aboutsummaryrefslogtreecommitdiffstats
path: root/p2p
diff options
context:
space:
mode:
Diffstat (limited to 'p2p')
-rw-r--r--p2p/handshake.go157
-rw-r--r--p2p/handshake_test.go100
-rw-r--r--p2p/rlpx.go66
-rw-r--r--p2p/rlpx_test.go46
4 files changed, 197 insertions, 172 deletions
diff --git a/p2p/handshake.go b/p2p/handshake.go
index 614711eaf..17f572dea 100644
--- a/p2p/handshake.go
+++ b/p2p/handshake.go
@@ -5,12 +5,14 @@ import (
"crypto/rand"
"errors"
"fmt"
+ "hash"
"io"
"net"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
+ "github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/rlp"
)
@@ -38,13 +40,23 @@ func newConn(fd net.Conn, hs *protoHandshake) *conn {
return &conn{newFrameRW(fd, msgWriteTimeout), hs}
}
-// encHandshake represents information about the remote end
-// of a connection that is negotiated during the encryption handshake.
+// encHandshake contains the state of the encryption handshake.
type encHandshake struct {
- ID discover.NodeID
- IngressMAC []byte
- EgressMAC []byte
- Token []byte
+ remoteID discover.NodeID
+ initiator bool
+ initNonce, respNonce []byte
+ dhSharedSecret []byte
+ randomPrivKey *ecdsa.PrivateKey
+ remoteRandomPub *ecdsa.PublicKey
+}
+
+// secrets represents the connection secrets
+// which are negotiated during the encryption handshake.
+type secrets struct {
+ RemoteID discover.NodeID
+ AES, MAC []byte
+ EgressMAC, IngressMAC hash.Hash
+ Token []byte
}
// protoHandshake is the RLP structure of the protocol handshake.
@@ -56,6 +68,34 @@ type protoHandshake struct {
ID discover.NodeID
}
+// secrets is called after the handshake is completed.
+// It extracts the connection secrets from the handshake values.
+func (h *encHandshake) secrets(auth, authResp []byte) secrets {
+ sharedSecret := crypto.Sha3(h.dhSharedSecret, crypto.Sha3(h.respNonce, h.initNonce))
+ aesSecret := crypto.Sha3(h.dhSharedSecret, sharedSecret)
+ s := secrets{
+ RemoteID: h.remoteID,
+ AES: aesSecret,
+ MAC: crypto.Sha3(h.dhSharedSecret, aesSecret),
+ Token: crypto.Sha3(sharedSecret),
+ }
+
+ // setup sha3 instances for the MACs
+ mac1 := sha3.NewKeccak256()
+ mac1.Write(xor(s.MAC, h.respNonce))
+ mac1.Write(auth)
+ mac2 := sha3.NewKeccak256()
+ mac2.Write(xor(s.MAC, h.initNonce))
+ mac2.Write(authResp)
+ if h.initiator {
+ s.EgressMAC, s.IngressMAC = mac1, mac2
+ } else {
+ s.EgressMAC, s.IngressMAC = mac2, mac1
+ }
+
+ return s
+}
+
// setupConn starts a protocol session on the given connection.
// It runs the encryption handshake and the protocol handshake.
// If dial is non-nil, the connection the local node is the initiator.
@@ -68,36 +108,47 @@ func setupConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *di
}
func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (*conn, error) {
- // var remotePubkey []byte
- // sessionToken, remotePubkey, err = inboundEncHandshake(fd, prv, nil)
- // copy(remoteID[:], remotePubkey)
+ secrets, err := inboundEncHandshake(fd, prv, nil)
+ if err != nil {
+ return nil, fmt.Errorf("encryption handshake failed: %v", err)
+ }
- rw := newFrameRW(fd, msgWriteTimeout)
- rhs, err := readProtocolHandshake(rw, our)
+ // Run the protocol handshake using authenticated messages.
+ // TODO: move buffering setup here (out of newFrameRW)
+ phsrw := newRlpxFrameRW(fd, secrets)
+ rhs, err := readProtocolHandshake(phsrw, our)
if err != nil {
return nil, err
}
- if err := writeProtocolHandshake(rw, our); err != nil {
+ if err := writeProtocolHandshake(phsrw, our); err != nil {
return nil, fmt.Errorf("protocol write error: %v", err)
}
+
+ rw := newFrameRW(fd, msgWriteTimeout)
return &conn{rw, rhs}, nil
}
func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
- // remoteID = dial.ID
- // sessionToken, err = outboundEncHandshake(fd, prv, remoteID[:], nil)
+ secrets, err := outboundEncHandshake(fd, prv, dial.ID[:], nil)
+ if err != nil {
+ return nil, fmt.Errorf("encryption handshake failed: %v", err)
+ }
- rw := newFrameRW(fd, msgWriteTimeout)
- if err := writeProtocolHandshake(rw, our); err != nil {
+ // Run the protocol handshake using authenticated messages.
+ // TODO: move buffering setup here (out of newFrameRW)
+ phsrw := newRlpxFrameRW(fd, secrets)
+ if err := writeProtocolHandshake(phsrw, our); err != nil {
return nil, fmt.Errorf("protocol write error: %v", err)
}
- rhs, err := readProtocolHandshake(rw, our)
+ rhs, err := readProtocolHandshake(phsrw, our)
if err != nil {
return nil, fmt.Errorf("protocol handshake read error: %v", err)
}
if rhs.ID != dial.ID {
return nil, errors.New("dialed node id mismatch")
}
+
+ rw := newFrameRW(fd, msgWriteTimeout)
return &conn{rw, rhs}, nil
}
@@ -107,43 +158,48 @@ func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake,
// privateKey is the local client's private key
// remotePublicKey is the remote peer's node ID
// sessionToken is the token from a previous session with this node.
-func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (
- newSessionToken []byte,
- err error,
-) {
+func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (s secrets, err error) {
auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken)
if err != nil {
- return nil, err
+ return s, err
}
if _, err = conn.Write(auth); err != nil {
- return nil, err
+ return s, err
}
response := make([]byte, rHSLen)
if _, err = io.ReadFull(conn, response); err != nil {
- return nil, err
+ return s, err
}
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey)
if err != nil {
- return nil, err
+ return s, err
}
- return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
+ h := &encHandshake{
+ initiator: true,
+ initNonce: initNonce,
+ respNonce: recNonce,
+ randomPrivKey: randomPrivKey,
+ remoteRandomPub: remoteRandomPubKey,
+ }
+ copy(h.remoteID[:], remotePublicKey)
+ return h.secrets(auth, response), nil
}
// authMsg creates the initiator handshake.
+// TODO: change all the names
func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
auth, initNonce []byte,
randomPrvKey *ecdsa.PrivateKey,
err error,
) {
- // session init, common to both parties
remotePubKey, err := importPublicKey(remotePubKeyS)
if err != nil {
return
}
- var tokenFlag byte // = 0x00
+ var tokenFlag byte
if sessionToken == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
@@ -151,14 +207,13 @@ func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
return
}
- // tokenFlag = 0x00 // redundant
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
- //E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
- // E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
+ //E(remote-pubk, S(ecdhe-random, sha3(ecdh-shared-secret^nonce)) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
+ // E(remote-pubk, S(ecdhe-random, sha3(token^nonce)) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
// allocate msgLen long message,
var msg []byte = make([]byte, authMsgLen)
initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
@@ -242,27 +297,32 @@ func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) (
//
// privateKey is the local client's private key
// sessionToken is the token from a previous session with this node.
-func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (
- token, remotePubKey []byte,
- err error,
-) {
+func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (s secrets, err error) {
// we are listening connection. we are responders in the
// handshake. Extract info from the authentication. The initiator
// starts by sending us a handshake that we need to respond to. so
// we read auth message first, then respond.
auth := make([]byte, iHSLen)
if _, err := io.ReadFull(conn, auth); err != nil {
- return nil, nil, err
+ return s, err
}
response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey)
if err != nil {
- return nil, nil, err
+ return s, err
}
if _, err = conn.Write(response); err != nil {
- return nil, nil, err
+ return s, err
}
- token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
- return token, remotePubKey, err
+
+ h := &encHandshake{
+ initiator: false,
+ initNonce: initNonce,
+ respNonce: recNonce,
+ randomPrivKey: randomPrivKey,
+ remoteRandomPub: remoteRandomPubKey,
+ }
+ copy(h.remoteID[:], remotePubKey)
+ return h.secrets(auth, response), err
}
// authResp is called by peer if it accepted (but not
@@ -349,23 +409,6 @@ func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) (
return
}
-// newSession is called after the handshake is completed. The
-// arguments are values negotiated in the handshake. The return value
-// is a new session Token to be remembered for the next time we
-// connect with this peer.
-func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) {
- // 3) Now we can trust ecdhe-random-pubk to derive new keys
- //ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
- pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey)
- dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen)
- if err != nil {
- return nil, err
- }
- sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce))
- sessionToken := crypto.Sha3(sharedSecret)
- return sessionToken, nil
-}
-
// importPublicKey unmarshals 512 bit public keys.
func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
var pubKey65 []byte
diff --git a/p2p/handshake_test.go b/p2p/handshake_test.go
index 06c6a6932..66e610d17 100644
--- a/p2p/handshake_test.go
+++ b/p2p/handshake_test.go
@@ -2,8 +2,6 @@ package p2p
import (
"bytes"
- "crypto/ecdsa"
- "crypto/rand"
"net"
"reflect"
"testing"
@@ -69,102 +67,46 @@ func TestSharedSecret(t *testing.T) {
}
}
-func TestCryptoHandshake(t *testing.T) {
- testCryptoHandshake(newkey(), newkey(), nil, t)
-}
-
-func TestCryptoHandshakeWithToken(t *testing.T) {
- sessionToken := make([]byte, shaLen)
- rand.Read(sessionToken)
- testCryptoHandshake(newkey(), newkey(), sessionToken, t)
-}
-
-func testCryptoHandshake(prv0, prv1 *ecdsa.PrivateKey, sessionToken []byte, t *testing.T) {
- var err error
- // pub0 := &prv0.PublicKey
- pub1 := &prv1.PublicKey
-
- // pub0s := crypto.FromECDSAPub(pub0)
- pub1s := crypto.FromECDSAPub(pub1)
-
- // simulate handshake by feeding output to input
- // initiator sends handshake 'auth'
- auth, initNonce, randomPrivKey, err := authMsg(prv0, pub1s, sessionToken)
- if err != nil {
- t.Errorf("%v", err)
- }
- // t.Logf("-> %v", hexkey(auth))
-
- // receiver reads auth and responds with response
- response, remoteRecNonce, remoteInitNonce, _, remoteRandomPrivKey, remoteInitRandomPubKey, err := authResp(auth, sessionToken, prv1)
- if err != nil {
- t.Errorf("%v", err)
- }
- // t.Logf("<- %v\n", hexkey(response))
-
- // initiator reads receiver's response and the key exchange completes
- recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prv0)
- if err != nil {
- t.Errorf("completeHandshake error: %v", err)
- }
-
- // now both parties should have the same session parameters
- initSessionToken, err := newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
- if err != nil {
- t.Errorf("newSession error: %v", err)
- }
-
- recSessionToken, err := newSession(remoteInitNonce, remoteRecNonce, remoteRandomPrivKey, remoteInitRandomPubKey)
- if err != nil {
- t.Errorf("newSession error: %v", err)
- }
-
- // fmt.Printf("\nauth (%v) %x\n\nresp (%v) %x\n\n", len(auth), auth, len(response), response)
-
- // fmt.Printf("\nauth %x\ninitNonce %x\nresponse%x\nremoteRecNonce %x\nremoteInitNonce %x\nremoteRandomPubKey %x\nrecNonce %x\nremoteInitRandomPubKey %x\ninitSessionToken %x\n\n", auth, initNonce, response, remoteRecNonce, remoteInitNonce, remoteRandomPubKey, recNonce, remoteInitRandomPubKey, initSessionToken)
-
- if !bytes.Equal(initNonce, remoteInitNonce) {
- t.Errorf("nonces do not match")
- }
- if !bytes.Equal(recNonce, remoteRecNonce) {
- t.Errorf("receiver nonces do not match")
- }
- if !bytes.Equal(initSessionToken, recSessionToken) {
- t.Errorf("session tokens do not match")
- }
-}
-
func TestEncHandshake(t *testing.T) {
defer testlog(t).detach()
prv0, _ := crypto.GenerateKey()
prv1, _ := crypto.GenerateKey()
- pub0s, _ := exportPublicKey(&prv0.PublicKey)
- pub1s, _ := exportPublicKey(&prv1.PublicKey)
rw0, rw1 := net.Pipe()
- tokens := make(chan []byte)
+ secrets := make(chan secrets)
go func() {
- token, err := outboundEncHandshake(rw0, prv0, pub1s, nil)
+ pub1s, _ := exportPublicKey(&prv1.PublicKey)
+ s, err := outboundEncHandshake(rw0, prv0, pub1s, nil)
if err != nil {
t.Errorf("outbound side error: %v", err)
}
- tokens <- token
+ id1 := discover.PubkeyID(&prv1.PublicKey)
+ if s.RemoteID != id1 {
+ t.Errorf("outbound side remote ID mismatch")
+ }
+ secrets <- s
}()
go func() {
- token, remotePubkey, err := inboundEncHandshake(rw1, prv1, nil)
+ s, err := inboundEncHandshake(rw1, prv1, nil)
if err != nil {
t.Errorf("inbound side error: %v", err)
}
- if !bytes.Equal(remotePubkey, pub0s) {
- t.Errorf("inbound side returned wrong remote pubkey\n got: %x\n want: %x", remotePubkey, pub0s)
+ id0 := discover.PubkeyID(&prv0.PublicKey)
+ if s.RemoteID != id0 {
+ t.Errorf("inbound side remote ID mismatch")
}
- tokens <- token
+ secrets <- s
}()
- t1, t2 := <-tokens, <-tokens
- if !bytes.Equal(t1, t2) {
- t.Error("session token mismatch")
+ // get computed secrets from both sides
+ t1, t2 := <-secrets, <-secrets
+ // don't compare remote node IDs
+ t1.RemoteID, t2.RemoteID = discover.NodeID{}, discover.NodeID{}
+ // flip MACs on one of them so they compare equal
+ t1.EgressMAC, t1.IngressMAC = t1.IngressMAC, t1.EgressMAC
+ if !reflect.DeepEqual(t1, t2) {
+ t.Errorf("secrets mismatch:\n t1: %#v\n t2: %#v", t1, t2)
}
}
diff --git a/p2p/rlpx.go b/p2p/rlpx.go
index 9fd1aed1f..761dc2ed9 100644
--- a/p2p/rlpx.go
+++ b/p2p/rlpx.go
@@ -13,24 +13,44 @@ import (
)
var (
+ // this is used in place of actual frame header data.
+ // TODO: replace this when Msg contains the protocol type code.
zeroHeader = []byte{0xC2, 0x80, 0x80}
- zero16 = make([]byte, 16)
+
+ // sixteen zero bytes
+ zero16 = make([]byte, 16)
)
type rlpxFrameRW struct {
conn io.ReadWriter
+ enc cipher.Stream
+ dec cipher.Stream
macCipher cipher.Block
egressMAC hash.Hash
ingressMAC hash.Hash
}
-func newRlpxFrameRW(conn io.ReadWriter, macSecret []byte, egressMAC, ingressMAC hash.Hash) *rlpxFrameRW {
- cipher, err := aes.NewCipher(macSecret)
+func newRlpxFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
+ macc, err := aes.NewCipher(s.MAC)
+ if err != nil {
+ panic("invalid MAC secret: " + err.Error())
+ }
+ encc, err := aes.NewCipher(s.AES)
if err != nil {
- panic("invalid macSecret: " + err.Error())
+ panic("invalid AES secret: " + err.Error())
+ }
+ // we use an all-zeroes IV for AES because the key used
+ // for encryption is ephemeral.
+ iv := make([]byte, encc.BlockSize())
+ return &rlpxFrameRW{
+ conn: conn,
+ enc: cipher.NewCTR(encc, iv),
+ dec: cipher.NewCTR(encc, iv),
+ macCipher: macc,
+ egressMAC: s.EgressMAC,
+ ingressMAC: s.IngressMAC,
}
- return &rlpxFrameRW{conn: conn, macCipher: cipher, egressMAC: egressMAC, ingressMAC: ingressMAC}
}
func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
@@ -41,13 +61,14 @@ func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
fsize := uint32(len(ptype)) + msg.Size
putInt24(fsize, headbuf) // TODO: check overflow
copy(headbuf[3:], zeroHeader)
+ rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
copy(headbuf[16:], updateHeaderMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
if _, err := rw.conn.Write(headbuf); err != nil {
return err
}
- // write frame, updating the egress MAC while writing to conn.
- tee := io.MultiWriter(rw.conn, rw.egressMAC)
+ // write encrypted frame, updating the egress MAC while writing to conn.
+ tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
if _, err := tee.Write(ptype); err != nil {
return err
}
@@ -62,7 +83,8 @@ func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
// write packet-mac. egress MAC is up to date because
// frame content was written to it as well.
- _, err := rw.conn.Write(rw.egressMAC.Sum(nil))
+ mac := updateHeaderMAC(rw.egressMAC, rw.macCipher, rw.egressMAC.Sum(nil))
+ _, err := rw.conn.Write(mac)
return err
}
@@ -72,34 +94,40 @@ func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
return msg, err
}
- fsize := readInt24(headbuf)
- // ignore protocol type for now
+ // verify header mac
shouldMAC := updateHeaderMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
if !hmac.Equal(shouldMAC[:16], headbuf[16:]) {
return msg, errors.New("bad header MAC")
}
+ rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
+ fsize := readInt24(headbuf)
+ // ignore protocol type for now
// read the frame content
- framebuf := make([]byte, fsize)
+ var rsize = fsize // frame size rounded up to 16 byte boundary
+ if padding := fsize % 16; padding > 0 {
+ rsize += 16 - padding
+ }
+ framebuf := make([]byte, rsize)
if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
return msg, err
}
- rw.ingressMAC.Write(framebuf)
- if padding := fsize % 16; padding > 0 {
- if _, err := io.CopyN(rw.ingressMAC, rw.conn, int64(16-padding)); err != nil {
- return msg, err
- }
- }
+
// read and validate frame MAC. we can re-use headbuf for that.
+ rw.ingressMAC.Write(framebuf)
if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
return msg, err
}
- if !hmac.Equal(rw.ingressMAC.Sum(nil), headbuf) {
+ shouldMAC = updateHeaderMAC(rw.ingressMAC, rw.macCipher, rw.ingressMAC.Sum(nil))
+ if !hmac.Equal(shouldMAC, headbuf) {
return msg, errors.New("bad frame MAC")
}
+ // decrypt frame content
+ rw.dec.XORKeyStream(framebuf, framebuf)
+
// decode message code
- content := bytes.NewReader(framebuf)
+ content := bytes.NewReader(framebuf[:fsize])
if err := rlp.Decode(content, &msg.Code); err != nil {
return msg, err
}
diff --git a/p2p/rlpx_test.go b/p2p/rlpx_test.go
index 380d9aba6..b3c2adf8d 100644
--- a/p2p/rlpx_test.go
+++ b/p2p/rlpx_test.go
@@ -16,14 +16,18 @@ import (
func TestRlpxFrameFake(t *testing.T) {
buf := new(bytes.Buffer)
- secret := crypto.Sha3()
hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})
- rw := newRlpxFrameRW(buf, secret, hash, hash)
+ rw := newRlpxFrameRW(buf, secrets{
+ AES: crypto.Sha3(),
+ MAC: crypto.Sha3(),
+ IngressMAC: hash,
+ EgressMAC: hash,
+ })
golden := unhex(`
-000006C2808000000000000000000000
+00828ddae471818bb0bfa6b551d1cb42
01010101010101010101010101010101
-08C40102030400000000000000000000
+ba628a4ba590cb43f7848f41c4382885
01010101010101010101010101010101
01010101010101010101010101010101
`)
@@ -75,27 +79,35 @@ func unhex(str string) []byte {
func TestRlpxFrameRW(t *testing.T) {
var (
+ aesSecret = make([]byte, 16)
macSecret = make([]byte, 16)
egressMACinit = make([]byte, 32)
ingressMACinit = make([]byte, 32)
)
- for _, s := range [][]byte{macSecret, egressMACinit, ingressMACinit} {
+ for _, s := range [][]byte{aesSecret, macSecret, egressMACinit, ingressMACinit} {
rand.Read(s)
}
-
conn := new(bytes.Buffer)
- em1 := sha3.NewKeccak256()
- em1.Write(egressMACinit)
- im1 := sha3.NewKeccak256()
- im1.Write(ingressMACinit)
- rw1 := newRlpxFrameRW(conn, macSecret, em1, im1)
-
- em2 := sha3.NewKeccak256()
- em2.Write(ingressMACinit)
- im2 := sha3.NewKeccak256()
- im2.Write(egressMACinit)
- rw2 := newRlpxFrameRW(conn, macSecret, em2, im2)
+ s1 := secrets{
+ AES: aesSecret,
+ MAC: macSecret,
+ EgressMAC: sha3.NewKeccak256(),
+ IngressMAC: sha3.NewKeccak256(),
+ }
+ s1.EgressMAC.Write(egressMACinit)
+ s1.IngressMAC.Write(ingressMACinit)
+ rw1 := newRlpxFrameRW(conn, s1)
+
+ s2 := secrets{
+ AES: aesSecret,
+ MAC: macSecret,
+ EgressMAC: sha3.NewKeccak256(),
+ IngressMAC: sha3.NewKeccak256(),
+ }
+ s2.EgressMAC.Write(ingressMACinit)
+ s2.IngressMAC.Write(egressMACinit)
+ rw2 := newRlpxFrameRW(conn, s2)
// send some messages
for i := 0; i < 10; i++ {