddress() const { return isCalledCalcJmpAddress_; }
+ /**
+ change exec permission of memory
+ @param addr [in] buffer address
+ @param size [in] buffer size
+ @param protectMode [in] mode(RW/RWE/RE)
+ @return true(success), false(failure)
+ */
+ static inline bool protect(const void *addr, size_t size, int protectMode)
+ {
+#if defined(_WIN32)
+ const DWORD c_rw = PAGE_READWRITE;
+ const DWORD c_rwe = PAGE_EXECUTE_READWRITE;
+ const DWORD c_re = PAGE_EXECUTE_READ;
+ DWORD mode;
+#else
+ const int c_rw = PROT_READ | PROT_WRITE;
+ const int c_rwe = PROT_READ | PROT_WRITE | PROT_EXEC;
+ const int c_re = PROT_READ | PROT_EXEC;
+ int mode;
+#endif
+ switch (protectMode) {
+ case PROTECT_RW: mode = c_rw; break;
+ case PROTECT_RWE: mode = c_rwe; break;
+ case PROTECT_RE: mode = c_re; break;
+ default:
+ return false;
+ }
+#if defined(_WIN32)
+ DWORD oldProtect;
+ return VirtualProtect(const_cast<void*>(addr), size, mode, &oldProtect) != 0;
+#elif defined(__GNUC__)
+ size_t pageSize = sysconf(_SC_PAGESIZE);
+ size_t iaddr = reinterpret_cast<size_t>(addr);
+ size_t roundAddr = iaddr & ~(pageSize - static_cast<size_t>(1));
+#ifndef NDEBUG
+ if (pageSize != 4096) fprintf(stderr, "large page(%zd) is used. not tested enough.\n", pageSize);
+#endif
+ return mprotect(reinterpret_cast<void*>(roundAddr), size + (iaddr - roundAddr), mode) == 0;
+#else
+ return true;
+#endif
+ }
+ /**
+ get aligned memory pointer
+ @param addr [in] address
+ @param alignedSize [in] power of two
+ @return aligned addr by alingedSize
+ */
+ static inline uint8 *getAlignedAddress(uint8 *addr, size_t alignedSize = 16)
+ {
+ return reinterpret_cast<uint8*>((reinterpret_cast<size_t>(addr) + alignedSize - 1) & ~(alignedSize - static_cast<size_t>(1)));
+ }
+};
+
+class Address : public Operand {
+public:
+ enum Mode {
+ M_ModRM,
+ M_64bitDisp,
+ M_rip,
+ M_ripAddr
+ };
+ Address(uint32 sizeBit, bool broadcast, const RegExp& e)
+ : Operand(0, MEM, sizeBit), e_(e), label_(0), mode_(M_ModRM), broadcast_(broadcast)
+ {
+ e_.verify();
+ }
+#ifdef XBYAK64
+ explicit Address(size_t disp)
+ : Operand(0, MEM, 64), e_(disp), label_(0), mode_(M_64bitDisp), broadcast_(false){ }
+ Address(uint32 sizeBit, bool broadcast, const RegRip& addr)
+ : Operand(0, MEM, sizeBit), e_(addr.disp_), label_(addr.label_), mode_(addr.isAddr_ ? M_ripAddr : M_rip), broadcast_(broadcast) { }
+#endif
+ RegExp getRegExp(bool optimize = true) const
+ {
+ return optimize ? e_.optimize() : e_;
+ }
+ Mode getMode() const { return mode_; }
+ bool is32bit() const { return e_.getBase().getBit() == 32 || e_.getIndex().getBit() == 32; }
+ bool isOnlyDisp() const { return !e_.getBase().getBit() && !e_.getIndex().getBit(); } // for mov eax
+ size_t getDisp() const { return e_.getDisp(); }
+ uint8 getRex() const
+ {
+ if (mode_ != M_ModRM) return 0;
+ return getRegExp().getRex();
+ }
+ bool is64bitDisp() const { return mode_ == M_64bitDisp; } // for moffset
+ bool isBroadcast() const { return broadcast_; }
+ const Label* getLabel() const { return label_; }
+ bool operator==(const Address& rhs) const
+ {
+ return getBit() == rhs.getBit() && e_ == rhs.e_ && label_ == rhs.label_ && mode_ == rhs.mode_ && broadcast_ == rhs.broadcast_;
+ }
+ bool operator!=(const Address& rhs) const { return !operator==(rhs); }
+ bool isVsib() const { return e_.isVsib(); }
+private:
+ RegExp e_;
+ const Label* label_;
+ Mode mode_;
+ bool broadcast_;
+};
+
+inline const Address& Operand::getAddress() const
+{
+ assert(isMEM());
+ return static_cast<const Address&>(*this);
+}
+
+inline bool Operand::operator==(const Operand& rhs) const
+{
+ if (isMEM() && rhs.isMEM()) return this->getAddress() == rhs.getAddress();
+ return isEqualIfNotInherited(rhs);
+}
+
+class AddressFrame {
+ void operator=(const AddressFrame&);
+ AddressFrame(const AddressFrame&);
+public:
+ const uint32 bit_;
+ const bool broadcast_;
+ explicit AddressFrame(uint32 bit, bool broadcast = false) : bit_(bit), broadcast_(broadcast) { }
+ Address operator[](const RegExp& e) const
+ {
+ return Address(bit_, broadcast_, e);
+ }
+ Address operator[](const void *disp) const
+ {
+ return Address(bit_, broadcast_, RegExp(reinterpret_cast<size_t>(disp)));
+ }
+#ifdef XBYAK64
+ Address operator[](uint64 disp) const { return Address(disp); }
+ Address operator[](const RegRip& addr) const { return Address(bit_, broadcast_, addr); }
+#endif
+};
+
+struct JmpLabel {
+ size_t endOfJmp; /* offset from top to the end address of jmp */
+ int jmpSize;
+ inner::LabelMode mode;
+ size_t disp; // disp for [rip + disp]
+ explicit JmpLabel(size_t endOfJmp = 0, int jmpSize = 0, inner::LabelMode mode = inner::LasIs, size_t disp = 0)
+ : endOfJmp(endOfJmp), jmpSize(jmpSize), mode(mode), disp(disp)
+ {
+ }
+};
+
+class LabelManager;
+
+class Label {
+ mutable LabelManager *mgr;
+ mutable int id;
+ friend class LabelManager;
+public:
+ Label() : mgr(0), id(0) {}
+ Label(const Label& rhs);
+ Label& operator=(const Label& rhs);
+ ~Label();
+ void clear() { mgr = 0; id = 0; }
+ int getId() const { return id; }
+ const uint8 *getAddress() const;
+
+ // backward compatibility
+ static inline std::string toStr(int num)
+ {
+ char buf[16];
+#if defined(_MSC_VER) && (_MSC_VER < 1900)
+ _snprintf_s
+#else
+ snprintf
+#endif
+ (buf, sizeof(buf), ".%08x", num);
+ return buf;
+ }
+};
+
+class LabelManager {
+ // for string label
+ struct SlabelVal {
+ size_t offset;
+ SlabelVal(size_t offset) : offset(offset) {}
+ };
+ typedef XBYAK_STD_UNORDERED_MAP<std::string, SlabelVal> SlabelDefList;
+ typedef XBYAK_STD_UNORDERED_MULTIMAP<std::string, const JmpLabel> SlabelUndefList;
+ struct SlabelState {
+ SlabelDefList defList;
+ SlabelUndefList undefList;
+ };
+ typedef std::list<SlabelState> StateList;
+ // for Label class
+ struct ClabelVal {
+ ClabelVal(size_t offset = 0) : offset(offset), refCount(1) {}
+ size_t offset;
+ int refCount;
+ };
+ typedef XBYAK_STD_UNORDERED_MAP<int, ClabelVal> ClabelDefList;
+ typedef XBYAK_STD_UNORDERED_MULTIMAP<int, const JmpLabel> ClabelUndefList;
+ typedef XBYAK_STD_UNORDERED_SET<Label*> LabelPtrList;
+
+ CodeArray *base_;
+ // global : stateList_.front(), local : stateList_.back()
+ StateList stateList_;
+ mutable int labelId_;
+ ClabelDefList clabelDefList_;
+ ClabelUndefList clabelUndefList_;
+ LabelPtrList labelPtrList_;
+
+ int getId(const Label& label) const
+ {
+ if (label.id == 0) label.id = labelId_++;
+ return label.id;
+ }
+ template<class DefList, class UndefList, class T>
+ void define_inner(DefList& defList, UndefList& undefList, const T& labelId, size_t addrOffset)
+ {
+ // add label
+ typename DefList::value_type item(labelId, addrOffset);
+ std::pair<typename DefList::iterator, bool> ret = defList.insert(item);
+ if (!ret.second) throw Error(ERR_LABEL_IS_REDEFINED);
+ // search undefined label
+ for (;;) {
+ typename UndefList::iterator itr = undefList.find(labelId);
+ if (itr == undefList.end()) break;
+ const JmpLabel *jmp = &itr->second;
+ const size_t offset = jmp->endOfJmp - jmp->jmpSize;
+ size_t disp;
+ if (jmp->mode == inner::LaddTop) {
+ disp = addrOffset;
+ } else if (jmp->mode == inner::Labs) {
+ disp = size_t(base_->getCurr());
+ } else {
+ disp = addrOffset - jmp->endOfJmp + jmp->disp;
+#ifdef XBYAK64
+ if (jmp->jmpSize <= 4 && !inner::IsInInt32(disp)) throw Error(ERR_OFFSET_IS_TOO_BIG);
+#endif
+ if (jmp->jmpSize == 1 && !inner::IsInDisp8((uint32)disp)) throw Error(ERR_LABEL_IS_TOO_FAR);
+ }
+ if (base_->isAutoGrow()) {
+ base_->save(offset, disp, jmp->jmpSize, jmp->mode);
+ } else {
+ base_->rewrite(offset, disp, jmp->jmpSize);
+ }
+ undefList.erase(itr);
+ }
+ }
+ template<class DefList, class T>
+ bool getOffset_inner(const DefList& defList, size_t *offset, const T& label) const
+ {
+ typename DefList::const_iterator i = defList.find(label);
+ if (i == defList.end()) return false;
+ *offset = i->second.offset;
+ return true;
+ }
+ friend class Label;
+ void incRefCount(int id, Label *label)
+ {
+ clabelDefList_[id].refCount++;
+ labelPtrList_.insert(label);
+ }
+ void decRefCount(int id, Label *label)
+ {
+ labelPtrList_.erase(label);
+ ClabelDefList::iterator i = clabelDefList_.find(id);
+ if (i == clabelDefList_.end()) return;
+ if (i->second.refCount == 1) {
+ clabelDefList_.erase(id);
+ } else {
+ --i->second.refCount;
+ }
+ }
+ template<class T>
+ bool hasUndefinedLabel_inner(const T& list) const
+ {
+#ifndef NDEBUG
+ for (typename T::const_iterator i = list.begin(); i != list.end(); ++i) {
+ std::cerr << "undefined label:" << i->first << std::endl;
+ }
+#endif
+ return !list.empty();
+ }
+ // detach all labels linked to LabelManager
+ void resetLabelPtrList()
+ {
+ for (LabelPtrList::iterator i = labelPtrList_.begin(), ie = labelPtrList_.end(); i != ie; ++i) {
+ (*i)->clear();
+ }
+ labelPtrList_.clear();
+ }
+public:
+ LabelManager()
+ {
+ reset();
+ }
+ ~LabelManager()
+ {
+ resetLabelPtrList();
+ }
+ void reset()
+ {
+ base_ = 0;
+ labelId_ = 1;
+ stateList_.clear();
+ stateList_.push_back(SlabelState());
+ stateList_.push_back(SlabelState());
+ clabelDefList_.clear();
+ clabelUndefList_.clear();
+ resetLabelPtrList();
+ }
+ void enterLocal()
+ {
+ stateList_.push_back(SlabelState());
+ }
+ void leaveLocal()
+ {
+ if (stateList_.size() <= 2) throw Error(ERR_UNDER_LOCAL_LABEL);
+ if (hasUndefinedLabel_inner(stateList_.back().undefList)) throw Error(ERR_LABEL_IS_NOT_FOUND);
+ stateList_.pop_back();
+ }
+ void set(CodeArray *base) { base_ = base; }
+ void defineSlabel(std::string label)
+ {
+ if (label == "@b" || label == "@f") throw Error(ERR_BAD_LABEL_STR);
+ if (label == "@@") {
+ SlabelDefList& defList = stateList_.front().defList;
+ SlabelDefList::iterator i = defList.find("@f");
+ if (i != defList.end()) {
+ defList.erase(i);
+ label = "@b";
+ } else {
+ i = defList.find("@b");
+ if (i != defList.end()) {
+ defList.erase(i);
+ }
+ label = "@f";
+ }
+ }
+ SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
+ define_inner(st.defList, st.undefList, label, base_->getSize());
+ }
+ void defineClabel(Label& label)
+ {
+ define_inner(clabelDefList_, clabelUndefList_, getId(label), base_->getSize());
+ label.mgr = this;
+ labelPtrList_.insert(&label);
+ }
+ void assign(Label& dst, const Label& src)
+ {
+ ClabelDefList::const_iterator i = clabelDefList_.find(src.id);
+ if (i == clabelDefList_.end()) throw Error(ERR_LABEL_ISNOT_SET_BY_L);
+ define_inner(clabelDefList_, clabelUndefList_, dst.id, i->second.offset);
+ dst.mgr = this;
+ labelPtrList_.insert(&dst);
+ }
+ bool getOffset(size_t *offset, std::string& label) const
+ {
+ const SlabelDefList& defList = stateList_.front().defList;
+ if (label == "@b") {
+ if (defList.find("@f") != defList.end()) {
+ label = "@f";
+ } else if (defList.find("@b") == defList.end()) {
+ throw Error(ERR_LABEL_IS_NOT_FOUND);
+ }
+ } else if (label == "@f") {
+ if (defList.find("@f") != defList.end()) {
+ label = "@b";
+ }
+ }
+ const SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
+ return getOffset_inner(st.defList, offset, label);
+ }
+ bool getOffset(size_t *offset, const Label& label) const
+ {
+ return getOffset_inner(clabelDefList_, offset, getId(label));
+ }
+ void addUndefinedLabel(const std::string& label, const JmpLabel& jmp)
+ {
+ SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
+ st.undefList.insert(SlabelUndefList::value_type(label, jmp));
+ }
+ void addUndefinedLabel(const Label& label, const JmpLabel& jmp)
+ {
+ clabelUndefList_.insert(ClabelUndefList::value_type(label.id, jmp));
+ }
+ bool hasUndefSlabel() const
+ {
+ for (StateList::const_iterator i = stateList_.begin(), ie = stateList_.end(); i != ie; ++i) {
+ if (hasUndefinedLabel_inner(i->undefList)) return true;
+ }
+ return false;
+ }
+ bool hasUndefClabel() const { return hasUndefinedLabel_inner(clabelUndefList_); }
+ const uint8 *getCode() const { return base_->getCode(); }
+ bool isReady() const { return !base_->isAutoGrow() || base_->isCalledCalcJmpAddress(); }
+};
+
+inline Label::Label(const Label& rhs)
+{
+ id = rhs.id;
+ mgr = rhs.mgr;
+ if (mgr) mgr->incRefCount(id, this);
+}
+inline Label& Label::operator=(const Label& rhs)
+{
+ if (id) throw Error(ERR_LABEL_IS_ALREADY_SET_BY_L);
+ id = rhs.id;
+ mgr = rhs.mgr;
+ if (mgr) mgr->incRefCount(id, this);
+ return *this;
+}
+inline Label::~Label()
+{
+ if (id && mgr) mgr->decRefCount(id, this);
+}
+inline const uint8* Label::getAddress() const
+{
+ if (mgr == 0 || !mgr->isReady()) return 0;
+ size_t offset;
+ if (!mgr->getOffset(&offset, *this)) return 0;
+ return mgr->getCode() + offset;
+}
+
+class CodeGenerator : public CodeArray {
+public:
+ enum LabelType {
+ T_SHORT,
+ T_NEAR,
+ T_AUTO // T_SHORT if possible
+ };
+private:
+ CodeGenerator operator=(const CodeGenerator&); // don't call
+#ifdef XBYAK64
+ enum { i32e = 32 | 64, BIT = 64 };
+ static const size_t dummyAddr = (size_t(0x11223344) << 32) | 55667788;
+ typedef Reg64 NativeReg;
+#else
+ enum { i32e = 32, BIT = 32 };
+ static const size_t dummyAddr = 0x12345678;
+ typedef Reg32 NativeReg;
+#endif
+ // (XMM, XMM|MEM)
+ static inline bool isXMM_XMMorMEM(const Operand& op1, const Operand& op2)
+ {
+ return op1.isXMM() && (op2.isXMM() || op2.isMEM());
+ }
+ // (MMX, MMX|MEM) or (XMM, XMM|MEM)
+ static inline bool isXMMorMMX_MEM(const Operand& op1, const Operand& op2)
+ {
+ return (op1.isMMX() && (op2.isMMX() || op2.isMEM())) || isXMM_XMMorMEM(op1, op2);
+ }
+ // (XMM, MMX|MEM)
+ static inline bool isXMM_MMXorMEM(const Operand& op1, const Operand& op2)
+ {
+ return op1.isXMM() && (op2.isMMX() || op2.isMEM());
+ }
+ // (MMX, XMM|MEM)
+ static inline bool isMMX_XMMorMEM(const Operand& op1, const Operand& op2)
+ {
+ return op1.isMMX() && (op2.isXMM() || op2.isMEM());
+ }
+ // (XMM, REG32|MEM)
+ static inline bool isXMM_REG32orMEM(const Operand& op1, const Operand& op2)
+ {
+ return op1.isXMM() && (op2.isREG(i32e) || op2.isMEM());
+ }
+ // (REG32, XMM|MEM)
+ static inline bool isREG32_XMMorMEM(const Operand& op1, const Operand& op2)
+ {
+ return op1.isREG(i32e) && (op2.isXMM() || op2.isMEM());
+ }
+ // (REG32, REG32|MEM)
+ static inline bool isREG32_REG32orMEM(const Operand& op1, const Operand& op2)
+ {
+ return op1.isREG(i32e) && ((op2.isREG(i32e) && op1.getBit() == op2.getBit()) || op2.isMEM());
+ }
+ void rex(const Operand& op1, const Operand& op2 = Operand())
+ {
+ uint8 rex = 0;
+ const Operand *p1 = &op1, *p2 = &op2;
+ if (p1->isMEM()) std::swap(p1, p2);
+ if (p1->isMEM()) throw Error(ERR_BAD_COMBINATION);
+ if (p2->isMEM()) {
+ const Address& addr = p2->getAddress();
+ if (BIT == 64 && addr.is32bit()) db(0x67);
+ rex = addr.getRex() | p1->getReg().getRex();
+ } else {
+ // ModRM(reg, base);
+ rex = op2.getReg().getRex(op1.getReg());
+ }
+ // except movsx(16bit, 32/64bit)
+ if ((op1.isBit(16) && !op2.isBit(i32e)) || (op2.isBit(16) && !op1.isBit(i32e))) db(0x66);
+ if (rex) db(rex);
+ }
+ enum AVXtype {
+ // low 3 bit
+ T_N1 = 1,
+ T_N2 = 2,
+ T_N4 = 3,
+ T_N8 = 4,
+ T_N16 = 5,
+ T_N32 = 6,
+ T_NX_MASK = 7,
+ //
+ T_N_VL = 1 << 3, // N * (1, 2, 4) for VL
+ T_DUP = 1 << 4, // N = (8, 32, 64)
+ T_66 = 1 << 5,
+ T_F3 = 1 << 6,
+ T_F2 = 1 << 7,
+ T_0F = 1 << 8,
+ T_0F38 = 1 << 9,
+ T_0F3A = 1 << 10,
+ T_L0 = 1 << 11,
+ T_L1 = 1 << 12,
+ T_W0 = 1 << 13,
+ T_W1 = 1 << 14,
+ T_EW0 = 1 << 15,
+ T_EW1 = 1 << 16,
+ T_YMM = 1 << 17, // support YMM, ZMM
+ T_EVEX = 1 << 18,
+ T_ER_X = 1 << 19, // xmm{er}
+ T_ER_Y = 1 << 20, // ymm{er}
+ T_ER_Z = 1 << 21, // zmm{er}
+ T_SAE_X = 1 << 22, // xmm{sae}
+ T_SAE_Y = 1 << 23, // ymm{sae}
+ T_SAE_Z = 1 << 24, // zmm{sae}
+ T_MUST_EVEX = 1 << 25, // contains T_EVEX
+ T_B32 = 1 << 26, // m32bcst
+ T_B64 = 1 << 27, // m64bcst
+ T_M_K = 1 << 28, // mem{k}
+ T_VSIB = 1 << 29,
+ T_MEM_EVEX = 1 << 30, // use evex if mem
+ T_XXX
+ };
+ void vex(const Reg& reg, const Reg& base, const Operand *v, int type, int code, bool x = false)
+ {
+ int w = (type & T_W1) ? 1 : 0;
+ bool is256 = (type & T_L1) ? true : (type & T_L0) ? false : reg.isYMM();
+ bool r = reg.isExtIdx();
+ bool b = base.isExtIdx();
+ int idx = v ? v->getIdx() : 0;
+ if ((idx | reg.getIdx() | base.getIdx()) >= 16) throw Error(ERR_BAD_COMBINATION);
+ uint32 pp = (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0;
+ uint32 vvvv = (((~idx) & 15) << 3) | (is256 ? 4 : 0) | pp;
+ if (!b && !x && !w && (type & T_0F)) {
+ db(0xC5); db((r ? 0 : 0x80) | vvvv);
+ } else {
+ uint32 mmmm = (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0;
+ db(0xC4); db((r ? 0 : 0x80) | (x ? 0 : 0x40) | (b ? 0 : 0x20) | mmmm); db((w << 7) | vvvv);
+ }
+ db(code);
+ }
+ void verifySAE(const Reg& r, int type) const
+ {
+ if (((type & T_SAE_X) && r.isXMM()) || ((type & T_SAE_Y) && r.isYMM()) || ((type & T_SAE_Z) && r.isZMM())) return;
+ throw Error(ERR_SAE_IS_INVALID);
+ }
+ void verifyER(const Reg& r, int type) const
+ {
+ if (((type & T_ER_X) && r.isXMM()) || ((type & T_ER_Y) && r.isYMM()) || ((type & T_ER_Z) && r.isZMM())) return;
+ throw Error(ERR_ER_IS_INVALID);
+ }
+ // (a, b, c) contains non zero two or three values then err
+ int verifyDuplicate(int a, int b, int c, int err)
+ {
+ int v = a | b | c;
+ if ((a > 0 && a != v) + (b > 0 && b != v) + (c > 0 && c != v) > 0) return Error(err);
+ return v;
+ }
+ int evex(const Reg& reg, const Reg& base, const Operand *v, int type, int code, bool x = false, bool b = false, int aaa = 0, uint32 VL = 0, bool Hi16Vidx = false)
+ {
+ if (!(type & (T_EVEX | T_MUST_EVEX))) throw Error(ERR_EVEX_IS_INVALID);
+ int w = (type & T_EW1) ? 1 : 0;
+ uint32 mm = (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0;
+ uint32 pp = (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0;
+
+ int idx = v ? v->getIdx() : 0;
+ uint32 vvvv = ~idx;
+
+ bool R = !reg.isExtIdx();
+ bool X = x ? false : !base.isExtIdx2();
+ bool B = !base.isExtIdx();
+ bool Rp = !reg.isExtIdx2();
+ int LL;
+ int rounding = verifyDuplicate(reg.getRounding(), base.getRounding(), v ? v->getRounding() : 0, ERR_ROUNDING_IS_ALREADY_SET);
+ int disp8N = 1;
+ if (rounding) {
+ if (rounding == EvexModifierRounding::T_SAE) {
+ verifySAE(base, type); LL = 0;
+ } else {
+ verifyER(base, type); LL = rounding - 1;
+ }
+ b = true;
+ } else {
+ if (v) VL = (std::max)(VL, v->getBit());
+ VL = (std::max)((std::max)(reg.getBit(), base.getBit()), VL);
+ LL = (VL == 512) ? 2 : (VL == 256) ? 1 : 0;
+ if (b) {
+ disp8N = (type & T_B32) ? 4 : 8;
+ } else if (type & T_DUP) {
+ disp8N = VL == 128 ? 8 : VL == 256 ? 32 : 64;
+ } else {
+ if ((type & (T_NX_MASK | T_N_VL)) == 0) {
+ type |= T_N16 | T_N_VL; // default
+ }
+ int low = type & T_NX_MASK;
+ if (low > 0) {
+ disp8N = 1 << (low - 1);
+ if (type & T_N_VL) disp8N *= (VL == 512 ? 4 : VL == 256 ? 2 : 1);
+ }
+ }
+ }
+ bool Vp = !((v ? v->isExtIdx2() : 0) | Hi16Vidx);
+ bool z = reg.hasZero() || base.hasZero() || (v ? v->hasZero() : false);
+ if (aaa == 0) aaa = verifyDuplicate(base.getOpmaskIdx(), reg.getOpmaskIdx(), (v ? v->getOpmaskIdx() : 0), ERR_OPMASK_IS_ALREADY_SET);
+ db(0x62);
+ db((R ? 0x80 : 0) | (X ? 0x40 : 0) | (B ? 0x20 : 0) | (Rp ? 0x10 : 0) | (mm & 3));
+ db((w == 1 ? 0x80 : 0) | ((vvvv & 15) << 3) | 4 | (pp & 3));
+ db((z ? 0x80 : 0) | ((LL & 3) << 5) | (b ? 0x10 : 0) | (Vp ? 8 : 0) | (aaa & 7));
+ db(code);
+ return disp8N;
+ }
+ void setModRM(int mod, int r1, int r2)
+ {
+ db(static_cast<uint8>((mod << 6) | ((r1 & 7) << 3) | (r2 & 7)));
+ }
+ void setSIB(const RegExp& e, int reg, int disp8N = 0)
+ {
+ size_t disp64 = e.getDisp();
+#ifdef XBYAK64
+ size_t high = disp64 >> 32;
+ if (high != 0 && high != 0xFFFFFFFF) throw Error(ERR_OFFSET_IS_TOO_BIG);
+#endif
+ uint32 disp = static_cast<uint32>(disp64);
+ const Reg& base = e.getBase();
+ const Reg& index = e.getIndex();
+ const int baseIdx = base.getIdx();
+ const int baseBit = base.getBit();
+ const int indexBit = index.getBit();
+ enum {
+ mod00 = 0, mod01 = 1, mod10 = 2
+ };
+ int mod = mod10; // disp32
+ if (!baseBit || ((baseIdx & 7) != Operand::EBP && disp == 0)) {
+ mod = mod00;
+ } else {
+ if (disp8N == 0) {
+ if (inner::IsInDisp8(disp)) {
+ mod = mod01;
+ }
+ } else {
+ // disp must be casted to signed
+ uint32 t = static_cast<uint32>(static_cast<int>(disp) / disp8N);
+ if ((disp % disp8N) == 0 && inner::IsInDisp8(t)) {
+ disp = t;
+ mod = mod01;
+ }
+ }
+ }
+ const int newBaseIdx = baseBit ? (baseIdx & 7) : Operand::EBP;
+ /* ModR/M = [2:3:3] = [Mod:reg/code:R/M] */
+ bool hasSIB = indexBit || (baseIdx & 7) == Operand::ESP;
+#ifdef XBYAK64
+ if (!baseBit && !indexBit) hasSIB = true;
+#endif
+ if (hasSIB) {
+ setModRM(mod, reg, Operand::ESP);
+ /* SIB = [2:3:3] = [SS:index:base(=rm)] */
+ const int idx = indexBit ? (index.getIdx() & 7) : Operand::ESP;
+ const int scale = e.getScale();
+ const int SS = (scale == 8) ? 3 : (scale == 4) ? 2 : (scale == 2) ? 1 : 0;
+ setModRM(SS, idx, newBaseIdx);
+ } else {
+ setModRM(mod, reg, newBaseIdx);
+ }
+ if (mod == mod01) {
+ db(disp);
+ } else if (mod == mod10 || (mod == mod00 && !baseBit)) {
+ dd(disp);
+ }
+ }
+ LabelManager labelMgr_;
+ bool isInDisp16(uint32 x) const { return 0xFFFF8000 <= x || x <= 0x7FFF; }
+ void opModR(const Reg& reg1, const Reg& reg2, int code0, int code1 = NONE, int code2 = NONE)
+ {
+ rex(reg2, reg1);
+ db(code0 | (reg1.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2);
+ setModRM(3, reg1.getIdx(), reg2.getIdx());
+ }
+ void opModM(const Address& addr, const Reg& reg, int code0, int code1 = NONE, int code2 = NONE, int immSize = 0)
+ {
+ if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP);
+ rex(addr, reg);
+ db(code0 | (reg.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2);
+ opAddr(addr, reg.getIdx(), immSize);
+ }
+ void opMIB(const Address& addr, const Reg& reg, int code0, int code1)
+ {
+ if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP);
+ if (addr.getMode() != Address::M_ModRM) throw Error(ERR_INVALID_MIB_ADDRESS);
+ if (BIT == 64 && addr.is32bit()) db(0x67);
+ const RegExp& regExp = addr.getRegExp(false);
+ uint8 rex = regExp.getRex();
+ if (rex) db(rex);
+ db(code0); db(code1);
+ setSIB(regExp, reg.getIdx());
+ }
+ void makeJmp(uint32 disp, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref)
+ {
+ const int shortJmpSize = 2;
+ const int longHeaderSize = longPref ? 2 : 1;
+ const int longJmpSize = longHeaderSize + 4;
+ if (type != T_NEAR && inner::IsInDisp8(disp - shortJmpSize)) {
+ db(shortCode); db(disp - shortJmpSize);
+ } else {
+ if (type == T_SHORT) throw Error(ERR_LABEL_IS_TOO_FAR);
+ if (longPref) db(longPref);
+ db(longCode); dd(disp - longJmpSize);
+ }
+ }
+ template<class T>
+ void opJmp(T& label, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref)
+ {
+ if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); /* avoid splitting code of jmp */
+ size_t offset = 0;
+ if (labelMgr_.getOffset(&offset, label)) { /* label exists */
+ makeJmp(inner::VerifyInInt32(offset - size_), type, shortCode, longCode, longPref);
+ } else {
+ int jmpSize = 0;
+ if (type == T_NEAR) {
+ jmpSize = 4;
+ if (longPref) db(longPref);
+ db(longCode); dd(0);
+ } else {
+ jmpSize = 1;
+ db(shortCode); db(0);
+ }
+ JmpLabel jmp(size_, jmpSize, inner::LasIs);
+ labelMgr_.addUndefinedLabel(label, jmp);
+ }
+ }
+ void opJmpAbs(const void *addr, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref = 0)
+ {
+ if (isAutoGrow()) {
+ if (type != T_NEAR) throw Error(ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW);
+ if (size_ + 16 >= maxSize_) growMemory();
+ if (longPref) db(longPref);
+ db(longCode);
+ dd(0);
+ save(size_ - 4, size_t(addr) - size_, 4, inner::Labs);
+ } else {
+ makeJmp(inner::VerifyInInt32(reinterpret_cast<const uint8*>(addr) - getCurr()), type, shortCode, longCode, longPref);
+ }
+
+ }
+ // reg is reg field of ModRM
+ // immSize is the size for immediate value
+ // disp8N = 0(normal), disp8N = 1(force disp32), disp8N = {2, 4, 8} ; compressed displacement
+ void opAddr(const Address &addr, int reg, int immSize = 0, int disp8N = 0, bool permitVisb = false)
+ {
+ if (!permitVisb && addr.isVsib()) throw Error(ERR_BAD_VSIB_ADDRESSING);
+ if (addr.getMode() == Address::M_ModRM) {
+ setSIB(addr.getRegExp(), reg, disp8N);
+ } else if (addr.getMode() == Address::M_rip || addr.getMode() == Address::M_ripAddr) {
+ setModRM(0, reg, 5);
+ if (addr.getLabel()) { // [rip + Label]
+ putL_inner(*addr.getLabel(), true, addr.getDisp() - immSize);
+ } else {
+ size_t disp = addr.getDisp();
+ if (addr.getMode() == Address::M_ripAddr) {
+ if (isAutoGrow()) throw Error(ERR_INVALID_RIP_IN_AUTO_GROW);
+ disp -= (size_t)getCurr() + 4 + immSize;
+ }
+ dd(inner::VerifyInInt32(disp));
+ }
+ }
+ }
+ /* preCode is for SSSE3/SSE4 */
+ void opGen(const Operand& reg, const Operand& op, int code, int pref, bool isValid(const Operand&, const Operand&), int imm8 = NONE, int preCode = NONE)
+ {
+ if (isValid && !isValid(reg, op)) throw Error(ERR_BAD_COMBINATION);
+ if (pref != NONE) db(pref);
+ if (op.isMEM()) {
+ opModM(op.getAddress(), reg.getReg(), 0x0F, preCode, code, (imm8 != NONE) ? 1 : 0);
+ } else {
+ opModR(reg.getReg(), op.getReg(), 0x0F, preCode, code);
+ }
+ if (imm8 != NONE) db(imm8);
+ }
+ void opMMX_IMM(const Mmx& mmx, int imm8, int code, int ext)
+ {
+ if (mmx.isXMM()) db(0x66);
+ opModR(Reg32(ext), mmx, 0x0F, code);
+ db(imm8);
+ }
+ void opMMX(const Mmx& mmx, const Operand& op, int code, int pref = 0x66, int imm8 = NONE, int preCode = NONE)
+ {
+ opGen(mmx, op, code, mmx.isXMM() ? pref : NONE, isXMMorMMX_MEM, imm8, preCode);
+ }
+ void opMovXMM(const Operand& op1, const Operand& op2, int code, int pref)
+ {
+ if (pref != NONE) db(pref);
+ if (op1.isXMM() && op2.isMEM()) {
+ opModM(op2.getAddress(), op1.getReg(), 0x0F, code);
+ } else if (op1.isMEM() && op2.isXMM()) {
+ opModM(op1.getAddress(), op2.getReg(), 0x0F, code | 1);
+ } else {
+ throw Error(ERR_BAD_COMBINATION);
+ }
+ }
+ void opExt(const Operand& op, const Mmx& mmx, int code, int imm, bool hasMMX2 = false)
+ {
+ if (hasMMX2 && op.isREG(i32e)) { /* pextrw is special */
+ if (mmx.isXMM()) db(0x66);
+ opModR(op.getReg(), mmx, 0x0F, 0xC5); db(imm);
+ } else {
+ opGen(mmx, op, code, 0x66, isXMM_REG32orMEM, imm, 0x3A);
+ }
+ }
+ void opR_ModM(const Operand& op, int bit, int ext, int code0, int code1 = NONE, int code2 = NONE, bool disableRex = false, int immSize = 0)
+ {
+ int opBit = op.getBit();
+ if (disableRex && opBit == 64) opBit = 32;
+ if (op.isREG(bit)) {
+ opModR(Reg(ext, Operand::REG, opBit), op.getReg().changeBit(opBit), code0, code1, code2);
+ } else if (op.isMEM()) {
+ opModM(op.getAddress(), Reg(ext, Operand::REG, opBit), code0, code1, code2, immSize);
+ } else {
+ throw Error(ERR_BAD_COMBINATION);
+ }
+ }
+ void opShift(const Operand& op, int imm, int ext)
+ {
+ verifyMemHasSize(op);
+ opR_ModM(op, 0, ext, (0xC0 | ((imm == 1 ? 1 : 0) << 4)), NONE, NONE, false, (imm != 1) ? 1 : 0);
+ if (imm != 1) db(imm);
+ }
+ void opShift(const Operand& op, const Reg8& _cl, int ext)
+ {
+ if (_cl.getIdx() != Operand::CL) throw Error(ERR_BAD_COMBINATION);
+ opR_ModM(op, 0, ext, 0xD2);
+ }
+ void opModRM(const Operand& op1, const Operand& op2, bool condR, bool condM, int code0, int code1 = NONE, int code2 = NONE, int immSize = 0)
+ {
+ if (condR) {
+ opModR(op1.getReg(), op2.getReg(), code0, code1, code2);
+ } else if (condM) {
+ opModM(op2.getAddress(), op1.getReg(), code0, code1, code2, immSize);
+ } else {
+ throw Error(ERR_BAD_COMBINATION);
+ }
+ }
+ void opShxd(const Operand& op, const Reg& reg, uint8 imm, int code, const Reg8 *_cl = 0)
+ {
+ if (_cl && _cl->getIdx() != Operand::CL) throw Error(ERR_BAD_COMBINATION);
+ opModRM(reg, op, (op.isREG(16 | i32e) && op.getBit() == reg.getBit()), op.isMEM() && (reg.isREG(16 | i32e)), 0x0F, code | (_cl ? 1 : 0), NONE, _cl ? 0 : 1);
+ if (!_cl) db(imm);
+ }
+ // (REG, REG|MEM), (MEM, REG)
+ void opRM_RM(const Operand& op1, const Operand& op2, int code)
+ {
+ if (op1.isREG() && op2.isMEM()) {
+ opModM(op2.getAddress(), op1.getReg(), code | 2);
+ } else {
+ opModRM(op2, op1, op1.isREG() && op1.getKind() == op2.getKind(), op1.isMEM() && op2.isREG(), code);
+ }
+ }
+ // (REG|MEM, IMM)
+ void opRM_I(const Operand& op, uint32 imm, int code, int ext)
+ {
+ verifyMemHasSize(op);
+ uint32 immBit = inner::IsInDisp8(imm) ? 8 : isInDisp16(imm) ? 16 : 32;
+ if (op.isBit(8)) immBit = 8;
+ if (op.getBit() < immBit) throw Error(ERR_IMM_IS_TOO_BIG);
+ if (op.isBit(32|64) && immBit == 16) immBit = 32; /* don't use MEM16 if 32/64bit mode */
+ if (op.isREG() && op.getIdx() == 0 && (op.getBit() == immBit || (op.isBit(64) && immBit == 32))) { // rax, eax, ax, al
+ rex(op);
+ db(code | 4 | (immBit == 8 ? 0 : 1));
+ } else {
+ int tmp = immBit < (std::min)(op.getBit(), 32U) ? 2 : 0;
+ opR_ModM(op, 0, ext, 0x80 | tmp, NONE, NONE, false, immBit / 8);
+ }
+ db(imm, immBit / 8);
+ }
+ void opIncDec(const Operand& op, int code, int ext)
+ {
+ verifyMemHasSize(op);
+#ifndef XBYAK64
+ if (op.isREG() && !op.isBit(8)) {
+ rex(op); db(code | op.getIdx());
+ return;
+ }
+#endif
+ code = 0xFE;
+ if (op.isREG()) {
+ opModR(Reg(ext, Operand::REG, op.getBit()), op.getReg(), code);
+ } else {
+ opModM(op.getAddress(), Reg(ext, Operand::REG, op.getBit()), code);
+ }
+ }
+ void opPushPop(const Operand& op, int code, int ext, int alt)
+ {
+ int bit = op.getBit();
+ if (bit == 16 || bit == BIT) {
+ if (bit == 16) db(0x66);
+ if (op.isREG()) {
+ if (op.getReg().getIdx() >= 8) db(0x41);
+ db(alt | (op.getIdx() & 7));
+ return;
+ }
+ if (op.isMEM()) {
+ opModM(op.getAddress(), Reg(ext, Operand::REG, 32), code);
+ return;
+ }
+ }
+ throw Error(ERR_BAD_COMBINATION);
+ }
+ void verifyMemHasSize(const Operand& op) const
+ {
+ if (op.isMEM() && op.getBit() == 0) throw Error(ERR_MEM_SIZE_IS_NOT_SPECIFIED);
+ }
+ /*
+ mov(r, imm) = db(imm, mov_imm(r, imm))
+ */
+ int mov_imm(const Reg& reg, size_t imm)
+ {
+ int bit = reg.getBit();
+ const int idx = reg.getIdx();
+ int code = 0xB0 | ((bit == 8 ? 0 : 1) << 3);
+ if (bit == 64 && (imm & ~size_t(0xffffffffu)) == 0) {
+ rex(Reg32(idx));
+ bit = 32;
+ } else {
+ rex(reg);
+ if (bit == 64 && inner::IsInInt32(imm)) {
+ db(0xC7);
+ code = 0xC0;
+ bit = 32;
+ }
+ }
+ db(code | (idx & 7));
+ return bit / 8;
+ }
+ template<class T>
+ void putL_inner(T& label, bool relative = false, size_t disp = 0)
+ {
+ const int jmpSize = relative ? 4 : (int)sizeof(size_t);
+ if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory();
+ size_t offset = 0;
+ if (labelMgr_.getOffset(&offset, label)) {
+ if (relative) {
+ db(inner::VerifyInInt32(offset + disp - size_ - jmpSize), jmpSize);
+ } else if (isAutoGrow()) {
+ db(uint64(0), jmpSize);
+ save(size_ - jmpSize, offset, jmpSize, inner::LaddTop);
+ } else {
+ db(size_t(top_) + offset, jmpSize);
+ }
+ return;
+ }
+ db(uint64(0), jmpSize);
+ JmpLabel jmp(size_, jmpSize, (relative ? inner::LasIs : isAutoGrow() ? inner::LaddTop : inner::Labs), disp);
+ labelMgr_.addUndefinedLabel(label, jmp);
+ }
+ void opMovxx(const Reg& reg, const Operand& op, uint8 code)
+ {
+ if (op.isBit(32)) throw Error(ERR_BAD_COMBINATION);
+ int w = op.isBit(16);
+#ifdef XBYAK64
+ if (op.isHigh8bit()) throw Error(ERR_BAD_COMBINATION);
+#endif
+ bool cond = reg.isREG() && (reg.getBit() > op.getBit());
+ opModRM(reg, op, cond && op.isREG(), cond && op.isMEM(), 0x0F, code | w);
+ }
+ void opFpuMem(const Address& addr, uint8 m16, uint8 m32, uint8 m64, uint8 ext, uint8 m64ext)
+ {
+ if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP);
+ uint8 code = addr.isBit(16) ? m16 : addr.isBit(32) ? m32 : addr.isBit(64) ? m64 : 0;
+ if (!code) throw Error(ERR_BAD_MEM_SIZE);
+ if (m64ext && addr.isBit(64)) ext = m64ext;
+
+ rex(addr, st0);
+ db(code);
+ opAddr(addr, ext);
+ }
+ // use code1 if reg1 == st0
+ // use code2 if reg1 != st0 && reg2 == st0
+ void opFpuFpu(const Fpu& reg1, const Fpu& reg2, uint32 code1, uint32 code2)
+ {
+ uint32 code = reg1.getIdx() == 0 ? code1 : reg2.getIdx() == 0 ? code2 : 0;
+ if (!code) throw Error(ERR_BAD_ST_COMBINATION);
+ db(uint8(code >> 8));
+ db(uint8(code | (reg1.getIdx() | reg2.getIdx())));
+ }
+ void opFpu(const Fpu& reg, uint8 code1, uint8 code2)
+ {
+ db(code1); db(code2 | reg.getIdx());
+ }
+ void opVex(const Reg& r, const Operand *p1, const Operand& op2, int type, int code, int imm8 = NONE)
+ {
+ if (op2.isMEM()) {
+ const Address& addr = op2.getAddress();
+ const RegExp& regExp = addr.getRegExp();
+ const Reg& base = regExp.getBase();
+ const Reg& index = regExp.getIndex();
+ if (BIT == 64 && addr.is32bit()) db(0x67);
+ int disp8N = 0;
+ bool x = index.isExtIdx();
+ if ((type & (T_MUST_EVEX|T_MEM_EVEX)) || r.hasEvex() || (p1 && p1->hasEvex()) || addr.isBroadcast() || addr.getOpmaskIdx()) {
+ int aaa = addr.getOpmaskIdx();
+ if (aaa && !(type & T_M_K)) throw Error(ERR_INVALID_OPMASK_WITH_MEMORY);
+ bool b = false;
+ if (addr.isBroadcast()) {
+ if (!(type & (T_B32 | T_B64))) throw Error(ERR_INVALID_BROADCAST);
+ b = true;
+ }
+ int VL = regExp.isVsib() ? index.getBit() : 0;
+ disp8N = evex(r, base, p1, type, code, x, b, aaa, VL, index.isExtIdx2());
+ } else {
+ vex(r, base, p1, type, code, x);
+ }
+ opAddr(addr, r.getIdx(), (imm8 != NONE) ? 1 : 0, disp8N, (type & T_VSIB) != 0);
+ } else {
+ const Reg& base = op2.getReg();
+ if ((type & T_MUST_EVEX) || r.hasEvex() || (p1 && p1->hasEvex()) || base.hasEvex()) {
+ evex(r, base, p1, type, code);
+ } else {
+ vex(r, base, p1, type, code);
+ }
+ setModRM(3, r.getIdx(), base.getIdx());
+ }
+ if (imm8 != NONE) db(imm8);
+ }
+ // (r, r, r/m) if isR_R_RM
+ // (r, r/m, r)
+ void opGpr(const Reg32e& r, const Operand& op1, const Operand& op2, int type, uint8 code, bool isR_R_RM, int imm8 = NONE)
+ {
+ const Operand *p1 = &op1;
+ const Operand *p2 = &op2;
+ if (!isR_R_RM) std::swap(p1, p2);
+ const unsigned int bit = r.getBit();
+ if (p1->getBit() != bit || (p2->isREG() && p2->getBit() != bit)) throw Error(ERR_BAD_COMBINATION);
+ type |= (bit == 64) ? T_W1 : T_W0;
+ opVex(r, p1, *p2, type, code, imm8);
+ }
+ void opAVX_X_X_XM(const Xmm& x1, const Operand& op1, const Operand& op2, int type, int code0, int imm8 = NONE)
+ {
+ const Xmm *x2 = static_cast<const Xmm*>(&op1);
+ const Operand *op = &op2;
+ if (op2.isNone()) { // (x1, op1) -> (x1, x1, op1)
+ x2 = &x1;
+ op = &op1;
+ }
+ // (x1, x2, op)
+ if (!((x1.isXMM() && x2->isXMM()) || ((type & T_YMM) && ((x1.isYMM() && x2->isYMM()) || (x1.isZMM() && x2->isZMM()))))) throw Error(ERR_BAD_COMBINATION);
+ opVex(x1, x2, *op, type, code0, imm8);
+ }
+ void opAVX_K_X_XM(const Opmask& k, const Xmm& x2, const Operand& op3, int type, int code0, int imm8 = NONE)
+ {
+ if (!op3.isMEM() && (x2.getKind() != op3.getKind())) throw Error(ERR_BAD_COMBINATION);
+ opVex(k, &x2, op3, type, code0, imm8);
+ }
+ // (x, x/m), (y, x/m256), (z, y/m)
+ void checkCvt1(const Operand& x, const Operand& op) const
+ {
+ if (!op.isMEM() && !(x.is(Operand::XMM | Operand::YMM) && op.isXMM()) && !(x.isZMM() && op.isYMM())) throw Error(ERR_BAD_COMBINATION);
+ }
+ // (x, x/m), (x, y/m256), (y, z/m)
+ void checkCvt2(const Xmm& x, const Operand& op) const
+ {
+ if (!(x.isXMM() && op.is(Operand::XMM | Operand::YMM | Operand::MEM)) && !(x.isYMM() && op.is(Operand::ZMM | Operand::MEM))) throw Error(ERR_BAD_COMBINATION);
+ }
+ void opCvt2(const Xmm& x, const Operand& op, int type, int code)
+ {
+ checkCvt2(x, op);
+ Operand::Kind kind = x.isXMM() ? (op.isBit(256) ? Operand::YMM : Operand::XMM) : Operand::ZMM;
+ opVex(x.copyAndSetKind(kind), &xm0, op, type, code);
+ }
+ void opCvt3(const Xmm& x1, const Xmm& x2, const Operand& op, int type, int type64, int type32, uint8 code)
+ {
+ if (!(x1.isXMM() && x2.isXMM() && (op.isREG(i32e) || op.isMEM()))) throw Error(ERR_BAD_SIZE_OF_REGISTER);
+ Xmm x(op.getIdx());
+ const Operand *p = op.isREG() ? &x : &op;
+ opVex(x1, &x2, *p, type | (op.isBit(64) ? type64 : type32), code);
+ }
+ const Xmm& cvtIdx0(const Operand& x) const
+ {
+ return x.isZMM() ? zm0 : x.isYMM() ? ym0 : xm0;
+ }
+ // support (x, x/m, imm), (y, y/m, imm)
+ void opAVX_X_XM_IMM(const Xmm& x, const Operand& op, int type, int code, int imm8 = NONE)
+ {
+ opAVX_X_X_XM(x, cvtIdx0(x), op, type, code, imm8);
+ }
+ // QQQ:need to refactor
+ void opSp1(const Reg& reg, const Operand& op, uint8 pref, uint8 code0, uint8 code1)
+ {
+ if (reg.isBit(8)) throw Error(ERR_BAD_SIZE_OF_REGISTER);
+ bool is16bit = reg.isREG(16) && (op.isREG(16) || op.isMEM());
+ if (!is16bit && !(reg.isREG(i32e) && (op.isREG(reg.getBit()) || op.isMEM()))) throw Error(ERR_BAD_COMBINATION);
+ if (is16bit) db(0x66);
+ db(pref); opModRM(reg.changeBit(i32e == 32 ? 32 : reg.getBit()), op, op.isREG(), true, code0, code1);
+ }
+ void opGather(const Xmm& x1, const Address& addr, const Xmm& x2, int type, uint8 code, int mode)
+ {
+ const RegExp& regExp = addr.getRegExp();
+ if (!regExp.isVsib(128 | 256)) throw Error(ERR_BAD_VSIB_ADDRESSING);
+ const int y_vx_y = 0;
+ const int y_vy_y = 1;
+// const int x_vy_x = 2;
+ const bool isAddrYMM = regExp.getIndex().getBit() == 256;
+ if (!x1.isXMM() || isAddrYMM || !x2.isXMM()) {
+ bool isOK = false;
+ if (mode == y_vx_y) {
+ isOK = x1.isYMM() && !isAddrYMM && x2.isYMM();
+ } else if (mode == y_vy_y) {
+ isOK = x1.isYMM() && isAddrYMM && x2.isYMM();
+ } else { // x_vy_x
+ isOK = !x1.isYMM() && isAddrYMM && !x2.isYMM();
+ }
+ if (!isOK) throw Error(ERR_BAD_VSIB_ADDRESSING);
+ }
+ opAVX_X_X_XM(isAddrYMM ? Ymm(x1.getIdx()) : x1, isAddrYMM ? Ymm(x2.getIdx()) : x2, addr, type, code);
+ }
+ enum {
+ xx_yy_zz = 0,
+ xx_yx_zy = 1,
+ xx_xy_yz = 2
+ };
+ void checkGather2(const Xmm& x1, const Reg& x2, int mode) const
+ {
+ if (x1.isXMM() && x2.isXMM()) return;
+ switch (mode) {
+ case xx_yy_zz: if ((x1.isYMM() && x2.isYMM()) || (x1.isZMM() && x2.isZMM())) return;
+ break;
+ case xx_yx_zy: if ((x1.isYMM() && x2.isXMM()) || (x1.isZMM() && x2.isYMM())) return;
+ break;
+ case xx_xy_yz: if ((x1.isXMM() && x2.isYMM()) || (x1.isYMM() && x2.isZMM())) return;
+ break;
+ }
+ throw Error(ERR_BAD_VSIB_ADDRESSING);
+ }
+ void opGather2(const Xmm& x, const Address& addr, int type, uint8 code, int mode)
+ {
+ if (x.hasZero()) throw Error(ERR_INVALID_ZERO);
+ checkGather2(x, addr.getRegExp().getIndex(), mode);
+ opVex(x, 0, addr, type, code);
+ }
+ /*
+ xx_xy_yz ; mode = true
+ xx_xy_xz ; mode = false
+ */
+ void opVmov(const Operand& op, const Xmm& x, int type, uint8 code, bool mode)
+ {
+ if (mode) {
+ if (!op.isMEM() && !((op.isXMM() && x.isXMM()) || (op.isXMM() && x.isYMM()) || (op.isYMM() && x.isZMM()))) throw Error(ERR_BAD_COMBINATION);
+ } else {
+ if (!op.isMEM() && !op.isXMM()) throw Error(ERR_BAD_COMBINATION);
+ }
+ opVex(x, 0, op, type, code);
+ }
+ void opGatherFetch(const Address& addr, const Xmm& x, int type, uint8 code, Operand::Kind kind)
+ {
+ if (addr.hasZero()) throw Error(ERR_INVALID_ZERO);
+ if (addr.getRegExp().getIndex().getKind() != kind) throw Error(ERR_BAD_VSIB_ADDRESSING);
+ opVex(x, 0, addr, type, code);
+ }
+public:
+ unsigned int getVersion() const { return VERSION; }
+ using CodeArray::db;
+ const Mmx mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7;
+ const Xmm xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
+ const Ymm ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7;
+ const Zmm zmm0, zmm1, zmm2, zmm3, zmm4, zmm5, zmm6, zmm7;
+ const Xmm &xm0, &xm1, &xm2, &xm3, &xm4, &xm5, &xm6, &xm7;
+ const Ymm &ym0, &ym1, &ym2, &ym3, &ym4, &ym5, &ym6, &ym7;
+ const Ymm &zm0, &zm1, &zm2, &zm3, &zm4, &zm5, &zm6, &zm7;
+ const Reg32 eax, ecx, edx, ebx, esp, ebp, esi, edi;
+ const Reg16 ax, cx, dx, bx, sp, bp, si, di;
+ const Reg8 al, cl, dl, bl, ah, ch, dh, bh;
+ const AddressFrame ptr, byte, word, dword, qword, xword, yword, zword; // xword is same as oword of NASM
+ const AddressFrame ptr_b, xword_b, yword_b, zword_b; // broadcast such as {1to2}, {1to4}, {1to8}, {1to16}, {b}
+ const Fpu st0, st1, st2, st3, st4, st5, st6, st7;
+ const Opmask k0, k1, k2, k3, k4, k5, k6, k7;
+ const BoundsReg bnd0, bnd1, bnd2, bnd3;
+ const EvexModifierRounding T_sae, T_rn_sae, T_rd_sae, T_ru_sae, T_rz_sae; // {sae}, {rn-sae}, {rd-sae}, {ru-sae}, {rz-sae}
+ const EvexModifierZero T_z; // {z}
+#ifdef XBYAK64
+ const Reg64 rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15;
+ const Reg32 r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d;
+ const Reg16 r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w;
+ const Reg8 r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b;
+ const Reg8 spl, bpl, sil, dil;
+ const Xmm xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
+ const Xmm xmm16, xmm17, xmm18, xmm19, xmm20, xmm21, xmm22, xmm23;
+ const Xmm xmm24, xmm25, xmm26, xmm27, xmm28, xmm29, xmm30, xmm31;
+ const Ymm ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15;
+ const Ymm ymm16, ymm17, ymm18, ymm19, ymm20, ymm21, ymm22, ymm23;
+ const Ymm ymm24, ymm25, ymm26, ymm27, ymm28, ymm29, ymm30, ymm31;
+ const Zmm zmm8, zmm9, zmm10, zmm11, zmm12, zmm13, zmm14, zmm15;
+ const Zmm zmm16, zmm17, zmm18, zmm19, zmm20, zmm21, zmm22, zmm23;
+ const Zmm zmm24, zmm25, zmm26, zmm27, zmm28, zmm29, zmm30, zmm31;
+ const Xmm &xm8, &xm9, &xm10, &xm11, &xm12, &xm13, &xm14, &xm15; // for my convenience
+ const Xmm &xm16, &xm17, &xm18, &xm19, &xm20, &xm21, &xm22, &xm23;
+ const Xmm &xm24, &xm25, &xm26, &xm27, &xm28, &xm29, &xm30, &xm31;
+ const Ymm &ym8, &ym9, &ym10, &ym11, &ym12, &ym13, &ym14, &ym15;
+ const Ymm &ym16, &ym17, &ym18, &ym19, &ym20, &ym21, &ym22, &ym23;
+ const Ymm &ym24, &ym25, &ym26, &ym27, &ym28, &ym29, &ym30, &ym31;
+ const Zmm &zm8, &zm9, &zm10, &zm11, &zm12, &zm13, &zm14, &zm15;
+ const Zmm &zm16, &zm17, &zm18, &zm19, &zm20, &zm21, &zm22, &zm23;
+ const Zmm &zm24, &zm25, &zm26, &zm27, &zm28, &zm29, &zm30, &zm31;
+ const RegRip rip;
+#endif
+#ifndef XBYAK_DISABLE_SEGMENT
+ const Segment es, cs, ss, ds, fs, gs;
+#endif
+ void L(const std::string& label) { labelMgr_.defineSlabel(label); }
+ void L(Label& label) { labelMgr_.defineClabel(label); }
+ Label L() { Label label; L(label); return label; }
+ void inLocalLabel() { labelMgr_.enterLocal(); }
+ void outLocalLabel() { labelMgr_.leaveLocal(); }
+ /*
+ assign src to dst
+ require
+ dst : does not used by L()
+ src : used by L()
+ */
+ void assignL(Label& dst, const Label& src) { labelMgr_.assign(dst, src); }
+ /*
+ put address of label to buffer
+ @note the put size is 4(32-bit), 8(64-bit)
+ */
+ void putL(std::string label) { putL_inner(label); }
+ void putL(const Label& label) { putL_inner(label); }
+
+ void jmp(const Operand& op) { opR_ModM(op, BIT, 4, 0xFF, NONE, NONE, true); }
+ void jmp(std::string label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); }
+ void jmp(const char *label, LabelType type = T_AUTO) { jmp(std::string(label), type); }
+ void jmp(const Label& label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); }
+ void jmp(const void *addr, LabelType type = T_AUTO) { opJmpAbs(addr, type, 0xEB, 0xE9); }
+
+ void call(const Operand& op) { opR_ModM(op, 16 | i32e, 2, 0xFF, NONE, NONE, true); }
+ // call(string label), not const std::string&
+ void call(std::string label) { opJmp(label, T_NEAR, 0, 0xE8, 0); }
+ void call(const char *label) { call(std::string(label)); }
+ void call(const Label& label) { opJmp(label, T_NEAR, 0, 0xE8, 0); }
+ // call(function pointer)
+#ifdef XBYAK_VARIADIC_TEMPLATE
+ template<class Ret, class... Params>
+ void call(Ret(*func)(Params...)) { call(reinterpret_cast<const void*>(func)); }
+#endif
+ void call(const void *addr) { opJmpAbs(addr, T_NEAR, 0, 0xE8); }
+
+ void test(const Operand& op, const Reg& reg)
+ {
+ opModRM(reg, op, op.isREG() && (op.getKind() == reg.getKind()), op.isMEM(), 0x84);
+ }
+ void test(const Operand& op, uint32 imm)
+ {
+ verifyMemHasSize(op);
+ int immSize = (std::min)(op.getBit() / 8, 4U);
+ if (op.isREG() && op.getIdx() == 0) { // al, ax, eax
+ rex(op);
+ db(0xA8 | (op.isBit(8) ? 0 : 1));
+ } else {
+ opR_ModM(op, 0, 0, 0xF6, NONE, NONE, false, immSize);
+ }
+ db(imm, immSize);
+ }
+ void imul(const Reg& reg, const Operand& op)
+ {
+ opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), 0x0F, 0xAF);
+ }
+ void imul(const Reg& reg, const Operand& op, int imm)
+ {
+ int s = inner::IsInDisp8(imm) ? 1 : 0;
+ int immSize = s ? 1 : reg.isREG(16) ? 2 : 4;
+ opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), 0x69 | (s << 1), NONE, NONE, immSize);
+ db(imm, immSize);
+ }
+ void push(const Operand& op) { opPushPop(op, 0xFF, 6, 0x50); }
+ void pop(const Operand& op) { opPushPop(op, 0x8F, 0, 0x58); }
+ void push(const AddressFrame& af, uint32 imm)
+ {
+ if (af.bit_ == 8 && inner::IsInDisp8(imm)) {
+ db(0x6A); db(imm);
+ } else if (af.bit_ == 16 && isInDisp16(imm)) {
+ db(0x66); db(0x68); dw(imm);
+ } else {
+ db(0x68); dd(imm);
+ }
+ }
+ /* use "push(word, 4)" if you want "push word 4" */
+ void push(uint32 imm)
+ {
+ if (inner::IsInDisp8(imm)) {
+ push(byte, imm);
+ } else {
+ push(dword, imm);
+ }
+ }
+ void mov(const Operand& reg1, const Operand& reg2)
+ {
+ const Reg *reg = 0;
+ const Address *addr = 0;
+ uint8 code = 0;
+ if (reg1.isREG() && reg1.getIdx() == 0 && reg2.isMEM()) { // mov eax|ax|al, [disp]
+ reg = &reg1.getReg();
+ addr= &reg2.getAddress();
+ code = 0xA0;
+ } else
+ if (reg1.isMEM() && reg2.isREG() && reg2.getIdx() == 0) { // mov [disp], eax|ax|al
+ reg = &reg2.getReg();
+ addr= &reg1.getAddress();
+ code = 0xA2;
+ }
+#ifdef XBYAK64
+ if (addr && addr->is64bitDisp()) {
+ if (code) {
+ rex(*reg);
+ db(reg1.isREG(8) ? 0xA0 : reg1.isREG() ? 0xA1 : reg2.isREG(8) ? 0xA2 : 0xA3);
+ db(addr->getDisp(), 8);
+ } else {
+ throw Error(ERR_BAD_COMBINATION);
+ }
+ } else
+#else
+ if (code && addr->isOnlyDisp()) {
+ rex(*reg, *addr);
+ db(code | (reg->isBit(8) ? 0 : 1));
+ dd(static_cast<uint32>(addr->getDisp()));
+ } else
+#endif
+ {
+ opRM_RM(reg1, reg2, 0x88);
+ }
+ }
+ void mov(const Operand& op, size_t imm)
+ {
+ if (op.isREG()) {
+ const int size = mov_imm(op.getReg(), imm);
+ db(imm, size);
+ } else if (op.isMEM()) {
+ verifyMemHasSize(op);
+ int immSize = op.getBit() / 8;
+ if (immSize <= 4) {
+ sint64 s = sint64(imm) >> (immSize * 8);
+ if (s != 0 && s != -1) throw Error(ERR_IMM_IS_TOO_BIG);
+ } else {
+ if (!inner::IsInInt32(imm)) throw Error(ERR_IMM_IS_TOO_BIG);
+ immSize = 4;
+ }
+ opModM(op.getAddress(), Reg(0, Operand::REG, op.getBit()), 0xC6, NONE, NONE, immSize);
+ db(static_cast<uint32>(imm), immSize);
+ } else {
+ throw Error(ERR_BAD_COMBINATION);
+ }
+ }
+ void mov(const NativeReg& reg, const char *label) // can't use std::string
+ {
+ if (label == 0) {
+ mov(static_cast<const Operand&>(reg), 0); // call imm
+ return;
+ }
+ mov_imm(reg, dummyAddr);
+ putL(label);
+ }
+ void mov(const NativeReg& reg, const Label& label)
+ {
+ mov_imm(reg, dummyAddr);
+ putL(label);
+ }
+ void xchg(const Operand& op1, const Operand& op2)
+ {
+ const Operand *p1 = &op1, *p2 = &op2;
+ if (p1->isMEM() || (p2->isREG(16 | i32e) && p2->getIdx() == 0)) {
+ p1 = &op2; p2 = &op1;
+ }
+ if (p1->isMEM()) throw Error(ERR_BAD_COMBINATION);
+ if (p2->isREG() && (p1->isREG(16 | i32e) && p1->getIdx() == 0)
+#ifdef XBYAK64
+ && (p2->getIdx() != 0 || !p1->isREG(32))
+#endif
+ ) {
+ rex(*p2, *p1); db(0x90 | (p2->getIdx() & 7));
+ return;
+ }
+ opModRM(*p1, *p2, (p1->isREG() && p2->isREG() && (p1->getBit() == p2->getBit())), p2->isMEM(), 0x86 | (p1->isBit(8) ? 0 : 1));
+ }
+
+#ifndef XBYAK_DISABLE_SEGMENT
+ void push(const Segment& seg)
+ {
+ switch (seg.getIdx()) {
+ case Segment::es: db(0x06); break;
+ case Segment::cs: db(0x0E); break;
+ case Segment::ss: db(0x16); break;
+ case Segment::ds: db(0x1E); break;
+ case Segment::fs: db(0x0F); db(0xA0); break;
+ case Segment::gs: db(0x0F); db(0xA8); break;
+ default:
+ assert(0);
+ }
+ }
+ void pop(const Segment& seg)
+ {
+ switch (seg.getIdx()) {
+ case Segment::es: db(0x07); break;
+ case Segment::cs: throw Error(ERR_BAD_COMBINATION);
+ case Segment::ss: db(0x17); break;
+ case Segment::ds: db(0x1F); break;
+ case Segment::fs: db(0x0F); db(0xA1); break;
+ case Segment::gs: db(0x0F); db(0xA9); break;
+ default:
+ assert(0);
+ }
+ }
+ void putSeg(const Segment& seg)
+ {
+ switch (seg.getIdx()) {
+ case Segment::es: db(0x2E); break;
+ case Segment::cs: db(0x36); break;
+ case Segment::ss: db(0x3E); break;
+ case Segment::ds: db(0x26); break;
+ case Segment::fs: db(0x64); break;
+ case Segment::gs: db(0x65); break;
+ default:
+ assert(0);
+ }
+ }
+ void mov(const Operand& op, const Segment& seg)
+ {
+ opModRM(Reg8(seg.getIdx()), op, op.isREG(16|i32e), op.isMEM(), 0x8C);
+ }
+ void mov(const Segment& seg, const Operand& op)
+ {
+ opModRM(Reg8(seg.getIdx()), op.isREG(16|i32e) ? static_cast<const Operand&>(op.getReg().cvt32()) : op, op.isREG(16|i32e), op.isMEM(), 0x8E);
+ }
+#endif
+
+ enum { NONE = 256 };
+ // constructor
+ CodeGenerator(size_t maxSize = DEFAULT_MAX_CODE_SIZE, void *userPtr = 0, Allocator *allocator = 0)
+ : CodeArray(maxSize, userPtr, allocator)
+ , mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7)
+ , xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7)
+ , ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7)
+ , zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7)
+ // for my convenience
+ , xm0(xmm0), xm1(xmm1), xm2(xmm2), xm3(xmm3), xm4(xmm4), xm5(xmm5), xm6(xmm6), xm7(xmm7)
+ , ym0(ymm0), ym1(ymm1), ym2(ymm2), ym3(ymm3), ym4(ymm4), ym5(ymm5), ym6(ymm6), ym7(ymm7)
+ , zm0(zmm0), zm1(zmm1), zm2(zmm2), zm3(zmm3), zm4(zmm4), zm5(zmm5), zm6(zmm6), zm7(zmm7)
+
+ , eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI)
+ , ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI)
+ , al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH)
+ , ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512)
+ , ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true)
+ , st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7)
+ , k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7)
+ , bnd0(0), bnd1(1), bnd2(2), bnd3(3)
+ , T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE)
+ , T_z()
+#ifdef XBYAK64
+ , rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15)
+ , r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15)
+ , r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15)
+ , r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15)
+ , spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true)
+ , xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15)
+ , xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23)
+ , xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31)
+ , ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15)
+ , ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23)
+ , ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31)
+ , zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15)
+ , zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23)
+ , zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31)
+ // for my convenience
+ , xm8(xmm8), xm9(xmm9), xm10(xmm10), xm11(xmm11), xm12(xmm12), xm13(xmm13), xm14(xmm14), xm15(xmm15)
+ , xm16(xmm16), xm17(xmm17), xm18(xmm18), xm19(xmm19), xm20(xmm20), xm21(xmm21), xm22(xmm22), xm23(xmm23)
+ , xm24(xmm24), xm25(xmm25), xm26(xmm26), xm27(xmm27), xm28(xmm28), xm29(xmm29), xm30(xmm30), xm31(xmm31)
+ , ym8(ymm8), ym9(ymm9), ym10(ymm10), ym11(ymm11), ym12(ymm12), ym13(ymm13), ym14(ymm14), ym15(ymm15)
+ , ym16(ymm16), ym17(ymm17), ym18(ymm18), ym19(ymm19), ym20(ymm20), ym21(ymm21), ym22(ymm22), ym23(ymm23)
+ , ym24(ymm24), ym25(ymm25), ym26(ymm26), ym27(ymm27), ym28(ymm28), ym29(ymm29), ym30(ymm30), ym31(ymm31)
+ , zm8(zmm8), zm9(zmm9), zm10(zmm10), zm11(zmm11), zm12(zmm12), zm13(zmm13), zm14(zmm14), zm15(zmm15)
+ , zm16(zmm16), zm17(zmm17), zm18(zmm18), zm19(zmm19), zm20(zmm20), zm21(zmm21), zm22(zmm22), zm23(zmm23)
+ , zm24(zmm24), zm25(zmm25), zm26(zmm26), zm27(zmm27), zm28(zmm28), zm29(zmm29), zm30(zmm30), zm31(zmm31)
+ , rip()
+#endif
+#ifndef XBYAK_DISABLE_SEGMENT
+ , es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs)
+#endif
+ {
+ labelMgr_.set(this);
+ }
+ void reset()
+ {
+ resetSize();
+ labelMgr_.reset();
+ labelMgr_.set(this);
+ }
+ bool hasUndefinedLabel() const { return labelMgr_.hasUndefSlabel() || labelMgr_.hasUndefClabel(); }
+ /*
+ MUST call ready() to complete generating code if you use AutoGrow mode.
+ It is not necessary for the other mode if hasUndefinedLabel() is true.
+ */
+ void ready(ProtectMode mode = PROTECT_RWE)
+ {
+ if (hasUndefinedLabel()) throw Error(ERR_LABEL_IS_NOT_FOUND);
+ if (isAutoGrow()) {
+ calcJmpAddress();
+ if (useProtect()) setProtectMode(mode);
+ }
+ }
+ // set read/exec
+ void readyRE() { return ready(PROTECT_RE); }
+#ifdef XBYAK_TEST
+ void dump(bool doClear = true)
+ {
+ CodeArray::dump();
+ if (doClear) size_ = 0;
+ }
+#endif
+
+#ifdef XBYAK_UNDEF_JNL
+ #undef jnl
+#endif
+
+ /*
+ use single byte nop if useMultiByteNop = false
+ */
+ void nop(size_t size = 1, bool useMultiByteNop = true)
+ {
+ if (!useMultiByteNop) {
+ for (size_t i = 0; i < size; i++) {
+ db(0x90);
+ }
+ return;
+ }
+ /*
+ Intel Architectures Software Developer's Manual Volume 2
+ recommended multi-byte sequence of NOP instruction
+ AMD and Intel seem to agree on the same sequences for up to 9 bytes:
+ https://support.amd.com/TechDocs/55723_SOG_Fam_17h_Processors_3.00.pdf
+ */
+ static const uint8 nopTbl[9][9] = {
+ {0x90},
+ {0x66, 0x90},
+ {0x0F, 0x1F, 0x00},
+ {0x0F, 0x1F, 0x40, 0x00},
+ {0x0F, 0x1F, 0x44, 0x00, 0x00},
+ {0x66, 0x0F, 0x1F, 0x44, 0x00, 0x00},
+ {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
+ {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
+ {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
+ };
+ const size_t n = sizeof(nopTbl) / sizeof(nopTbl[0]);
+ while (size > 0) {
+ size_t len = (std::min)(n, size);
+ const uint8 *seq = nopTbl[len - 1];
+ db(seq, len);
+ size -= len;
+ }
+ }
+
+#ifndef XBYAK_DONT_READ_LIST
+#include "xbyak_mnemonic.h"
+ /*
+ use single byte nop if useMultiByteNop = false
+ */
+ void align(size_t x = 16, bool useMultiByteNop = true)
+ {
+ if (x == 1) return;
+ if (x < 1 || (x & (x - 1))) throw Error(ERR_BAD_ALIGN);
+ if (isAutoGrow() && x > inner::ALIGN_PAGE_SIZE) fprintf(stderr, "warning:autoGrow mode does not support %d align\n", (int)x);
+ size_t remain = size_t(getCurr()) % x;
+ if (remain) {
+ nop(x - remain, useMultiByteNop);
+ }
+ }
+#endif
+};
+
+namespace util {
+static const Mmx mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7);
+static const Xmm xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7);
+static const Ymm ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7);
+static const Zmm zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7);
+static const Reg32 eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI);
+static const Reg16 ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI);
+static const Reg8 al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH);
+static const AddressFrame ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512);
+static const AddressFrame ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true);
+static const Fpu st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7);
+static const Opmask k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7);
+static const BoundsReg bnd0(0), bnd1(1), bnd2(2), bnd3(3);
+static const EvexModifierRounding T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE);
+static const EvexModifierZero T_z;
+#ifdef XBYAK64
+static const Reg64 rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15);
+static const Reg32 r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15);
+static const Reg16 r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15);
+static const Reg8 r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15), spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true);
+static const Xmm xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15);
+static const Xmm xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23);
+static const Xmm xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31);
+static const Ymm ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15);
+static const Ymm ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23);
+static const Ymm ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31);
+static const Zmm zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15);
+static const Zmm zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23);
+static const Zmm zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31);
+static const RegRip rip;
+#endif
+#ifndef XBYAK_DISABLE_SEGMENT
+static const Segment es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs);
+#endif
+} // util
+
+#ifdef _MSC_VER
+ #pragma warning(pop)
+#endif
+
+} // end of namespace
+
+#endif // XBYAK_XBYAK_H_