aboutsummaryrefslogtreecommitdiffstats
path: root/ecies_test.go
diff options
context:
space:
mode:
Diffstat (limited to 'ecies_test.go')
-rw-r--r--ecies_test.go489
1 files changed, 489 insertions, 0 deletions
diff --git a/ecies_test.go b/ecies_test.go
new file mode 100644
index 000000000..943e4488e
--- /dev/null
+++ b/ecies_test.go
@@ -0,0 +1,489 @@
+package ecies
+
+import (
+ "bytes"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/sha256"
+ "flag"
+ "fmt"
+ "io/ioutil"
+ "testing"
+)
+
+var dumpEnc bool
+
+func init() {
+ flDump := flag.Bool("dump", false, "write encrypted test message to file")
+ flag.Parse()
+ dumpEnc = *flDump
+}
+
+// Ensure the KDF generates appropriately sized keys.
+func TestKDF(t *testing.T) {
+ msg := []byte("Hello, world")
+ h := sha256.New()
+
+ k, err := concatKDF(h, msg, nil, 64)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+ if len(k) != 64 {
+ fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
+ len(k))
+ t.FailNow()
+ }
+}
+
+var skLen int
+var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
+
+// cmpParams compares a set of ECIES parameters. We assume, as per the
+// docs, that AES is the only supported symmetric encryption algorithm.
+func cmpParams(p1, p2 *ECIESParams) bool {
+ if p1.hashAlgo != p2.hashAlgo {
+ return false
+ } else if p1.KeyLen != p2.KeyLen {
+ return false
+ } else if p1.BlockSize != p2.BlockSize {
+ return false
+ }
+ return true
+}
+
+// cmpPublic returns true if the two public keys represent the same pojnt.
+func cmpPublic(pub1, pub2 PublicKey) bool {
+ if pub1.X == nil || pub1.Y == nil {
+ fmt.Println(ErrInvalidPublicKey.Error())
+ return false
+ }
+ if pub2.X == nil || pub2.Y == nil {
+ fmt.Println(ErrInvalidPublicKey.Error())
+ return false
+ }
+ pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
+ pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)
+
+ return bytes.Equal(pub1Out, pub2Out)
+}
+
+// cmpPrivate returns true if the two private keys are the same.
+func cmpPrivate(prv1, prv2 *PrivateKey) bool {
+ if prv1 == nil || prv1.D == nil {
+ return false
+ } else if prv2 == nil || prv2.D == nil {
+ return false
+ } else if prv1.D.Cmp(prv2.D) != 0 {
+ return false
+ } else {
+ return cmpPublic(prv1.PublicKey, prv2.PublicKey)
+ }
+}
+
+// Validate the ECDH component.
+func TestSharedKey(t *testing.T) {
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+ skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2
+
+ prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !bytes.Equal(sk1, sk2) {
+ fmt.Println(ErrBadSharedKeys.Error())
+ t.FailNow()
+ }
+}
+
+// Verify that the key generation code fails when too much key data is
+// requested.
+func TestTooBigSharedKey(t *testing.T) {
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ _, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2)
+ if err != ErrSharedKeyTooBig {
+ fmt.Println("ecdh: shared key should be too large for curve")
+ t.FailNow()
+ }
+
+ _, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2)
+ if err != ErrSharedKeyTooBig {
+ fmt.Println("ecdh: shared key should be too large for curve")
+ t.FailNow()
+ }
+}
+
+// Ensure a public key can be successfully marshalled and unmarshalled, and
+// that the decoded key is the same as the original.
+func TestMarshalPublic(t *testing.T) {
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := MarshalPublic(&prv.PublicKey)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ pub, err := UnmarshalPublic(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !cmpPublic(prv.PublicKey, *pub) {
+ fmt.Println("ecies: failed to unmarshal public key")
+ t.FailNow()
+ }
+}
+
+// Ensure that a private key can be encoded into DER format, and that
+// the resulting key is properly parsed back into a public key.
+func TestMarshalPrivate(t *testing.T) {
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := MarshalPrivate(prv)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if dumpEnc {
+ ioutil.WriteFile("test.out", out, 0644)
+ }
+
+ prv2, err := UnmarshalPrivate(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !cmpPrivate(prv, prv2) {
+ fmt.Println("ecdh: private key import failed")
+ t.FailNow()
+ }
+}
+
+// Ensure that a private key can be successfully encoded to PEM format, and
+// the resulting key is properly parsed back in.
+func TestPrivatePEM(t *testing.T) {
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := ExportPrivatePEM(prv)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if dumpEnc {
+ ioutil.WriteFile("test.key", out, 0644)
+ }
+
+ prv2, err := ImportPrivatePEM(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ } else if !cmpPrivate(prv, prv2) {
+ fmt.Println("ecdh: import from PEM failed")
+ t.FailNow()
+ }
+}
+
+// Ensure that a public key can be successfully encoded to PEM format, and
+// the resulting key is properly parsed back in.
+func TestPublicPEM(t *testing.T) {
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := ExportPublicPEM(&prv.PublicKey)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if dumpEnc {
+ ioutil.WriteFile("test.pem", out, 0644)
+ }
+
+ pub2, err := ImportPublicPEM(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ } else if !cmpPublic(prv.PublicKey, *pub2) {
+ fmt.Println("ecdh: import from PEM failed")
+ t.FailNow()
+ }
+}
+
+// Benchmark the generation of P256 keys.
+func BenchmarkGenerateKeyP256(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
+ fmt.Println(err.Error())
+ b.FailNow()
+ }
+ }
+}
+
+// Benchmark the generation of P256 shared keys.
+func BenchmarkGenSharedKeyP256(b *testing.B) {
+ prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ b.FailNow()
+ }
+
+ for i := 0; i < b.N; i++ {
+ _, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen)
+ if err != nil {
+ fmt.Println(err.Error())
+ b.FailNow()
+ }
+ }
+}
+
+// Verify that an encrypted message can be successfully decrypted.
+func TestEncryptDecrypt(t *testing.T) {
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !bytes.Equal(pt, message) {
+ fmt.Println("ecies: plaintext doesn't match message")
+ t.FailNow()
+ }
+
+ _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
+ if err == nil {
+ fmt.Println("ecies: encryption should not have succeeded")
+ t.FailNow()
+ }
+}
+
+// TestMarshalEncryption validates the encode/decode produces a valid
+// ECIES encryption key.
+func TestMarshalEncryption(t *testing.T) {
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ out, err := MarshalPrivate(prv1)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ prv2, err := UnmarshalPrivate(out)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ if !bytes.Equal(pt, message) {
+ fmt.Println("ecies: plaintext doesn't match message")
+ t.FailNow()
+ }
+
+ _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+}
+
+type testCase struct {
+ Curve elliptic.Curve
+ Name string
+ Expected bool
+}
+
+var testCases = []testCase{
+ testCase{
+ Curve: elliptic.P224(),
+ Name: "P224",
+ Expected: false,
+ },
+ testCase{
+ Curve: elliptic.P256(),
+ Name: "P256",
+ Expected: true,
+ },
+ testCase{
+ Curve: elliptic.P384(),
+ Name: "P384",
+ Expected: true,
+ },
+ testCase{
+ Curve: elliptic.P521(),
+ Name: "P521",
+ Expected: true,
+ },
+}
+
+// Test parameter selection for each curve, and that P224 fails automatic
+// parameter selection (see README for a discussion of P224). Ensures that
+// selecting a set of parameters automatically for the given curve works.
+func TestParamSelection(t *testing.T) {
+ for _, c := range testCases {
+ testParamSelection(t, c)
+ }
+}
+
+func testParamSelection(t *testing.T, c testCase) {
+ params := ParamsFromCurve(c.Curve)
+ if params == nil && c.Expected {
+ fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
+ t.FailNow()
+ } else if params != nil && !c.Expected {
+ fmt.Printf("ecies: parameters should be invalid (%s)\n",
+ c.Name)
+ t.FailNow()
+ }
+
+ prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Printf("%s (%s)\n", err.Error(), c.Name)
+ t.FailNow()
+ }
+
+ prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Printf("%s (%s)\n", err.Error(), c.Name)
+ t.FailNow()
+ }
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
+ if err != nil {
+ fmt.Printf("%s (%s)\n", err.Error(), c.Name)
+ t.FailNow()
+ }
+
+ pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
+ if err != nil {
+ fmt.Printf("%s (%s)\n", err.Error(), c.Name)
+ t.FailNow()
+ }
+
+ if !bytes.Equal(pt, message) {
+ fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
+ c.Name)
+ t.FailNow()
+ }
+
+ _, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
+ if err == nil {
+ fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
+ c.Name)
+ t.FailNow()
+ }
+
+}
+
+// Ensure that the basic public key validation in the decryption operation
+// works.
+func TestBasicKeyValidation(t *testing.T) {
+ badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
+
+ prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ message := []byte("Hello, world.")
+ ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
+ if err != nil {
+ fmt.Println(err.Error())
+ t.FailNow()
+ }
+
+ for _, b := range badBytes {
+ ct[0] = b
+ _, err := prv.Decrypt(rand.Reader, ct, nil, nil)
+ if err != ErrInvalidPublicKey {
+ fmt.Println("ecies: validated an invalid key")
+ t.FailNow()
+ }
+ }
+}