diff options
Diffstat (limited to 'metrics/sample_test.go')
-rw-r--r-- | metrics/sample_test.go | 363 |
1 files changed, 363 insertions, 0 deletions
diff --git a/metrics/sample_test.go b/metrics/sample_test.go new file mode 100644 index 000000000..d60e99c5b --- /dev/null +++ b/metrics/sample_test.go @@ -0,0 +1,363 @@ +package metrics + +import ( + "math/rand" + "runtime" + "testing" + "time" +) + +// Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively +// expensive computations like Variance, the cost of copying the Sample, as +// approximated by a make and copy, is much greater than the cost of the +// computation for small samples and only slightly less for large samples. +func BenchmarkCompute1000(b *testing.B) { + s := make([]int64, 1000) + for i := 0; i < len(s); i++ { + s[i] = int64(i) + } + b.ResetTimer() + for i := 0; i < b.N; i++ { + SampleVariance(s) + } +} +func BenchmarkCompute1000000(b *testing.B) { + s := make([]int64, 1000000) + for i := 0; i < len(s); i++ { + s[i] = int64(i) + } + b.ResetTimer() + for i := 0; i < b.N; i++ { + SampleVariance(s) + } +} +func BenchmarkCopy1000(b *testing.B) { + s := make([]int64, 1000) + for i := 0; i < len(s); i++ { + s[i] = int64(i) + } + b.ResetTimer() + for i := 0; i < b.N; i++ { + sCopy := make([]int64, len(s)) + copy(sCopy, s) + } +} +func BenchmarkCopy1000000(b *testing.B) { + s := make([]int64, 1000000) + for i := 0; i < len(s); i++ { + s[i] = int64(i) + } + b.ResetTimer() + for i := 0; i < b.N; i++ { + sCopy := make([]int64, len(s)) + copy(sCopy, s) + } +} + +func BenchmarkExpDecaySample257(b *testing.B) { + benchmarkSample(b, NewExpDecaySample(257, 0.015)) +} + +func BenchmarkExpDecaySample514(b *testing.B) { + benchmarkSample(b, NewExpDecaySample(514, 0.015)) +} + +func BenchmarkExpDecaySample1028(b *testing.B) { + benchmarkSample(b, NewExpDecaySample(1028, 0.015)) +} + +func BenchmarkUniformSample257(b *testing.B) { + benchmarkSample(b, NewUniformSample(257)) +} + +func BenchmarkUniformSample514(b *testing.B) { + benchmarkSample(b, NewUniformSample(514)) +} + +func BenchmarkUniformSample1028(b *testing.B) { + benchmarkSample(b, NewUniformSample(1028)) +} + +func TestExpDecaySample10(t *testing.T) { + rand.Seed(1) + s := NewExpDecaySample(100, 0.99) + for i := 0; i < 10; i++ { + s.Update(int64(i)) + } + if size := s.Count(); 10 != size { + t.Errorf("s.Count(): 10 != %v\n", size) + } + if size := s.Size(); 10 != size { + t.Errorf("s.Size(): 10 != %v\n", size) + } + if l := len(s.Values()); 10 != l { + t.Errorf("len(s.Values()): 10 != %v\n", l) + } + for _, v := range s.Values() { + if v > 10 || v < 0 { + t.Errorf("out of range [0, 10): %v\n", v) + } + } +} + +func TestExpDecaySample100(t *testing.T) { + rand.Seed(1) + s := NewExpDecaySample(1000, 0.01) + for i := 0; i < 100; i++ { + s.Update(int64(i)) + } + if size := s.Count(); 100 != size { + t.Errorf("s.Count(): 100 != %v\n", size) + } + if size := s.Size(); 100 != size { + t.Errorf("s.Size(): 100 != %v\n", size) + } + if l := len(s.Values()); 100 != l { + t.Errorf("len(s.Values()): 100 != %v\n", l) + } + for _, v := range s.Values() { + if v > 100 || v < 0 { + t.Errorf("out of range [0, 100): %v\n", v) + } + } +} + +func TestExpDecaySample1000(t *testing.T) { + rand.Seed(1) + s := NewExpDecaySample(100, 0.99) + for i := 0; i < 1000; i++ { + s.Update(int64(i)) + } + if size := s.Count(); 1000 != size { + t.Errorf("s.Count(): 1000 != %v\n", size) + } + if size := s.Size(); 100 != size { + t.Errorf("s.Size(): 100 != %v\n", size) + } + if l := len(s.Values()); 100 != l { + t.Errorf("len(s.Values()): 100 != %v\n", l) + } + for _, v := range s.Values() { + if v > 1000 || v < 0 { + t.Errorf("out of range [0, 1000): %v\n", v) + } + } +} + +// This test makes sure that the sample's priority is not amplified by using +// nanosecond duration since start rather than second duration since start. +// The priority becomes +Inf quickly after starting if this is done, +// effectively freezing the set of samples until a rescale step happens. +func TestExpDecaySampleNanosecondRegression(t *testing.T) { + rand.Seed(1) + s := NewExpDecaySample(100, 0.99) + for i := 0; i < 100; i++ { + s.Update(10) + } + time.Sleep(1 * time.Millisecond) + for i := 0; i < 100; i++ { + s.Update(20) + } + v := s.Values() + avg := float64(0) + for i := 0; i < len(v); i++ { + avg += float64(v[i]) + } + avg /= float64(len(v)) + if avg > 16 || avg < 14 { + t.Errorf("out of range [14, 16]: %v\n", avg) + } +} + +func TestExpDecaySampleRescale(t *testing.T) { + s := NewExpDecaySample(2, 0.001).(*ExpDecaySample) + s.update(time.Now(), 1) + s.update(time.Now().Add(time.Hour+time.Microsecond), 1) + for _, v := range s.values.Values() { + if v.k == 0.0 { + t.Fatal("v.k == 0.0") + } + } +} + +func TestExpDecaySampleSnapshot(t *testing.T) { + now := time.Now() + rand.Seed(1) + s := NewExpDecaySample(100, 0.99) + for i := 1; i <= 10000; i++ { + s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i)) + } + snapshot := s.Snapshot() + s.Update(1) + testExpDecaySampleStatistics(t, snapshot) +} + +func TestExpDecaySampleStatistics(t *testing.T) { + now := time.Now() + rand.Seed(1) + s := NewExpDecaySample(100, 0.99) + for i := 1; i <= 10000; i++ { + s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i)) + } + testExpDecaySampleStatistics(t, s) +} + +func TestUniformSample(t *testing.T) { + rand.Seed(1) + s := NewUniformSample(100) + for i := 0; i < 1000; i++ { + s.Update(int64(i)) + } + if size := s.Count(); 1000 != size { + t.Errorf("s.Count(): 1000 != %v\n", size) + } + if size := s.Size(); 100 != size { + t.Errorf("s.Size(): 100 != %v\n", size) + } + if l := len(s.Values()); 100 != l { + t.Errorf("len(s.Values()): 100 != %v\n", l) + } + for _, v := range s.Values() { + if v > 1000 || v < 0 { + t.Errorf("out of range [0, 100): %v\n", v) + } + } +} + +func TestUniformSampleIncludesTail(t *testing.T) { + rand.Seed(1) + s := NewUniformSample(100) + max := 100 + for i := 0; i < max; i++ { + s.Update(int64(i)) + } + v := s.Values() + sum := 0 + exp := (max - 1) * max / 2 + for i := 0; i < len(v); i++ { + sum += int(v[i]) + } + if exp != sum { + t.Errorf("sum: %v != %v\n", exp, sum) + } +} + +func TestUniformSampleSnapshot(t *testing.T) { + s := NewUniformSample(100) + for i := 1; i <= 10000; i++ { + s.Update(int64(i)) + } + snapshot := s.Snapshot() + s.Update(1) + testUniformSampleStatistics(t, snapshot) +} + +func TestUniformSampleStatistics(t *testing.T) { + rand.Seed(1) + s := NewUniformSample(100) + for i := 1; i <= 10000; i++ { + s.Update(int64(i)) + } + testUniformSampleStatistics(t, s) +} + +func benchmarkSample(b *testing.B, s Sample) { + var memStats runtime.MemStats + runtime.ReadMemStats(&memStats) + pauseTotalNs := memStats.PauseTotalNs + b.ResetTimer() + for i := 0; i < b.N; i++ { + s.Update(1) + } + b.StopTimer() + runtime.GC() + runtime.ReadMemStats(&memStats) + b.Logf("GC cost: %d ns/op", int(memStats.PauseTotalNs-pauseTotalNs)/b.N) +} + +func testExpDecaySampleStatistics(t *testing.T, s Sample) { + if count := s.Count(); 10000 != count { + t.Errorf("s.Count(): 10000 != %v\n", count) + } + if min := s.Min(); 107 != min { + t.Errorf("s.Min(): 107 != %v\n", min) + } + if max := s.Max(); 10000 != max { + t.Errorf("s.Max(): 10000 != %v\n", max) + } + if mean := s.Mean(); 4965.98 != mean { + t.Errorf("s.Mean(): 4965.98 != %v\n", mean) + } + if stdDev := s.StdDev(); 2959.825156930727 != stdDev { + t.Errorf("s.StdDev(): 2959.825156930727 != %v\n", stdDev) + } + ps := s.Percentiles([]float64{0.5, 0.75, 0.99}) + if 4615 != ps[0] { + t.Errorf("median: 4615 != %v\n", ps[0]) + } + if 7672 != ps[1] { + t.Errorf("75th percentile: 7672 != %v\n", ps[1]) + } + if 9998.99 != ps[2] { + t.Errorf("99th percentile: 9998.99 != %v\n", ps[2]) + } +} + +func testUniformSampleStatistics(t *testing.T, s Sample) { + if count := s.Count(); 10000 != count { + t.Errorf("s.Count(): 10000 != %v\n", count) + } + if min := s.Min(); 37 != min { + t.Errorf("s.Min(): 37 != %v\n", min) + } + if max := s.Max(); 9989 != max { + t.Errorf("s.Max(): 9989 != %v\n", max) + } + if mean := s.Mean(); 4748.14 != mean { + t.Errorf("s.Mean(): 4748.14 != %v\n", mean) + } + if stdDev := s.StdDev(); 2826.684117548333 != stdDev { + t.Errorf("s.StdDev(): 2826.684117548333 != %v\n", stdDev) + } + ps := s.Percentiles([]float64{0.5, 0.75, 0.99}) + if 4599 != ps[0] { + t.Errorf("median: 4599 != %v\n", ps[0]) + } + if 7380.5 != ps[1] { + t.Errorf("75th percentile: 7380.5 != %v\n", ps[1]) + } + if 9986.429999999998 != ps[2] { + t.Errorf("99th percentile: 9986.429999999998 != %v\n", ps[2]) + } +} + +// TestUniformSampleConcurrentUpdateCount would expose data race problems with +// concurrent Update and Count calls on Sample when test is called with -race +// argument +func TestUniformSampleConcurrentUpdateCount(t *testing.T) { + if testing.Short() { + t.Skip("skipping in short mode") + } + s := NewUniformSample(100) + for i := 0; i < 100; i++ { + s.Update(int64(i)) + } + quit := make(chan struct{}) + go func() { + t := time.NewTicker(10 * time.Millisecond) + for { + select { + case <-t.C: + s.Update(rand.Int63()) + case <-quit: + t.Stop() + return + } + } + }() + for i := 0; i < 1000; i++ { + s.Count() + time.Sleep(5 * time.Millisecond) + } + quit <- struct{}{} +} |