diff options
Diffstat (limited to 'crypto')
72 files changed, 12105 insertions, 0 deletions
diff --git a/crypto/crypto.go b/crypto/crypto.go new file mode 100644 index 000000000..90e2c8939 --- /dev/null +++ b/crypto/crypto.go @@ -0,0 +1,259 @@ +package crypto + +import ( + "crypto/aes" + "crypto/cipher" + "crypto/ecdsa" + "crypto/elliptic" + "crypto/rand" + "crypto/sha256" + "fmt" + "io" + "os" + + "encoding/hex" + "encoding/json" + "errors" + + "code.google.com/p/go-uuid/uuid" + "github.com/ethereum/go-ethereum/crypto/ecies" + "github.com/ethereum/go-ethereum/crypto/secp256k1" + "github.com/ethereum/go-ethereum/crypto/sha3" + "github.com/ethereum/go-ethereum/ethutil" + "golang.org/x/crypto/pbkdf2" + "golang.org/x/crypto/ripemd160" +) + +func init() { + // specify the params for the s256 curve + ecies.AddParamsForCurve(S256(), ecies.ECIES_AES128_SHA256) +} + +func Sha3(data ...[]byte) []byte { + d := sha3.NewKeccak256() + for _, b := range data { + d.Write(b) + } + return d.Sum(nil) +} + +// Creates an ethereum address given the bytes and the nonce +func CreateAddress(b []byte, nonce uint64) []byte { + return Sha3(ethutil.NewValue([]interface{}{b, nonce}).Encode())[12:] +} + +func Sha256(data []byte) []byte { + hash := sha256.Sum256(data) + + return hash[:] +} + +func Ripemd160(data []byte) []byte { + ripemd := ripemd160.New() + ripemd.Write(data) + + return ripemd.Sum(nil) +} + +func Ecrecover(data []byte) []byte { + var in = struct { + hash []byte + sig []byte + }{data[:32], data[32:]} + + r, _ := secp256k1.RecoverPubkey(in.hash, in.sig) + + return r +} + +// New methods using proper ecdsa keys from the stdlib +func ToECDSA(prv []byte) *ecdsa.PrivateKey { + if len(prv) == 0 { + return nil + } + + priv := new(ecdsa.PrivateKey) + priv.PublicKey.Curve = S256() + priv.D = ethutil.BigD(prv) + priv.PublicKey.X, priv.PublicKey.Y = S256().ScalarBaseMult(prv) + return priv +} + +func FromECDSA(prv *ecdsa.PrivateKey) []byte { + if prv == nil { + return nil + } + return prv.D.Bytes() +} + +func ToECDSAPub(pub []byte) *ecdsa.PublicKey { + if len(pub) == 0 { + return nil + } + x, y := elliptic.Unmarshal(S256(), pub) + return &ecdsa.PublicKey{S256(), x, y} +} + +func FromECDSAPub(pub *ecdsa.PublicKey) []byte { + if pub == nil || pub.X == nil || pub.Y == nil { + return nil + } + return elliptic.Marshal(S256(), pub.X, pub.Y) +} + +// HexToECDSA parses a secp256k1 private key. +func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) { + b, err := hex.DecodeString(hexkey) + if err != nil { + return nil, errors.New("invalid hex string") + } + if len(b) != 32 { + return nil, errors.New("invalid length, need 256 bits") + } + return ToECDSA(b), nil +} + +// LoadECDSA loads a secp256k1 private key from the given file. +func LoadECDSA(file string) (*ecdsa.PrivateKey, error) { + buf := make([]byte, 32) + fd, err := os.Open(file) + if err != nil { + return nil, err + } + defer fd.Close() + if _, err := io.ReadFull(fd, buf); err != nil { + return nil, err + } + return ToECDSA(buf), nil +} + +func GenerateKey() (*ecdsa.PrivateKey, error) { + return ecdsa.GenerateKey(S256(), rand.Reader) +} + +func SigToPub(hash, sig []byte) *ecdsa.PublicKey { + s := Ecrecover(append(hash, sig...)) + x, y := elliptic.Unmarshal(S256(), s) + + return &ecdsa.PublicKey{S256(), x, y} +} + +func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) { + if len(hash) != 32 { + return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) + } + + sig, err = secp256k1.Sign(hash, ethutil.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)) + return +} + +func Encrypt(pub *ecdsa.PublicKey, message []byte) ([]byte, error) { + return ecies.Encrypt(rand.Reader, ecies.ImportECDSAPublic(pub), message, nil, nil) +} + +func Decrypt(prv *ecdsa.PrivateKey, ct []byte) ([]byte, error) { + key := ecies.ImportECDSA(prv) + return key.Decrypt(rand.Reader, ct, nil, nil) +} + +// creates a Key and stores that in the given KeyStore by decrypting a presale key JSON +func ImportPreSaleKey(keyStore KeyStore2, keyJSON []byte, password string) (*Key, error) { + key, err := decryptPreSaleKey(keyJSON, password) + if err != nil { + return nil, err + } + key.Id = uuid.NewRandom() + err = keyStore.StoreKey(key, password) + return key, err +} + +func decryptPreSaleKey(fileContent []byte, password string) (key *Key, err error) { + preSaleKeyStruct := struct { + EncSeed string + EthAddr string + Email string + BtcAddr string + }{} + err = json.Unmarshal(fileContent, &preSaleKeyStruct) + if err != nil { + return nil, err + } + encSeedBytes, err := hex.DecodeString(preSaleKeyStruct.EncSeed) + iv := encSeedBytes[:16] + cipherText := encSeedBytes[16:] + /* + See https://github.com/ethereum/pyethsaletool + + pyethsaletool generates the encryption key from password by + 2000 rounds of PBKDF2 with HMAC-SHA-256 using password as salt (:(). + 16 byte key length within PBKDF2 and resulting key is used as AES key + */ + passBytes := []byte(password) + derivedKey := pbkdf2.Key(passBytes, passBytes, 2000, 16, sha256.New) + plainText, err := aesCBCDecrypt(derivedKey, cipherText, iv) + ethPriv := Sha3(plainText) + ecKey := ToECDSA(ethPriv) + key = &Key{ + Id: nil, + Address: PubkeyToAddress(ecKey.PublicKey), + PrivateKey: ecKey, + } + derivedAddr := ethutil.Bytes2Hex(key.Address) + expectedAddr := preSaleKeyStruct.EthAddr + if derivedAddr != expectedAddr { + err = errors.New("decrypted addr not equal to expected addr") + } + return key, err +} + +func aesCBCDecrypt(key []byte, cipherText []byte, iv []byte) (plainText []byte, err error) { + aesBlock, err := aes.NewCipher(key) + if err != nil { + return plainText, err + } + decrypter := cipher.NewCBCDecrypter(aesBlock, iv) + paddedPlainText := make([]byte, len(cipherText)) + decrypter.CryptBlocks(paddedPlainText, cipherText) + plainText = PKCS7Unpad(paddedPlainText) + if plainText == nil { + err = errors.New("Decryption failed: PKCS7Unpad failed after decryption") + } + return plainText, err +} + +// From https://leanpub.com/gocrypto/read#leanpub-auto-block-cipher-modes +func PKCS7Pad(in []byte) []byte { + padding := 16 - (len(in) % 16) + if padding == 0 { + padding = 16 + } + for i := 0; i < padding; i++ { + in = append(in, byte(padding)) + } + return in +} + +func PKCS7Unpad(in []byte) []byte { + if len(in) == 0 { + return nil + } + + padding := in[len(in)-1] + if int(padding) > len(in) || padding > aes.BlockSize { + return nil + } else if padding == 0 { + return nil + } + + for i := len(in) - 1; i > len(in)-int(padding)-1; i-- { + if in[i] != padding { + return nil + } + } + return in[:len(in)-int(padding)] +} + +func PubkeyToAddress(p ecdsa.PublicKey) []byte { + pubBytes := FromECDSAPub(&p) + return Sha3(pubBytes[1:])[12:] +} diff --git a/crypto/crypto_test.go b/crypto/crypto_test.go new file mode 100644 index 000000000..c68856622 --- /dev/null +++ b/crypto/crypto_test.go @@ -0,0 +1,74 @@ +package crypto + +import ( + "bytes" + "encoding/hex" + "fmt" + "testing" + "time" + + "github.com/ethereum/go-ethereum/crypto/secp256k1" + "github.com/ethereum/go-ethereum/ethutil" +) + +// These tests are sanity checks. +// They should ensure that we don't e.g. use Sha3-224 instead of Sha3-256 +// and that the sha3 library uses keccak-f permutation. + +func TestSha3(t *testing.T) { + msg := []byte("abc") + exp, _ := hex.DecodeString("4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45") + checkhash(t, "Sha3-256", func(in []byte) []byte { return Sha3(in) }, msg, exp) +} + +func TestSha256(t *testing.T) { + msg := []byte("abc") + exp, _ := hex.DecodeString("ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad") + checkhash(t, "Sha256", Sha256, msg, exp) +} + +func TestRipemd160(t *testing.T) { + msg := []byte("abc") + exp, _ := hex.DecodeString("8eb208f7e05d987a9b044a8e98c6b087f15a0bfc") + checkhash(t, "Ripemd160", Ripemd160, msg, exp) +} + +func checkhash(t *testing.T, name string, f func([]byte) []byte, msg, exp []byte) { + sum := f(msg) + if bytes.Compare(exp, sum) != 0 { + t.Errorf("hash %s returned wrong result.\ngot: %x\nwant: %x", name, sum, exp) + } +} + +func BenchmarkSha3(b *testing.B) { + a := []byte("hello world") + amount := 1000000 + start := time.Now() + for i := 0; i < amount; i++ { + Sha3(a) + } + + fmt.Println(amount, ":", time.Since(start)) +} + +func Test0Key(t *testing.T) { + t.Skip() + key := ethutil.Hex2Bytes("1111111111111111111111111111111111111111111111111111111111111111") + + p, err := secp256k1.GeneratePubKey(key) + addr := Sha3(p[1:])[12:] + fmt.Printf("%x\n", p) + fmt.Printf("%v %x\n", err, addr) +} + +func TestInvalidSign(t *testing.T) { + _, err := Sign(make([]byte, 1), nil) + if err == nil { + t.Errorf("expected sign with hash 1 byte to error") + } + + _, err = Sign(make([]byte, 33), nil) + if err == nil { + t.Errorf("expected sign with hash 33 byte to error") + } +} diff --git a/crypto/curve.go b/crypto/curve.go new file mode 100644 index 000000000..131a0dd2f --- /dev/null +++ b/crypto/curve.go @@ -0,0 +1,363 @@ +package crypto + +// Copyright 2010 The Go Authors. All rights reserved. +// Copyright 2011 ThePiachu. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package bitelliptic implements several Koblitz elliptic curves over prime +// fields. + +// This package operates, internally, on Jacobian coordinates. For a given +// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) +// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole +// calculation can be performed within the transform (as in ScalarMult and +// ScalarBaseMult). But even for Add and Double, it's faster to apply and +// reverse the transform than to operate in affine coordinates. + +import ( + "crypto/elliptic" + "io" + "math/big" + "sync" +) + +// A BitCurve represents a Koblitz Curve with a=0. +// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html +type BitCurve struct { + P *big.Int // the order of the underlying field + N *big.Int // the order of the base point + B *big.Int // the constant of the BitCurve equation + Gx, Gy *big.Int // (x,y) of the base point + BitSize int // the size of the underlying field +} + +func (BitCurve *BitCurve) Params() *elliptic.CurveParams { + return &elliptic.CurveParams{BitCurve.P, BitCurve.N, BitCurve.B, BitCurve.Gx, BitCurve.Gy, BitCurve.BitSize} +} + +// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. +func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { + // y² = x³ + b + y2 := new(big.Int).Mul(y, y) //y² + y2.Mod(y2, BitCurve.P) //y²%P + + x3 := new(big.Int).Mul(x, x) //x² + x3.Mul(x3, x) //x³ + + x3.Add(x3, BitCurve.B) //x³+B + x3.Mod(x3, BitCurve.P) //(x³+B)%P + + return x3.Cmp(y2) == 0 +} + +//TODO: double check if the function is okay +// affineFromJacobian reverses the Jacobian transform. See the comment at the +// top of the file. +func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { + zinv := new(big.Int).ModInverse(z, BitCurve.P) + zinvsq := new(big.Int).Mul(zinv, zinv) + + xOut = new(big.Int).Mul(x, zinvsq) + xOut.Mod(xOut, BitCurve.P) + zinvsq.Mul(zinvsq, zinv) + yOut = new(big.Int).Mul(y, zinvsq) + yOut.Mod(yOut, BitCurve.P) + return +} + +// Add returns the sum of (x1,y1) and (x2,y2) +func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + z := new(big.Int).SetInt64(1) + return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) +} + +// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and +// (x2, y2, z2) and returns their sum, also in Jacobian form. +func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { + // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl + z1z1 := new(big.Int).Mul(z1, z1) + z1z1.Mod(z1z1, BitCurve.P) + z2z2 := new(big.Int).Mul(z2, z2) + z2z2.Mod(z2z2, BitCurve.P) + + u1 := new(big.Int).Mul(x1, z2z2) + u1.Mod(u1, BitCurve.P) + u2 := new(big.Int).Mul(x2, z1z1) + u2.Mod(u2, BitCurve.P) + h := new(big.Int).Sub(u2, u1) + if h.Sign() == -1 { + h.Add(h, BitCurve.P) + } + i := new(big.Int).Lsh(h, 1) + i.Mul(i, i) + j := new(big.Int).Mul(h, i) + + s1 := new(big.Int).Mul(y1, z2) + s1.Mul(s1, z2z2) + s1.Mod(s1, BitCurve.P) + s2 := new(big.Int).Mul(y2, z1) + s2.Mul(s2, z1z1) + s2.Mod(s2, BitCurve.P) + r := new(big.Int).Sub(s2, s1) + if r.Sign() == -1 { + r.Add(r, BitCurve.P) + } + r.Lsh(r, 1) + v := new(big.Int).Mul(u1, i) + + x3 := new(big.Int).Set(r) + x3.Mul(x3, x3) + x3.Sub(x3, j) + x3.Sub(x3, v) + x3.Sub(x3, v) + x3.Mod(x3, BitCurve.P) + + y3 := new(big.Int).Set(r) + v.Sub(v, x3) + y3.Mul(y3, v) + s1.Mul(s1, j) + s1.Lsh(s1, 1) + y3.Sub(y3, s1) + y3.Mod(y3, BitCurve.P) + + z3 := new(big.Int).Add(z1, z2) + z3.Mul(z3, z3) + z3.Sub(z3, z1z1) + if z3.Sign() == -1 { + z3.Add(z3, BitCurve.P) + } + z3.Sub(z3, z2z2) + if z3.Sign() == -1 { + z3.Add(z3, BitCurve.P) + } + z3.Mul(z3, h) + z3.Mod(z3, BitCurve.P) + + return x3, y3, z3 +} + +// Double returns 2*(x,y) +func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + z1 := new(big.Int).SetInt64(1) + return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) +} + +// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and +// returns its double, also in Jacobian form. +func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { + // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l + + a := new(big.Int).Mul(x, x) //X1² + b := new(big.Int).Mul(y, y) //Y1² + c := new(big.Int).Mul(b, b) //B² + + d := new(big.Int).Add(x, b) //X1+B + d.Mul(d, d) //(X1+B)² + d.Sub(d, a) //(X1+B)²-A + d.Sub(d, c) //(X1+B)²-A-C + d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) + + e := new(big.Int).Mul(big.NewInt(3), a) //3*A + f := new(big.Int).Mul(e, e) //E² + + x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D + x3.Sub(f, x3) //F-2*D + x3.Mod(x3, BitCurve.P) + + y3 := new(big.Int).Sub(d, x3) //D-X3 + y3.Mul(e, y3) //E*(D-X3) + y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C + y3.Mod(y3, BitCurve.P) + + z3 := new(big.Int).Mul(y, z) //Y1*Z1 + z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 + z3.Mod(z3, BitCurve.P) + + return x3, y3, z3 +} + +//TODO: double check if it is okay +// ScalarMult returns k*(Bx,By) where k is a number in big-endian form. +func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { + // We have a slight problem in that the identity of the group (the + // point at infinity) cannot be represented in (x, y) form on a finite + // machine. Thus the standard add/double algorithm has to be tweaked + // slightly: our initial state is not the identity, but x, and we + // ignore the first true bit in |k|. If we don't find any true bits in + // |k|, then we return nil, nil, because we cannot return the identity + // element. + + Bz := new(big.Int).SetInt64(1) + x := Bx + y := By + z := Bz + + seenFirstTrue := false + for _, byte := range k { + for bitNum := 0; bitNum < 8; bitNum++ { + if seenFirstTrue { + x, y, z = BitCurve.doubleJacobian(x, y, z) + } + if byte&0x80 == 0x80 { + if !seenFirstTrue { + seenFirstTrue = true + } else { + x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z) + } + } + byte <<= 1 + } + } + + if !seenFirstTrue { + return nil, nil + } + + return BitCurve.affineFromJacobian(x, y, z) +} + +// ScalarBaseMult returns k*G, where G is the base point of the group and k is +// an integer in big-endian form. +func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { + return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) +} + +var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} + +//TODO: double check if it is okay +// GenerateKey returns a public/private key pair. The private key is generated +// using the given reader, which must return random data. +func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) { + byteLen := (BitCurve.BitSize + 7) >> 3 + priv = make([]byte, byteLen) + + for x == nil { + _, err = io.ReadFull(rand, priv) + if err != nil { + return + } + // We have to mask off any excess bits in the case that the size of the + // underlying field is not a whole number of bytes. + priv[0] &= mask[BitCurve.BitSize%8] + // This is because, in tests, rand will return all zeros and we don't + // want to get the point at infinity and loop forever. + priv[1] ^= 0x42 + x, y = BitCurve.ScalarBaseMult(priv) + } + return +} + +// Marshal converts a point into the form specified in section 4.3.6 of ANSI +// X9.62. +func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { + byteLen := (BitCurve.BitSize + 7) >> 3 + + ret := make([]byte, 1+2*byteLen) + ret[0] = 4 // uncompressed point + + xBytes := x.Bytes() + copy(ret[1+byteLen-len(xBytes):], xBytes) + yBytes := y.Bytes() + copy(ret[1+2*byteLen-len(yBytes):], yBytes) + return ret +} + +// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On +// error, x = nil. +func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { + byteLen := (BitCurve.BitSize + 7) >> 3 + if len(data) != 1+2*byteLen { + return + } + if data[0] != 4 { // uncompressed form + return + } + x = new(big.Int).SetBytes(data[1 : 1+byteLen]) + y = new(big.Int).SetBytes(data[1+byteLen:]) + return +} + +//curve parameters taken from: +//http://www.secg.org/collateral/sec2_final.pdf + +var initonce sync.Once +var ecp160k1 *BitCurve +var ecp192k1 *BitCurve +var ecp224k1 *BitCurve +var ecp256k1 *BitCurve + +func initAll() { + initS160() + initS192() + initS224() + initS256() +} + +func initS160() { + // See SEC 2 section 2.4.1 + ecp160k1 = new(BitCurve) + ecp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16) + ecp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16) + ecp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16) + ecp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16) + ecp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16) + ecp160k1.BitSize = 160 +} + +func initS192() { + // See SEC 2 section 2.5.1 + ecp192k1 = new(BitCurve) + ecp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16) + ecp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16) + ecp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16) + ecp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16) + ecp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16) + ecp192k1.BitSize = 192 +} + +func initS224() { + // See SEC 2 section 2.6.1 + ecp224k1 = new(BitCurve) + ecp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16) + ecp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16) + ecp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16) + ecp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16) + ecp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16) + ecp224k1.BitSize = 224 +} + +func initS256() { + // See SEC 2 section 2.7.1 + ecp256k1 = new(BitCurve) + ecp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) + ecp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) + ecp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) + ecp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) + ecp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) + ecp256k1.BitSize = 256 +} + +// S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1) +func S160() *BitCurve { + initonce.Do(initAll) + return ecp160k1 +} + +// S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1) +func S192() *BitCurve { + initonce.Do(initAll) + return ecp192k1 +} + +// S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1) +func S224() *BitCurve { + initonce.Do(initAll) + return ecp224k1 +} + +// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1) +func S256() *BitCurve { + initonce.Do(initAll) + return ecp256k1 +} diff --git a/crypto/ecies/.gitignore b/crypto/ecies/.gitignore new file mode 100644 index 000000000..802b6744a --- /dev/null +++ b/crypto/ecies/.gitignore @@ -0,0 +1,24 @@ +# Compiled Object files, Static and Dynamic libs (Shared Objects) +*.o +*.a +*.so + +# Folders +_obj +_test + +# Architecture specific extensions/prefixes +*.[568vq] +[568vq].out + +*.cgo1.go +*.cgo2.c +_cgo_defun.c +_cgo_gotypes.go +_cgo_export.* + +_testmain.go + +*.exe + +*~ diff --git a/crypto/ecies/LICENSE b/crypto/ecies/LICENSE new file mode 100644 index 000000000..e1ed19a27 --- /dev/null +++ b/crypto/ecies/LICENSE @@ -0,0 +1,28 @@ +Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is> +Copyright (c) 2012 The Go Authors. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/crypto/ecies/README b/crypto/ecies/README new file mode 100644 index 000000000..2650c7b9f --- /dev/null +++ b/crypto/ecies/README @@ -0,0 +1,94 @@ +# NOTE + +This implementation is direct fork of Kylom's implementation. I claim no authorship over this code apart from some minor modifications. +Please be aware this code **has not yet been reviewed**. + +ecies implements the Elliptic Curve Integrated Encryption Scheme. + +The package is designed to be compliant with the appropriate NIST +standards, and therefore doesn't support the full SEC 1 algorithm set. + + +STATUS: + +ecies should be ready for use. The ASN.1 support is only complete so +far as to supported the listed algorithms before. + + +CAVEATS + +1. CMAC support is currently not present. + + +SUPPORTED ALGORITHMS + + SYMMETRIC CIPHERS HASH FUNCTIONS + AES128 SHA-1 + AES192 SHA-224 + AES256 SHA-256 + SHA-384 + ELLIPTIC CURVE SHA-512 + P256 + P384 KEY DERIVATION FUNCTION + P521 NIST SP 800-65a Concatenation KDF + +Curve P224 isn't supported because it does not provide a minimum security +level of AES128 with HMAC-SHA1. According to NIST SP 800-57, the security +level of P224 is 112 bits of security. Symmetric ciphers use CTR-mode; +message tags are computed using HMAC-<HASH> function. + + +CURVE SELECTION + +According to NIST SP 800-57, the following curves should be selected: + + +----------------+-------+ + | SYMMETRIC SIZE | CURVE | + +----------------+-------+ + | 128-bit | P256 | + +----------------+-------+ + | 192-bit | P384 | + +----------------+-------+ + | 256-bit | P521 | + +----------------+-------+ + + +TODO + +1. Look at serialising the parameters with the SEC 1 ASN.1 module. +2. Validate ASN.1 formats with SEC 1. + + +TEST VECTORS + +The only test vectors I've found so far date from 1993, predating AES +and including only 163-bit curves. Therefore, there are no published +test vectors to compare to. + + +LICENSE + +ecies is released under the same license as the Go source code. See the +LICENSE file for details. + + +REFERENCES + +* SEC (Standard for Efficient Cryptography) 1, version 2.0: Elliptic + Curve Cryptography; Certicom, May 2009. + http://www.secg.org/sec1-v2.pdf +* GEC (Guidelines for Efficient Cryptography) 2, version 0.3: Test + Vectors for SEC 1; Certicom, September 1999. + http://read.pudn.com/downloads168/doc/772358/TestVectorsforSEC%201-gec2.pdf +* NIST SP 800-56a: Recommendation for Pair-Wise Key Establishment Schemes + Using Discrete Logarithm Cryptography. National Institute of Standards + and Technology, May 2007. + http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf +* Suite B Implementer’s Guide to NIST SP 800-56A. National Security + Agency, July 28, 2009. + http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf +* NIST SP 800-57: Recommendation for Key Management – Part 1: General + (Revision 3). National Institute of Standards and Technology, July + 2012. + http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf + diff --git a/crypto/ecies/asn1.go b/crypto/ecies/asn1.go new file mode 100644 index 000000000..3ef194ea0 --- /dev/null +++ b/crypto/ecies/asn1.go @@ -0,0 +1,556 @@ +package ecies + +import ( + "bytes" + "crypto" + "crypto/elliptic" + "crypto/sha1" + "crypto/sha256" + "crypto/sha512" + "encoding/asn1" + "encoding/pem" + "fmt" + "hash" + "math/big" +) + +var ( + secgScheme = []int{1, 3, 132, 1} + shaScheme = []int{2, 16, 840, 1, 101, 3, 4, 2} + ansiX962Scheme = []int{1, 2, 840, 10045} + x963Scheme = []int{1, 2, 840, 63, 0} +) + +var ErrInvalidPrivateKey = fmt.Errorf("ecies: invalid private key") + +func doScheme(base, v []int) asn1.ObjectIdentifier { + var oidInts asn1.ObjectIdentifier + oidInts = append(oidInts, base...) + return append(oidInts, v...) +} + +// curve OID code taken from crypto/x509, including +// - oidNameCurve* +// - namedCurveFromOID +// - oidFromNamedCurve +// RFC 5480, 2.1.1.1. Named Curve +// +// secp224r1 OBJECT IDENTIFIER ::= { +// iso(1) identified-organization(3) certicom(132) curve(0) 33 } +// +// secp256r1 OBJECT IDENTIFIER ::= { +// iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3) +// prime(1) 7 } +// +// secp384r1 OBJECT IDENTIFIER ::= { +// iso(1) identified-organization(3) certicom(132) curve(0) 34 } +// +// secp521r1 OBJECT IDENTIFIER ::= { +// iso(1) identified-organization(3) certicom(132) curve(0) 35 } +// +// NB: secp256r1 is equivalent to prime256v1 +type secgNamedCurve asn1.ObjectIdentifier + +var ( + secgNamedCurveP224 = secgNamedCurve{1, 3, 132, 0, 33} + secgNamedCurveP256 = secgNamedCurve{1, 2, 840, 10045, 3, 1, 7} + secgNamedCurveP384 = secgNamedCurve{1, 3, 132, 0, 34} + secgNamedCurveP521 = secgNamedCurve{1, 3, 132, 0, 35} + rawCurveP224 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 3} + rawCurveP256 = []byte{6, 8, 4, 2, 1, 3, 4, 7, 2, 2, 0, 6, 6, 1, 3, 1, 7} + rawCurveP384 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 4} + rawCurveP521 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 5} +) + +func rawCurve(curve elliptic.Curve) []byte { + switch curve { + case elliptic.P224(): + return rawCurveP224 + case elliptic.P256(): + return rawCurveP256 + case elliptic.P384(): + return rawCurveP384 + case elliptic.P521(): + return rawCurveP521 + default: + return nil + } +} + +func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool { + if len(curve) != len(curve2) { + return false + } + for i, _ := range curve { + if curve[i] != curve2[i] { + return false + } + } + return true +} + +func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve { + switch { + case curve.Equal(secgNamedCurveP224): + return elliptic.P224() + case curve.Equal(secgNamedCurveP256): + return elliptic.P256() + case curve.Equal(secgNamedCurveP384): + return elliptic.P384() + case curve.Equal(secgNamedCurveP521): + return elliptic.P521() + } + return nil +} + +func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) { + switch curve { + case elliptic.P224(): + return secgNamedCurveP224, true + case elliptic.P256(): + return secgNamedCurveP256, true + case elliptic.P384(): + return secgNamedCurveP384, true + case elliptic.P521(): + return secgNamedCurveP521, true + } + + return nil, false +} + +// asnAlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC +// 5280, section 4.1.1.2. +type asnAlgorithmIdentifier struct { + Algorithm asn1.ObjectIdentifier + Parameters asn1.RawValue `asn1:"optional"` +} + +func (a asnAlgorithmIdentifier) Cmp(b asnAlgorithmIdentifier) bool { + if len(a.Algorithm) != len(b.Algorithm) { + return false + } + for i, _ := range a.Algorithm { + if a.Algorithm[i] != b.Algorithm[i] { + return false + } + } + return true +} + +type asnHashFunction asnAlgorithmIdentifier + +var ( + oidSHA1 = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 26} + oidSHA224 = doScheme(shaScheme, []int{4}) + oidSHA256 = doScheme(shaScheme, []int{1}) + oidSHA384 = doScheme(shaScheme, []int{2}) + oidSHA512 = doScheme(shaScheme, []int{3}) +) + +func hashFromOID(oid asn1.ObjectIdentifier) func() hash.Hash { + switch { + case oid.Equal(oidSHA1): + return sha1.New + case oid.Equal(oidSHA224): + return sha256.New224 + case oid.Equal(oidSHA256): + return sha256.New + case oid.Equal(oidSHA384): + return sha512.New384 + case oid.Equal(oidSHA512): + return sha512.New + } + return nil +} + +func oidFromHash(hash crypto.Hash) (asn1.ObjectIdentifier, bool) { + switch hash { + case crypto.SHA1: + return oidSHA1, true + case crypto.SHA224: + return oidSHA224, true + case crypto.SHA256: + return oidSHA256, true + case crypto.SHA384: + return oidSHA384, true + case crypto.SHA512: + return oidSHA512, true + default: + return nil, false + } +} + +var ( + asnAlgoSHA1 = asnHashFunction{ + Algorithm: oidSHA1, + } + asnAlgoSHA224 = asnHashFunction{ + Algorithm: oidSHA224, + } + asnAlgoSHA256 = asnHashFunction{ + Algorithm: oidSHA256, + } + asnAlgoSHA384 = asnHashFunction{ + Algorithm: oidSHA384, + } + asnAlgoSHA512 = asnHashFunction{ + Algorithm: oidSHA512, + } +) + +// type ASNasnSubjectPublicKeyInfo struct { +// +// } +// + +type asnSubjectPublicKeyInfo struct { + Algorithm asn1.ObjectIdentifier + PublicKey asn1.BitString + Supplements ecpksSupplements `asn1:"optional"` +} + +type asnECPKAlgorithms struct { + Type asn1.ObjectIdentifier +} + +var idPublicKeyType = doScheme(ansiX962Scheme, []int{2}) +var idEcPublicKey = doScheme(idPublicKeyType, []int{1}) +var idEcPublicKeySupplemented = doScheme(idPublicKeyType, []int{0}) + +func curveToRaw(curve elliptic.Curve) (rv asn1.RawValue, ok bool) { + switch curve { + case elliptic.P224(), elliptic.P256(), elliptic.P384(), elliptic.P521(): + raw := rawCurve(curve) + return asn1.RawValue{ + Tag: 30, + Bytes: raw[2:], + FullBytes: raw, + }, true + default: + return rv, false + } +} + +func asnECPublicKeyType(curve elliptic.Curve) (algo asnAlgorithmIdentifier, ok bool) { + raw, ok := curveToRaw(curve) + if !ok { + return + } else { + return asnAlgorithmIdentifier{Algorithm: idEcPublicKey, + Parameters: raw}, true + } +} + +type asnECPrivKeyVer int + +var asnECPrivKeyVer1 asnECPrivKeyVer = 1 + +type asnPrivateKey struct { + Version asnECPrivKeyVer + Private []byte + Curve secgNamedCurve `asn1:"optional"` + Public asn1.BitString +} + +var asnECDH = doScheme(secgScheme, []int{12}) + +type asnECDHAlgorithm asnAlgorithmIdentifier + +var ( + dhSinglePass_stdDH_sha1kdf = asnECDHAlgorithm{ + Algorithm: doScheme(x963Scheme, []int{2}), + } + dhSinglePass_stdDH_sha256kdf = asnECDHAlgorithm{ + Algorithm: doScheme(secgScheme, []int{11, 1}), + } + dhSinglePass_stdDH_sha384kdf = asnECDHAlgorithm{ + Algorithm: doScheme(secgScheme, []int{11, 2}), + } + dhSinglePass_stdDH_sha224kdf = asnECDHAlgorithm{ + Algorithm: doScheme(secgScheme, []int{11, 0}), + } + dhSinglePass_stdDH_sha512kdf = asnECDHAlgorithm{ + Algorithm: doScheme(secgScheme, []int{11, 3}), + } +) + +func (a asnECDHAlgorithm) Cmp(b asnECDHAlgorithm) bool { + if len(a.Algorithm) != len(b.Algorithm) { + return false + } + for i, _ := range a.Algorithm { + if a.Algorithm[i] != b.Algorithm[i] { + return false + } + } + return true +} + +// asnNISTConcatenation is the only supported KDF at this time. +type asnKeyDerivationFunction asnAlgorithmIdentifier + +var asnNISTConcatenationKDF = asnKeyDerivationFunction{ + Algorithm: doScheme(secgScheme, []int{17, 1}), +} + +func (a asnKeyDerivationFunction) Cmp(b asnKeyDerivationFunction) bool { + if len(a.Algorithm) != len(b.Algorithm) { + return false + } + for i, _ := range a.Algorithm { + if a.Algorithm[i] != b.Algorithm[i] { + return false + } + } + return true +} + +var eciesRecommendedParameters = doScheme(secgScheme, []int{7}) +var eciesSpecifiedParameters = doScheme(secgScheme, []int{8}) + +type asnECIESParameters struct { + KDF asnKeyDerivationFunction `asn1:"optional"` + Sym asnSymmetricEncryption `asn1:"optional"` + MAC asnMessageAuthenticationCode `asn1:"optional"` +} + +type asnSymmetricEncryption asnAlgorithmIdentifier + +var ( + aes128CTRinECIES = asnSymmetricEncryption{ + Algorithm: doScheme(secgScheme, []int{21, 0}), + } + aes192CTRinECIES = asnSymmetricEncryption{ + Algorithm: doScheme(secgScheme, []int{21, 1}), + } + aes256CTRinECIES = asnSymmetricEncryption{ + Algorithm: doScheme(secgScheme, []int{21, 2}), + } +) + +func (a asnSymmetricEncryption) Cmp(b asnSymmetricEncryption) bool { + if len(a.Algorithm) != len(b.Algorithm) { + return false + } + for i, _ := range a.Algorithm { + if a.Algorithm[i] != b.Algorithm[i] { + return false + } + } + return true +} + +type asnMessageAuthenticationCode asnAlgorithmIdentifier + +var ( + hmacFull = asnMessageAuthenticationCode{ + Algorithm: doScheme(secgScheme, []int{22}), + } +) + +func (a asnMessageAuthenticationCode) Cmp(b asnMessageAuthenticationCode) bool { + if len(a.Algorithm) != len(b.Algorithm) { + return false + } + for i, _ := range a.Algorithm { + if a.Algorithm[i] != b.Algorithm[i] { + return false + } + } + return true +} + +type ecpksSupplements struct { + ECDomain secgNamedCurve + ECCAlgorithms eccAlgorithmSet +} + +type eccAlgorithmSet struct { + ECDH asnECDHAlgorithm `asn1:"optional"` + ECIES asnECIESParameters `asn1:"optional"` +} + +func marshalSubjectPublicKeyInfo(pub *PublicKey) (subj asnSubjectPublicKeyInfo, err error) { + subj.Algorithm = idEcPublicKeySupplemented + curve, ok := oidFromNamedCurve(pub.Curve) + if !ok { + err = ErrInvalidPublicKey + return + } + subj.Supplements.ECDomain = curve + if pub.Params != nil { + subj.Supplements.ECCAlgorithms.ECDH = paramsToASNECDH(pub.Params) + subj.Supplements.ECCAlgorithms.ECIES = paramsToASNECIES(pub.Params) + } + pubkey := elliptic.Marshal(pub.Curve, pub.X, pub.Y) + subj.PublicKey = asn1.BitString{ + BitLength: len(pubkey) * 8, + Bytes: pubkey, + } + return +} + +// Encode a public key to DER format. +func MarshalPublic(pub *PublicKey) ([]byte, error) { + subj, err := marshalSubjectPublicKeyInfo(pub) + if err != nil { + return nil, err + } + return asn1.Marshal(subj) +} + +// Decode a DER-encoded public key. +func UnmarshalPublic(in []byte) (pub *PublicKey, err error) { + var subj asnSubjectPublicKeyInfo + + if _, err = asn1.Unmarshal(in, &subj); err != nil { + return + } + if !subj.Algorithm.Equal(idEcPublicKeySupplemented) { + err = ErrInvalidPublicKey + return + } + pub = new(PublicKey) + pub.Curve = namedCurveFromOID(subj.Supplements.ECDomain) + x, y := elliptic.Unmarshal(pub.Curve, subj.PublicKey.Bytes) + if x == nil { + err = ErrInvalidPublicKey + return + } + pub.X = x + pub.Y = y + pub.Params = new(ECIESParams) + asnECIEStoParams(subj.Supplements.ECCAlgorithms.ECIES, pub.Params) + asnECDHtoParams(subj.Supplements.ECCAlgorithms.ECDH, pub.Params) + if pub.Params == nil { + if pub.Params = ParamsFromCurve(pub.Curve); pub.Params == nil { + err = ErrInvalidPublicKey + } + } + return +} + +func marshalPrivateKey(prv *PrivateKey) (ecprv asnPrivateKey, err error) { + ecprv.Version = asnECPrivKeyVer1 + ecprv.Private = prv.D.Bytes() + + var ok bool + ecprv.Curve, ok = oidFromNamedCurve(prv.PublicKey.Curve) + if !ok { + err = ErrInvalidPrivateKey + return + } + + var pub []byte + if pub, err = MarshalPublic(&prv.PublicKey); err != nil { + return + } else { + ecprv.Public = asn1.BitString{ + BitLength: len(pub) * 8, + Bytes: pub, + } + } + return +} + +// Encode a private key to DER format. +func MarshalPrivate(prv *PrivateKey) ([]byte, error) { + ecprv, err := marshalPrivateKey(prv) + if err != nil { + return nil, err + } + return asn1.Marshal(ecprv) +} + +// Decode a private key from a DER-encoded format. +func UnmarshalPrivate(in []byte) (prv *PrivateKey, err error) { + var ecprv asnPrivateKey + + if _, err = asn1.Unmarshal(in, &ecprv); err != nil { + return + } else if ecprv.Version != asnECPrivKeyVer1 { + err = ErrInvalidPrivateKey + return + } + + privateCurve := namedCurveFromOID(ecprv.Curve) + if privateCurve == nil { + err = ErrInvalidPrivateKey + return + } + + prv = new(PrivateKey) + prv.D = new(big.Int).SetBytes(ecprv.Private) + + if pub, err := UnmarshalPublic(ecprv.Public.Bytes); err != nil { + return nil, err + } else { + prv.PublicKey = *pub + } + + return +} + +// Export a public key to PEM format. +func ExportPublicPEM(pub *PublicKey) (out []byte, err error) { + der, err := MarshalPublic(pub) + if err != nil { + return + } + + var block pem.Block + block.Type = "ELLIPTIC CURVE PUBLIC KEY" + block.Bytes = der + + buf := new(bytes.Buffer) + err = pem.Encode(buf, &block) + if err != nil { + return + } else { + out = buf.Bytes() + } + return +} + +// Export a private key to PEM format. +func ExportPrivatePEM(prv *PrivateKey) (out []byte, err error) { + der, err := MarshalPrivate(prv) + if err != nil { + return + } + + var block pem.Block + block.Type = "ELLIPTIC CURVE PRIVATE KEY" + block.Bytes = der + + buf := new(bytes.Buffer) + err = pem.Encode(buf, &block) + if err != nil { + return + } else { + out = buf.Bytes() + } + return +} + +// Import a PEM-encoded public key. +func ImportPublicPEM(in []byte) (pub *PublicKey, err error) { + p, _ := pem.Decode(in) + if p == nil || p.Type != "ELLIPTIC CURVE PUBLIC KEY" { + return nil, ErrInvalidPublicKey + } + + pub, err = UnmarshalPublic(p.Bytes) + return +} + +// Import a PEM-encoded private key. +func ImportPrivatePEM(in []byte) (prv *PrivateKey, err error) { + p, _ := pem.Decode(in) + if p == nil || p.Type != "ELLIPTIC CURVE PRIVATE KEY" { + return nil, ErrInvalidPrivateKey + } + + prv, err = UnmarshalPrivate(p.Bytes) + return +} diff --git a/crypto/ecies/ecies.go b/crypto/ecies/ecies.go new file mode 100644 index 000000000..18952fc0b --- /dev/null +++ b/crypto/ecies/ecies.go @@ -0,0 +1,331 @@ +package ecies + +import ( + "crypto/cipher" + "crypto/ecdsa" + "crypto/elliptic" + "crypto/hmac" + "crypto/subtle" + "fmt" + "hash" + "io" + "math/big" +) + +var ( + ErrImport = fmt.Errorf("ecies: failed to import key") + ErrInvalidCurve = fmt.Errorf("ecies: invalid elliptic curve") + ErrInvalidParams = fmt.Errorf("ecies: invalid ECIES parameters") + ErrInvalidPublicKey = fmt.Errorf("ecies: invalid public key") + ErrSharedKeyIsPointAtInfinity = fmt.Errorf("ecies: shared key is point at infinity") + ErrSharedKeyTooBig = fmt.Errorf("ecies: shared key params are too big") +) + +// PublicKey is a representation of an elliptic curve public key. +type PublicKey struct { + X *big.Int + Y *big.Int + elliptic.Curve + Params *ECIESParams +} + +// Export an ECIES public key as an ECDSA public key. +func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey { + return &ecdsa.PublicKey{pub.Curve, pub.X, pub.Y} +} + +// Import an ECDSA public key as an ECIES public key. +func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey { + return &PublicKey{ + X: pub.X, + Y: pub.Y, + Curve: pub.Curve, + Params: ParamsFromCurve(pub.Curve), + } +} + +// PrivateKey is a representation of an elliptic curve private key. +type PrivateKey struct { + PublicKey + D *big.Int +} + +// Export an ECIES private key as an ECDSA private key. +func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey { + pub := &prv.PublicKey + pubECDSA := pub.ExportECDSA() + return &ecdsa.PrivateKey{*pubECDSA, prv.D} +} + +// Import an ECDSA private key as an ECIES private key. +func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey { + pub := ImportECDSAPublic(&prv.PublicKey) + return &PrivateKey{*pub, prv.D} +} + +// Generate an elliptic curve public / private keypair. If params is nil, +// the recommended default paramters for the key will be chosen. +func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) { + pb, x, y, err := elliptic.GenerateKey(curve, rand) + if err != nil { + return + } + prv = new(PrivateKey) + prv.PublicKey.X = x + prv.PublicKey.Y = y + prv.PublicKey.Curve = curve + prv.D = new(big.Int).SetBytes(pb) + if params == nil { + params = ParamsFromCurve(curve) + } + prv.PublicKey.Params = params + return +} + +// MaxSharedKeyLength returns the maximum length of the shared key the +// public key can produce. +func MaxSharedKeyLength(pub *PublicKey) int { + return (pub.Curve.Params().BitSize + 7) / 8 +} + +// ECDH key agreement method used to establish secret keys for encryption. +func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) { + if prv.PublicKey.Curve != pub.Curve { + return nil, ErrInvalidCurve + } + if skLen+macLen > MaxSharedKeyLength(pub) { + return nil, ErrSharedKeyTooBig + } + x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes()) + if x == nil { + return nil, ErrSharedKeyIsPointAtInfinity + } + + sk = make([]byte, skLen+macLen) + skBytes := x.Bytes() + copy(sk[len(sk)-len(skBytes):], skBytes) + return sk, nil +} + +var ( + ErrKeyDataTooLong = fmt.Errorf("ecies: can't supply requested key data") + ErrSharedTooLong = fmt.Errorf("ecies: shared secret is too long") + ErrInvalidMessage = fmt.Errorf("ecies: invalid message") +) + +var ( + big2To32 = new(big.Int).Exp(big.NewInt(2), big.NewInt(32), nil) + big2To32M1 = new(big.Int).Sub(big2To32, big.NewInt(1)) +) + +func incCounter(ctr []byte) { + if ctr[3]++; ctr[3] != 0 { + return + } else if ctr[2]++; ctr[2] != 0 { + return + } else if ctr[1]++; ctr[1] != 0 { + return + } else if ctr[0]++; ctr[0] != 0 { + return + } + return +} + +// NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1). +func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) (k []byte, err error) { + if s1 == nil { + s1 = make([]byte, 0) + } + + reps := ((kdLen + 7) * 8) / (hash.BlockSize() * 8) + if big.NewInt(int64(reps)).Cmp(big2To32M1) > 0 { + fmt.Println(big2To32M1) + return nil, ErrKeyDataTooLong + } + + counter := []byte{0, 0, 0, 1} + k = make([]byte, 0) + + for i := 0; i <= reps; i++ { + hash.Write(counter) + hash.Write(z) + hash.Write(s1) + k = append(k, hash.Sum(nil)...) + hash.Reset() + incCounter(counter) + } + + k = k[:kdLen] + return +} + +// messageTag computes the MAC of a message (called the tag) as per +// SEC 1, 3.5. +func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte { + if shared == nil { + shared = make([]byte, 0) + } + mac := hmac.New(hash, km) + mac.Write(msg) + tag := mac.Sum(nil) + return tag +} + +// Generate an initialisation vector for CTR mode. +func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) { + iv = make([]byte, params.BlockSize) + _, err = io.ReadFull(rand, iv) + return +} + +// symEncrypt carries out CTR encryption using the block cipher specified in the +// parameters. +func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) { + c, err := params.Cipher(key) + if err != nil { + return + } + + iv, err := generateIV(params, rand) + if err != nil { + return + } + ctr := cipher.NewCTR(c, iv) + + ct = make([]byte, len(m)+params.BlockSize) + copy(ct, iv) + ctr.XORKeyStream(ct[params.BlockSize:], m) + return +} + +// symDecrypt carries out CTR decryption using the block cipher specified in +// the parameters +func symDecrypt(rand io.Reader, params *ECIESParams, key, ct []byte) (m []byte, err error) { + c, err := params.Cipher(key) + if err != nil { + return + } + + ctr := cipher.NewCTR(c, ct[:params.BlockSize]) + + m = make([]byte, len(ct)-params.BlockSize) + ctr.XORKeyStream(m, ct[params.BlockSize:]) + return +} + +// Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1. If +// the shared information parameters aren't being used, they should be +// nil. +func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) { + params := pub.Params + if params == nil { + if params = ParamsFromCurve(pub.Curve); params == nil { + err = ErrUnsupportedECIESParameters + return + } + } + R, err := GenerateKey(rand, pub.Curve, params) + if err != nil { + return + } + + hash := params.Hash() + z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen) + if err != nil { + return + } + K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen) + if err != nil { + return + } + Ke := K[:params.KeyLen] + Km := K[params.KeyLen:] + hash.Write(Km) + Km = hash.Sum(nil) + hash.Reset() + + em, err := symEncrypt(rand, params, Ke, m) + if err != nil || len(em) <= params.BlockSize { + return + } + + d := messageTag(params.Hash, Km, em, s2) + + Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y) + ct = make([]byte, len(Rb)+len(em)+len(d)) + copy(ct, Rb) + copy(ct[len(Rb):], em) + copy(ct[len(Rb)+len(em):], d) + return +} + +// Decrypt decrypts an ECIES ciphertext. +func (prv *PrivateKey) Decrypt(rand io.Reader, c, s1, s2 []byte) (m []byte, err error) { + if c == nil || len(c) == 0 { + err = ErrInvalidMessage + return + } + params := prv.PublicKey.Params + if params == nil { + if params = ParamsFromCurve(prv.PublicKey.Curve); params == nil { + err = ErrUnsupportedECIESParameters + return + } + } + hash := params.Hash() + + var ( + rLen int + hLen int = hash.Size() + mStart int + mEnd int + ) + + switch c[0] { + case 2, 3, 4: + rLen = ((prv.PublicKey.Curve.Params().BitSize + 7) / 4) + if len(c) < (rLen + hLen + 1) { + err = ErrInvalidMessage + return + } + default: + err = ErrInvalidPublicKey + return + } + + mStart = rLen + mEnd = len(c) - hLen + + R := new(PublicKey) + R.Curve = prv.PublicKey.Curve + R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen]) + if R.X == nil { + err = ErrInvalidPublicKey + return + } + + z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen) + if err != nil { + return + } + + K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen) + if err != nil { + return + } + + Ke := K[:params.KeyLen] + Km := K[params.KeyLen:] + hash.Write(Km) + Km = hash.Sum(nil) + hash.Reset() + + d := messageTag(params.Hash, Km, c[mStart:mEnd], s2) + if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 { + err = ErrInvalidMessage + return + } + + m, err = symDecrypt(rand, params, Ke, c[mStart:mEnd]) + return +} diff --git a/crypto/ecies/ecies_test.go b/crypto/ecies/ecies_test.go new file mode 100644 index 000000000..943e4488e --- /dev/null +++ b/crypto/ecies/ecies_test.go @@ -0,0 +1,489 @@ +package ecies + +import ( + "bytes" + "crypto/elliptic" + "crypto/rand" + "crypto/sha256" + "flag" + "fmt" + "io/ioutil" + "testing" +) + +var dumpEnc bool + +func init() { + flDump := flag.Bool("dump", false, "write encrypted test message to file") + flag.Parse() + dumpEnc = *flDump +} + +// Ensure the KDF generates appropriately sized keys. +func TestKDF(t *testing.T) { + msg := []byte("Hello, world") + h := sha256.New() + + k, err := concatKDF(h, msg, nil, 64) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + if len(k) != 64 { + fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n", + len(k)) + t.FailNow() + } +} + +var skLen int +var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match") + +// cmpParams compares a set of ECIES parameters. We assume, as per the +// docs, that AES is the only supported symmetric encryption algorithm. +func cmpParams(p1, p2 *ECIESParams) bool { + if p1.hashAlgo != p2.hashAlgo { + return false + } else if p1.KeyLen != p2.KeyLen { + return false + } else if p1.BlockSize != p2.BlockSize { + return false + } + return true +} + +// cmpPublic returns true if the two public keys represent the same pojnt. +func cmpPublic(pub1, pub2 PublicKey) bool { + if pub1.X == nil || pub1.Y == nil { + fmt.Println(ErrInvalidPublicKey.Error()) + return false + } + if pub2.X == nil || pub2.Y == nil { + fmt.Println(ErrInvalidPublicKey.Error()) + return false + } + pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y) + pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y) + + return bytes.Equal(pub1Out, pub2Out) +} + +// cmpPrivate returns true if the two private keys are the same. +func cmpPrivate(prv1, prv2 *PrivateKey) bool { + if prv1 == nil || prv1.D == nil { + return false + } else if prv2 == nil || prv2.D == nil { + return false + } else if prv1.D.Cmp(prv2.D) != 0 { + return false + } else { + return cmpPublic(prv1.PublicKey, prv2.PublicKey) + } +} + +// Validate the ECDH component. +func TestSharedKey(t *testing.T) { + prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2 + + prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if !bytes.Equal(sk1, sk2) { + fmt.Println(ErrBadSharedKeys.Error()) + t.FailNow() + } +} + +// Verify that the key generation code fails when too much key data is +// requested. +func TestTooBigSharedKey(t *testing.T) { + prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + _, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2) + if err != ErrSharedKeyTooBig { + fmt.Println("ecdh: shared key should be too large for curve") + t.FailNow() + } + + _, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2) + if err != ErrSharedKeyTooBig { + fmt.Println("ecdh: shared key should be too large for curve") + t.FailNow() + } +} + +// Ensure a public key can be successfully marshalled and unmarshalled, and +// that the decoded key is the same as the original. +func TestMarshalPublic(t *testing.T) { + prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + out, err := MarshalPublic(&prv.PublicKey) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + pub, err := UnmarshalPublic(out) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if !cmpPublic(prv.PublicKey, *pub) { + fmt.Println("ecies: failed to unmarshal public key") + t.FailNow() + } +} + +// Ensure that a private key can be encoded into DER format, and that +// the resulting key is properly parsed back into a public key. +func TestMarshalPrivate(t *testing.T) { + prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + out, err := MarshalPrivate(prv) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if dumpEnc { + ioutil.WriteFile("test.out", out, 0644) + } + + prv2, err := UnmarshalPrivate(out) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if !cmpPrivate(prv, prv2) { + fmt.Println("ecdh: private key import failed") + t.FailNow() + } +} + +// Ensure that a private key can be successfully encoded to PEM format, and +// the resulting key is properly parsed back in. +func TestPrivatePEM(t *testing.T) { + prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + out, err := ExportPrivatePEM(prv) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if dumpEnc { + ioutil.WriteFile("test.key", out, 0644) + } + + prv2, err := ImportPrivatePEM(out) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } else if !cmpPrivate(prv, prv2) { + fmt.Println("ecdh: import from PEM failed") + t.FailNow() + } +} + +// Ensure that a public key can be successfully encoded to PEM format, and +// the resulting key is properly parsed back in. +func TestPublicPEM(t *testing.T) { + prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + out, err := ExportPublicPEM(&prv.PublicKey) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if dumpEnc { + ioutil.WriteFile("test.pem", out, 0644) + } + + pub2, err := ImportPublicPEM(out) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } else if !cmpPublic(prv.PublicKey, *pub2) { + fmt.Println("ecdh: import from PEM failed") + t.FailNow() + } +} + +// Benchmark the generation of P256 keys. +func BenchmarkGenerateKeyP256(b *testing.B) { + for i := 0; i < b.N; i++ { + if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil { + fmt.Println(err.Error()) + b.FailNow() + } + } +} + +// Benchmark the generation of P256 shared keys. +func BenchmarkGenSharedKeyP256(b *testing.B) { + prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil) + if err != nil { + fmt.Println(err.Error()) + b.FailNow() + } + + for i := 0; i < b.N; i++ { + _, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen) + if err != nil { + fmt.Println(err.Error()) + b.FailNow() + } + } +} + +// Verify that an encrypted message can be successfully decrypted. +func TestEncryptDecrypt(t *testing.T) { + prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + message := []byte("Hello, world.") + ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if !bytes.Equal(pt, message) { + fmt.Println("ecies: plaintext doesn't match message") + t.FailNow() + } + + _, err = prv1.Decrypt(rand.Reader, ct, nil, nil) + if err == nil { + fmt.Println("ecies: encryption should not have succeeded") + t.FailNow() + } +} + +// TestMarshalEncryption validates the encode/decode produces a valid +// ECIES encryption key. +func TestMarshalEncryption(t *testing.T) { + prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + out, err := MarshalPrivate(prv1) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + prv2, err := UnmarshalPrivate(out) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + message := []byte("Hello, world.") + ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if !bytes.Equal(pt, message) { + fmt.Println("ecies: plaintext doesn't match message") + t.FailNow() + } + + _, err = prv1.Decrypt(rand.Reader, ct, nil, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + +} + +type testCase struct { + Curve elliptic.Curve + Name string + Expected bool +} + +var testCases = []testCase{ + testCase{ + Curve: elliptic.P224(), + Name: "P224", + Expected: false, + }, + testCase{ + Curve: elliptic.P256(), + Name: "P256", + Expected: true, + }, + testCase{ + Curve: elliptic.P384(), + Name: "P384", + Expected: true, + }, + testCase{ + Curve: elliptic.P521(), + Name: "P521", + Expected: true, + }, +} + +// Test parameter selection for each curve, and that P224 fails automatic +// parameter selection (see README for a discussion of P224). Ensures that +// selecting a set of parameters automatically for the given curve works. +func TestParamSelection(t *testing.T) { + for _, c := range testCases { + testParamSelection(t, c) + } +} + +func testParamSelection(t *testing.T, c testCase) { + params := ParamsFromCurve(c.Curve) + if params == nil && c.Expected { + fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name) + t.FailNow() + } else if params != nil && !c.Expected { + fmt.Printf("ecies: parameters should be invalid (%s)\n", + c.Name) + t.FailNow() + } + + prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Printf("%s (%s)\n", err.Error(), c.Name) + t.FailNow() + } + + prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Printf("%s (%s)\n", err.Error(), c.Name) + t.FailNow() + } + + message := []byte("Hello, world.") + ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) + if err != nil { + fmt.Printf("%s (%s)\n", err.Error(), c.Name) + t.FailNow() + } + + pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) + if err != nil { + fmt.Printf("%s (%s)\n", err.Error(), c.Name) + t.FailNow() + } + + if !bytes.Equal(pt, message) { + fmt.Printf("ecies: plaintext doesn't match message (%s)\n", + c.Name) + t.FailNow() + } + + _, err = prv1.Decrypt(rand.Reader, ct, nil, nil) + if err == nil { + fmt.Printf("ecies: encryption should not have succeeded (%s)\n", + c.Name) + t.FailNow() + } + +} + +// Ensure that the basic public key validation in the decryption operation +// works. +func TestBasicKeyValidation(t *testing.T) { + badBytes := []byte{0, 1, 5, 6, 7, 8, 9} + + prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + message := []byte("Hello, world.") + ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + for _, b := range badBytes { + ct[0] = b + _, err := prv.Decrypt(rand.Reader, ct, nil, nil) + if err != ErrInvalidPublicKey { + fmt.Println("ecies: validated an invalid key") + t.FailNow() + } + } +} diff --git a/crypto/ecies/params.go b/crypto/ecies/params.go new file mode 100644 index 000000000..fd1ceedd0 --- /dev/null +++ b/crypto/ecies/params.go @@ -0,0 +1,181 @@ +package ecies + +// This file contains parameters for ECIES encryption, specifying the +// symmetric encryption and HMAC parameters. + +import ( + "crypto" + "crypto/aes" + "crypto/cipher" + "crypto/elliptic" + "crypto/sha256" + "crypto/sha512" + "fmt" + "hash" +) + +// The default curve for this package is the NIST P256 curve, which +// provides security equivalent to AES-128. +var DefaultCurve = elliptic.P256() + +var ( + ErrUnsupportedECDHAlgorithm = fmt.Errorf("ecies: unsupported ECDH algorithm") + ErrUnsupportedECIESParameters = fmt.Errorf("ecies: unsupported ECIES parameters") +) + +type ECIESParams struct { + Hash func() hash.Hash // hash function + hashAlgo crypto.Hash + Cipher func([]byte) (cipher.Block, error) // symmetric cipher + BlockSize int // block size of symmetric cipher + KeyLen int // length of symmetric key +} + +// Standard ECIES parameters: +// * ECIES using AES128 and HMAC-SHA-256-16 +// * ECIES using AES256 and HMAC-SHA-256-32 +// * ECIES using AES256 and HMAC-SHA-384-48 +// * ECIES using AES256 and HMAC-SHA-512-64 + +var ( + ECIES_AES128_SHA256 = &ECIESParams{ + Hash: sha256.New, + hashAlgo: crypto.SHA256, + Cipher: aes.NewCipher, + BlockSize: aes.BlockSize, + KeyLen: 16, + } + + ECIES_AES256_SHA256 = &ECIESParams{ + Hash: sha256.New, + hashAlgo: crypto.SHA256, + Cipher: aes.NewCipher, + BlockSize: aes.BlockSize, + KeyLen: 32, + } + + ECIES_AES256_SHA384 = &ECIESParams{ + Hash: sha512.New384, + hashAlgo: crypto.SHA384, + Cipher: aes.NewCipher, + BlockSize: aes.BlockSize, + KeyLen: 32, + } + + ECIES_AES256_SHA512 = &ECIESParams{ + Hash: sha512.New, + hashAlgo: crypto.SHA512, + Cipher: aes.NewCipher, + BlockSize: aes.BlockSize, + KeyLen: 32, + } +) + +var paramsFromCurve = map[elliptic.Curve]*ECIESParams{ + elliptic.P256(): ECIES_AES128_SHA256, + elliptic.P384(): ECIES_AES256_SHA384, + elliptic.P521(): ECIES_AES256_SHA512, +} + +func AddParamsForCurve(curve elliptic.Curve, params *ECIESParams) { + paramsFromCurve[curve] = params +} + +// ParamsFromCurve selects parameters optimal for the selected elliptic curve. +// Only the curves P256, P384, and P512 are supported. +func ParamsFromCurve(curve elliptic.Curve) (params *ECIESParams) { + return paramsFromCurve[curve] + + /* + switch curve { + case elliptic.P256(): + return ECIES_AES128_SHA256 + case elliptic.P384(): + return ECIES_AES256_SHA384 + case elliptic.P521(): + return ECIES_AES256_SHA512 + default: + return nil + } + */ +} + +// ASN.1 encode the ECIES parameters relevant to the encryption operations. +func paramsToASNECIES(params *ECIESParams) (asnParams asnECIESParameters) { + if nil == params { + return + } + asnParams.KDF = asnNISTConcatenationKDF + asnParams.MAC = hmacFull + switch params.KeyLen { + case 16: + asnParams.Sym = aes128CTRinECIES + case 24: + asnParams.Sym = aes192CTRinECIES + case 32: + asnParams.Sym = aes256CTRinECIES + } + return +} + +// ASN.1 encode the ECIES parameters relevant to ECDH. +func paramsToASNECDH(params *ECIESParams) (algo asnECDHAlgorithm) { + switch params.hashAlgo { + case crypto.SHA224: + algo = dhSinglePass_stdDH_sha224kdf + case crypto.SHA256: + algo = dhSinglePass_stdDH_sha256kdf + case crypto.SHA384: + algo = dhSinglePass_stdDH_sha384kdf + case crypto.SHA512: + algo = dhSinglePass_stdDH_sha512kdf + } + return +} + +// ASN.1 decode the ECIES parameters relevant to the encryption stage. +func asnECIEStoParams(asnParams asnECIESParameters, params *ECIESParams) { + if !asnParams.KDF.Cmp(asnNISTConcatenationKDF) { + params = nil + return + } else if !asnParams.MAC.Cmp(hmacFull) { + params = nil + return + } + + switch { + case asnParams.Sym.Cmp(aes128CTRinECIES): + params.KeyLen = 16 + params.BlockSize = 16 + params.Cipher = aes.NewCipher + case asnParams.Sym.Cmp(aes192CTRinECIES): + params.KeyLen = 24 + params.BlockSize = 16 + params.Cipher = aes.NewCipher + case asnParams.Sym.Cmp(aes256CTRinECIES): + params.KeyLen = 32 + params.BlockSize = 16 + params.Cipher = aes.NewCipher + default: + params = nil + } +} + +// ASN.1 decode the ECIES parameters relevant to ECDH. +func asnECDHtoParams(asnParams asnECDHAlgorithm, params *ECIESParams) { + if asnParams.Cmp(dhSinglePass_stdDH_sha224kdf) { + params.hashAlgo = crypto.SHA224 + params.Hash = sha256.New224 + } else if asnParams.Cmp(dhSinglePass_stdDH_sha256kdf) { + params.hashAlgo = crypto.SHA256 + params.Hash = sha256.New + } else if asnParams.Cmp(dhSinglePass_stdDH_sha384kdf) { + params.hashAlgo = crypto.SHA384 + params.Hash = sha512.New384 + } else if asnParams.Cmp(dhSinglePass_stdDH_sha512kdf) { + params.hashAlgo = crypto.SHA512 + params.Hash = sha512.New + } else { + params = nil + } +} diff --git a/crypto/encrypt_decrypt_test.go b/crypto/encrypt_decrypt_test.go new file mode 100644 index 000000000..85b43c406 --- /dev/null +++ b/crypto/encrypt_decrypt_test.go @@ -0,0 +1,40 @@ +package crypto + +import ( + "bytes" + "fmt" + "testing" + + "github.com/ethereum/go-ethereum/ethutil" +) + +func TestBox(t *testing.T) { + prv1 := ToECDSA(ethutil.Hex2Bytes("4b50fa71f5c3eeb8fdc452224b2395af2fcc3d125e06c32c82e048c0559db03f")) + prv2 := ToECDSA(ethutil.Hex2Bytes("d0b043b4c5d657670778242d82d68a29d25d7d711127d17b8e299f156dad361a")) + pub2 := ToECDSAPub(ethutil.Hex2Bytes("04bd27a63c91fe3233c5777e6d3d7b39204d398c8f92655947eb5a373d46e1688f022a1632d264725cbc7dc43ee1cfebde42fa0a86d08b55d2acfbb5e9b3b48dc5")) + + message := []byte("Hello, world.") + ct, err := Encrypt(pub2, message) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + pt, err := Decrypt(prv2, ct) + if err != nil { + fmt.Println(err.Error()) + t.FailNow() + } + + if !bytes.Equal(pt, message) { + fmt.Println("ecies: plaintext doesn't match message") + t.FailNow() + } + + _, err = Decrypt(prv1, pt) + if err == nil { + fmt.Println("ecies: encryption should not have succeeded") + t.FailNow() + } + +} diff --git a/crypto/key.go b/crypto/key.go new file mode 100644 index 000000000..ec4908c30 --- /dev/null +++ b/crypto/key.go @@ -0,0 +1,110 @@ +/* + This file is part of go-ethereum + + go-ethereum is free software: you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + go-ethereum is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with go-ethereum. If not, see <http://www.gnu.org/licenses/>. +*/ +/** + * @authors + * Gustav Simonsson <gustav.simonsson@gmail.com> + * @date 2015 + * + */ + +package crypto + +import ( + "bytes" + "crypto/ecdsa" + "crypto/elliptic" + "encoding/json" + "io" + + "code.google.com/p/go-uuid/uuid" +) + +type Key struct { + Id uuid.UUID // Version 4 "random" for unique id not derived from key data + // to simplify lookups we also store the address + Address []byte + // we only store privkey as pubkey/address can be derived from it + // privkey in this struct is always in plaintext + PrivateKey *ecdsa.PrivateKey +} + +type plainKeyJSON struct { + Id []byte + Address []byte + PrivateKey []byte +} + +type cipherJSON struct { + Salt []byte + IV []byte + CipherText []byte +} + +type encryptedKeyJSON struct { + Id []byte + Address []byte + Crypto cipherJSON +} + +func (k *Key) MarshalJSON() (j []byte, err error) { + jStruct := plainKeyJSON{ + k.Id, + k.Address, + FromECDSA(k.PrivateKey), + } + j, err = json.Marshal(jStruct) + return j, err +} + +func (k *Key) UnmarshalJSON(j []byte) (err error) { + keyJSON := new(plainKeyJSON) + err = json.Unmarshal(j, &keyJSON) + if err != nil { + return err + } + + u := new(uuid.UUID) + *u = keyJSON.Id + k.Id = *u + k.Address = keyJSON.Address + k.PrivateKey = ToECDSA(keyJSON.PrivateKey) + + return err +} + +func NewKey(rand io.Reader) *Key { + randBytes := make([]byte, 32) + _, err := rand.Read(randBytes) + if err != nil { + panic("key generation: could not read from random source: " + err.Error()) + } + reader := bytes.NewReader(randBytes) + _, x, y, err := elliptic.GenerateKey(S256(), reader) + if err != nil { + panic("key generation: elliptic.GenerateKey failed: " + err.Error()) + } + privateKeyMarshalled := elliptic.Marshal(S256(), x, y) + privateKeyECDSA := ToECDSA(privateKeyMarshalled) + + id := uuid.NewRandom() + key := &Key{ + Id: id, + Address: PubkeyToAddress(privateKeyECDSA.PublicKey), + PrivateKey: privateKeyECDSA, + } + return key +} diff --git a/crypto/key_manager.go b/crypto/key_manager.go new file mode 100644 index 000000000..326e559e0 --- /dev/null +++ b/crypto/key_manager.go @@ -0,0 +1,134 @@ +package crypto + +import ( + "fmt" + "sync" + + "github.com/ethereum/go-ethereum/ethutil" + "github.com/ethereum/go-ethereum/logger" +) + +var keylogger = logger.NewLogger("KEY") + +type KeyManager struct { + keyRing *KeyRing + session string + keyStore KeyStore // interface + keyRings map[string]*KeyRing // cache + keyPair *KeyPair +} + +func NewDBKeyManager(db ethutil.Database) *KeyManager { + return &KeyManager{keyStore: &DBKeyStore{db: db}, keyRings: make(map[string]*KeyRing)} +} + +func NewFileKeyManager(basedir string) *KeyManager { + return &KeyManager{keyStore: &FileKeyStore{basedir: basedir}, keyRings: make(map[string]*KeyRing)} +} + +func (k *KeyManager) KeyPair() *KeyPair { + return k.keyPair +} + +func (k *KeyManager) KeyRing() *KeyPair { + return k.keyPair +} + +func (k *KeyManager) PrivateKey() []byte { + return k.keyPair.PrivateKey +} + +func (k *KeyManager) PublicKey() []byte { + return k.keyPair.PublicKey +} + +func (k *KeyManager) Address() []byte { + return k.keyPair.Address() +} + +func (k *KeyManager) save(session string, keyRing *KeyRing) error { + err := k.keyStore.Save(session, keyRing) + if err != nil { + return err + } + k.keyRings[session] = keyRing + return nil +} + +func (k *KeyManager) load(session string) (*KeyRing, error) { + keyRing, found := k.keyRings[session] + if !found { + var err error + keyRing, err = k.keyStore.Load(session) + if err != nil { + return nil, err + } + } + return keyRing, nil +} + +func cursorError(cursor int, len int) error { + return fmt.Errorf("cursor %d out of range (0..%d)", cursor, len) +} + +func (k *KeyManager) reset(session string, cursor int, keyRing *KeyRing) error { + if cursor >= keyRing.Len() { + return cursorError(cursor, keyRing.Len()) + } + lock := &sync.Mutex{} + lock.Lock() + defer lock.Unlock() + err := k.save(session, keyRing) + if err != nil { + return err + } + k.session = session + k.keyRing = keyRing + k.keyPair = keyRing.GetKeyPair(cursor) + return nil +} + +func (k *KeyManager) SetCursor(cursor int) error { + if cursor >= k.keyRing.Len() { + return cursorError(cursor, k.keyRing.Len()) + } + k.keyPair = k.keyRing.GetKeyPair(cursor) + return nil +} + +func (k *KeyManager) Init(session string, cursor int, force bool) error { + var keyRing *KeyRing + if !force { + var err error + keyRing, err = k.load(session) + if err != nil { + return err + } + } + if keyRing == nil { + keyRing = NewGeneratedKeyRing(1) + keylogger.Infof("Created keypair. Private key: %x\n", keyRing.keys[0].PrivateKey) + } + return k.reset(session, cursor, keyRing) +} + +func (k *KeyManager) InitFromSecretsFile(session string, cursor int, secretsfile string) error { + keyRing, err := NewKeyRingFromFile(secretsfile) + if err != nil { + return err + } + return k.reset(session, cursor, keyRing) +} + +func (k *KeyManager) InitFromString(session string, cursor int, secrets string) error { + keyRing, err := NewKeyRingFromString(secrets) + if err != nil { + return err + } + return k.reset(session, cursor, keyRing) +} + +func (k *KeyManager) Export(dir string) error { + fileKeyStore := FileKeyStore{dir} + return fileKeyStore.Save(k.session, k.keyRing) +} diff --git a/crypto/key_store.go b/crypto/key_store.go new file mode 100644 index 000000000..04560a04e --- /dev/null +++ b/crypto/key_store.go @@ -0,0 +1,113 @@ +package crypto + +import ( + "fmt" + "io/ioutil" + "os" + "path" + "strings" + + "github.com/ethereum/go-ethereum/ethutil" +) + +type KeyStore interface { + Load(string) (*KeyRing, error) + Save(string, *KeyRing) error +} + +type DBKeyStore struct { + db ethutil.Database +} + +const dbKeyPrefix = "KeyRing" + +func (k *DBKeyStore) dbKey(session string) []byte { + return []byte(fmt.Sprintf("%s%s", dbKeyPrefix, session)) +} + +func (k *DBKeyStore) Save(session string, keyRing *KeyRing) error { + k.db.Put(k.dbKey(session), keyRing.RlpEncode()) + return nil +} + +func (k *DBKeyStore) Load(session string) (*KeyRing, error) { + data, err := k.db.Get(k.dbKey(session)) + if err != nil { + return nil, nil + } + var keyRing *KeyRing + keyRing, err = NewKeyRingFromBytes(data) + if err != nil { + return nil, err + } + // if empty keyRing is found we return nil, no error + if keyRing.Len() == 0 { + return nil, nil + } + return keyRing, nil +} + +type FileKeyStore struct { + basedir string +} + +func (k *FileKeyStore) Save(session string, keyRing *KeyRing) error { + var content []byte + var err error + var privateKeys []string + var publicKeys []string + var mnemonics []string + var addresses []string + keyRing.Each(func(keyPair *KeyPair) { + privateKeys = append(privateKeys, ethutil.Bytes2Hex(keyPair.PrivateKey)) + publicKeys = append(publicKeys, ethutil.Bytes2Hex(keyPair.PublicKey)) + addresses = append(addresses, ethutil.Bytes2Hex(keyPair.Address())) + mnemonics = append(mnemonics, keyPair.Mnemonic()) + }) + + basename := session + if session == "" { + basename = "default" + } + + path := path.Join(k.basedir, basename) + content = []byte(strings.Join(privateKeys, "\n")) + err = ioutil.WriteFile(path+".prv", content, 0600) + if err != nil { + return err + } + + content = []byte(strings.Join(publicKeys, "\n")) + err = ioutil.WriteFile(path+".pub", content, 0644) + if err != nil { + return err + } + + content = []byte(strings.Join(addresses, "\n")) + err = ioutil.WriteFile(path+".addr", content, 0644) + if err != nil { + return err + } + + content = []byte(strings.Join(mnemonics, "\n")) + err = ioutil.WriteFile(path+".mne", content, 0600) + if err != nil { + return err + } + + return nil +} + +func (k *FileKeyStore) Load(session string) (*KeyRing, error) { + basename := session + if session == "" { + basename = "default" + } + secfile := path.Join(k.basedir, basename+".prv") + _, err := os.Stat(secfile) + // if file is not found then we return nil, no error + if err != nil { + return nil, nil + } + return NewKeyRingFromFile(secfile) +} diff --git a/crypto/key_store_passphrase.go b/crypto/key_store_passphrase.go new file mode 100644 index 000000000..7d21b6604 --- /dev/null +++ b/crypto/key_store_passphrase.go @@ -0,0 +1,200 @@ +/* + This file is part of go-ethereum + + go-ethereum is free software: you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + go-ethereum is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with go-ethereum. If not, see <http://www.gnu.org/licenses/>. +*/ +/** + * @authors + * Gustav Simonsson <gustav.simonsson@gmail.com> + * @date 2015 + * + */ + +/* + +This key store behaves as KeyStorePlain with the difference that +the private key is encrypted and on disk uses another JSON encoding. + +Cryptography: + +1. Encryption key is scrypt derived key from user passphrase. Scrypt parameters + (work factors) [1][2] are defined as constants below. +2. Scrypt salt is 32 random bytes from CSPRNG. It is appended to ciphertext. +3. Checksum is SHA3 of the private key bytes. +4. Plaintext is concatenation of private key bytes and checksum. +5. Encryption algo is AES 256 CBC [3][4] +6. CBC IV is 16 random bytes from CSPRNG. It is appended to ciphertext. +7. Plaintext padding is PKCS #7 [5][6] + +Encoding: + +1. On disk, ciphertext, salt and IV are encoded in a nested JSON object. + cat a key file to see the structure. +2. byte arrays are base64 JSON strings. +3. The EC private key bytes are in uncompressed form [7]. + They are a big-endian byte slice of the absolute value of D [8][9]. +4. The checksum is the last 32 bytes of the plaintext byte array and the + private key is the preceeding bytes. + +References: + +1. http://www.tarsnap.com/scrypt/scrypt-slides.pdf +2. http://stackoverflow.com/questions/11126315/what-are-optimal-scrypt-work-factors +3. http://en.wikipedia.org/wiki/Advanced_Encryption_Standard +4. http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher-block_chaining_.28CBC.29 +5. https://leanpub.com/gocrypto/read#leanpub-auto-block-cipher-modes +6. http://tools.ietf.org/html/rfc2315 +7. http://bitcoin.stackexchange.com/questions/3059/what-is-a-compressed-bitcoin-key +8. http://golang.org/pkg/crypto/ecdsa/#PrivateKey +9. https://golang.org/pkg/math/big/#Int.Bytes + +*/ + +package crypto + +import ( + "bytes" + "crypto/aes" + "crypto/cipher" + "encoding/hex" + "encoding/json" + "errors" + "io" + "os" + "path" + + "code.google.com/p/go-uuid/uuid" + "github.com/ethereum/go-ethereum/crypto/randentropy" + "golang.org/x/crypto/scrypt" +) + +const ( + // 2^18 / 8 / 1 uses 256MB memory and approx 1s CPU time on a modern CPU. + scryptN = 1 << 18 + scryptr = 8 + scryptp = 1 + scryptdkLen = 32 +) + +type keyStorePassphrase struct { + keysDirPath string +} + +func NewKeyStorePassphrase(path string) KeyStore2 { + return &keyStorePassphrase{path} +} + +func (ks keyStorePassphrase) GenerateNewKey(rand io.Reader, auth string) (key *Key, err error) { + return GenerateNewKeyDefault(ks, rand, auth) +} + +func (ks keyStorePassphrase) GetKey(keyAddr []byte, auth string) (key *Key, err error) { + keyBytes, keyId, err := DecryptKey(ks, keyAddr, auth) + if err != nil { + return nil, err + } + key = &Key{ + Id: uuid.UUID(keyId), + Address: keyAddr, + PrivateKey: ToECDSA(keyBytes), + } + return key, err +} + +func (ks keyStorePassphrase) GetKeyAddresses() (addresses [][]byte, err error) { + return GetKeyAddresses(ks.keysDirPath) +} + +func (ks keyStorePassphrase) StoreKey(key *Key, auth string) (err error) { + authArray := []byte(auth) + salt := randentropy.GetEntropyMixed(32) + derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptr, scryptp, scryptdkLen) + if err != nil { + return err + } + + keyBytes := FromECDSA(key.PrivateKey) + keyBytesHash := Sha3(keyBytes) + toEncrypt := PKCS7Pad(append(keyBytes, keyBytesHash...)) + + AES256Block, err := aes.NewCipher(derivedKey) + if err != nil { + return err + } + + iv := randentropy.GetEntropyMixed(aes.BlockSize) // 16 + AES256CBCEncrypter := cipher.NewCBCEncrypter(AES256Block, iv) + cipherText := make([]byte, len(toEncrypt)) + AES256CBCEncrypter.CryptBlocks(cipherText, toEncrypt) + + cipherStruct := cipherJSON{ + salt, + iv, + cipherText, + } + keyStruct := encryptedKeyJSON{ + key.Id, + key.Address, + cipherStruct, + } + keyJSON, err := json.Marshal(keyStruct) + if err != nil { + return err + } + + return WriteKeyFile(key.Address, ks.keysDirPath, keyJSON) +} + +func (ks keyStorePassphrase) DeleteKey(keyAddr []byte, auth string) (err error) { + // only delete if correct passphrase is given + _, _, err = DecryptKey(ks, keyAddr, auth) + if err != nil { + return err + } + + keyDirPath := path.Join(ks.keysDirPath, hex.EncodeToString(keyAddr)) + return os.RemoveAll(keyDirPath) +} + +func DecryptKey(ks keyStorePassphrase, keyAddr []byte, auth string) (keyBytes []byte, keyId []byte, err error) { + fileContent, err := GetKeyFile(ks.keysDirPath, keyAddr) + if err != nil { + return nil, nil, err + } + + keyProtected := new(encryptedKeyJSON) + err = json.Unmarshal(fileContent, keyProtected) + + keyId = keyProtected.Id + salt := keyProtected.Crypto.Salt + iv := keyProtected.Crypto.IV + cipherText := keyProtected.Crypto.CipherText + + authArray := []byte(auth) + derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptr, scryptp, scryptdkLen) + if err != nil { + return nil, nil, err + } + plainText, err := aesCBCDecrypt(derivedKey, cipherText, iv) + if err != nil { + return nil, nil, err + } + keyBytes = plainText[:len(plainText)-32] + keyBytesHash := plainText[len(plainText)-32:] + if !bytes.Equal(Sha3(keyBytes), keyBytesHash) { + err = errors.New("Decryption failed: checksum mismatch") + return nil, nil, err + } + return keyBytes, keyId, err +} diff --git a/crypto/key_store_plain.go b/crypto/key_store_plain.go new file mode 100644 index 000000000..338a4a2c3 --- /dev/null +++ b/crypto/key_store_plain.go @@ -0,0 +1,129 @@ +/* + This file is part of go-ethereum + + go-ethereum is free software: you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + go-ethereum is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with go-ethereum. If not, see <http://www.gnu.org/licenses/>. +*/ +/** + * @authors + * Gustav Simonsson <gustav.simonsson@gmail.com> + * @date 2015 + * + */ + +package crypto + +import ( + "encoding/hex" + "encoding/json" + "fmt" + "io" + "io/ioutil" + "os" + "path" +) + +// TODO: rename to KeyStore when replacing existing KeyStore +type KeyStore2 interface { + // create new key using io.Reader entropy source and optionally using auth string + GenerateNewKey(io.Reader, string) (*Key, error) + GetKey([]byte, string) (*Key, error) // key from addr and auth string + GetKeyAddresses() ([][]byte, error) // get all addresses + StoreKey(*Key, string) error // store key optionally using auth string + DeleteKey([]byte, string) error // delete key by addr and auth string +} + +type keyStorePlain struct { + keysDirPath string +} + +func NewKeyStorePlain(path string) KeyStore2 { + return &keyStorePlain{path} +} + +func (ks keyStorePlain) GenerateNewKey(rand io.Reader, auth string) (key *Key, err error) { + return GenerateNewKeyDefault(ks, rand, auth) +} + +func GenerateNewKeyDefault(ks KeyStore2, rand io.Reader, auth string) (key *Key, err error) { + defer func() { + if r := recover(); r != nil { + err = fmt.Errorf("GenerateNewKey error: %v", r) + } + }() + key = NewKey(rand) + err = ks.StoreKey(key, auth) + return key, err +} + +func (ks keyStorePlain) GetKey(keyAddr []byte, auth string) (key *Key, err error) { + fileContent, err := GetKeyFile(ks.keysDirPath, keyAddr) + if err != nil { + return nil, err + } + + key = new(Key) + err = json.Unmarshal(fileContent, key) + return key, err +} + +func (ks keyStorePlain) GetKeyAddresses() (addresses [][]byte, err error) { + return GetKeyAddresses(ks.keysDirPath) +} + +func (ks keyStorePlain) StoreKey(key *Key, auth string) (err error) { + keyJSON, err := json.Marshal(key) + if err != nil { + return err + } + err = WriteKeyFile(key.Address, ks.keysDirPath, keyJSON) + return err +} + +func (ks keyStorePlain) DeleteKey(keyAddr []byte, auth string) (err error) { + keyDirPath := path.Join(ks.keysDirPath, hex.EncodeToString(keyAddr)) + err = os.RemoveAll(keyDirPath) + return err +} + +func GetKeyFile(keysDirPath string, keyAddr []byte) (fileContent []byte, err error) { + fileName := hex.EncodeToString(keyAddr) + return ioutil.ReadFile(path.Join(keysDirPath, fileName, fileName)) +} + +func WriteKeyFile(addr []byte, keysDirPath string, content []byte) (err error) { + addrHex := hex.EncodeToString(addr) + keyDirPath := path.Join(keysDirPath, addrHex) + keyFilePath := path.Join(keyDirPath, addrHex) + err = os.MkdirAll(keyDirPath, 0700) // read, write and dir search for user + if err != nil { + return err + } + return ioutil.WriteFile(keyFilePath, content, 0600) // read, write for user +} + +func GetKeyAddresses(keysDirPath string) (addresses [][]byte, err error) { + fileInfos, err := ioutil.ReadDir(keysDirPath) + if err != nil { + return nil, err + } + addresses = make([][]byte, len(fileInfos)) + for i, fileInfo := range fileInfos { + address, err := hex.DecodeString(fileInfo.Name()) + if err != nil { + continue + } + addresses[i] = address + } + return addresses, err +} diff --git a/crypto/key_store_test.go b/crypto/key_store_test.go new file mode 100644 index 000000000..11531d460 --- /dev/null +++ b/crypto/key_store_test.go @@ -0,0 +1,99 @@ +package crypto + +import ( + "github.com/ethereum/go-ethereum/crypto/randentropy" + "github.com/ethereum/go-ethereum/ethutil" + "reflect" + "testing" +) + +func TestKeyStorePlain(t *testing.T) { + ks := NewKeyStorePlain(ethutil.DefaultDataDir()) + pass := "" // not used but required by API + k1, err := ks.GenerateNewKey(randentropy.Reader, pass) + if err != nil { + t.Fatal(err) + } + + k2 := new(Key) + k2, err = ks.GetKey(k1.Address, pass) + if err != nil { + t.Fatal(err) + } + + if !reflect.DeepEqual(k1.Address, k2.Address) { + t.Fatal(err) + } + + if !reflect.DeepEqual(k1.PrivateKey, k2.PrivateKey) { + t.Fatal(err) + } + + err = ks.DeleteKey(k2.Address, pass) + if err != nil { + t.Fatal(err) + } +} + +func TestKeyStorePassphrase(t *testing.T) { + ks := NewKeyStorePassphrase(ethutil.DefaultDataDir()) + pass := "foo" + k1, err := ks.GenerateNewKey(randentropy.Reader, pass) + if err != nil { + t.Fatal(err) + } + k2 := new(Key) + k2, err = ks.GetKey(k1.Address, pass) + if err != nil { + t.Fatal(err) + } + if !reflect.DeepEqual(k1.Address, k2.Address) { + t.Fatal(err) + } + + if !reflect.DeepEqual(k1.PrivateKey, k2.PrivateKey) { + t.Fatal(err) + } + + err = ks.DeleteKey(k2.Address, pass) // also to clean up created files + if err != nil { + t.Fatal(err) + } +} + +func TestKeyStorePassphraseDecryptionFail(t *testing.T) { + ks := NewKeyStorePassphrase(ethutil.DefaultDataDir()) + pass := "foo" + k1, err := ks.GenerateNewKey(randentropy.Reader, pass) + if err != nil { + t.Fatal(err) + } + + _, err = ks.GetKey(k1.Address, "bar") // wrong passphrase + if err == nil { + t.Fatal(err) + } + + err = ks.DeleteKey(k1.Address, "bar") // wrong passphrase + if err == nil { + t.Fatal(err) + } + + err = ks.DeleteKey(k1.Address, pass) // to clean up + if err != nil { + t.Fatal(err) + } +} + +func TestImportPreSaleKey(t *testing.T) { + // file content of a presale key file generated with: + // python pyethsaletool.py genwallet + // with password "foo" + fileContent := "{\"encseed\": \"26d87f5f2bf9835f9a47eefae571bc09f9107bb13d54ff12a4ec095d01f83897494cf34f7bed2ed34126ecba9db7b62de56c9d7cd136520a0427bfb11b8954ba7ac39b90d4650d3448e31185affcd74226a68f1e94b1108e6e0a4a91cdd83eba\", \"ethaddr\": \"d4584b5f6229b7be90727b0fc8c6b91bb427821f\", \"email\": \"gustav.simonsson@gmail.com\", \"btcaddr\": \"1EVknXyFC68kKNLkh6YnKzW41svSRoaAcx\"}" + ks := NewKeyStorePassphrase(ethutil.DefaultDataDir()) + pass := "foo" + _, err := ImportPreSaleKey(ks, []byte(fileContent), pass) + if err != nil { + t.Fatal(err) + } +} diff --git a/crypto/keypair.go b/crypto/keypair.go new file mode 100644 index 000000000..da5788437 --- /dev/null +++ b/crypto/keypair.go @@ -0,0 +1,58 @@ +package crypto + +import ( + "strings" + + "github.com/ethereum/go-ethereum/crypto/secp256k1" + "github.com/ethereum/go-ethereum/ethutil" +) + +type KeyPair struct { + PrivateKey []byte + PublicKey []byte + address []byte + mnemonic string + // The associated account + // account *StateObject +} + +func GenerateNewKeyPair() *KeyPair { + _, prv := secp256k1.GenerateKeyPair() + keyPair, _ := NewKeyPairFromSec(prv) // swallow error, this one cannot err + return keyPair +} + +func NewKeyPairFromSec(seckey []byte) (*KeyPair, error) { + pubkey, err := secp256k1.GeneratePubKey(seckey) + if err != nil { + return nil, err + } + + return &KeyPair{PrivateKey: seckey, PublicKey: pubkey}, nil +} + +func (k *KeyPair) Address() []byte { + if k.address == nil { + k.address = Sha3(k.PublicKey[1:])[12:] + } + return k.address +} + +func (k *KeyPair) Mnemonic() string { + if k.mnemonic == "" { + k.mnemonic = strings.Join(MnemonicEncode(ethutil.Bytes2Hex(k.PrivateKey)), " ") + } + return k.mnemonic +} + +func (k *KeyPair) AsStrings() (string, string, string, string) { + return k.Mnemonic(), ethutil.Bytes2Hex(k.Address()), ethutil.Bytes2Hex(k.PrivateKey), ethutil.Bytes2Hex(k.PublicKey) +} + +func (k *KeyPair) RlpEncode() []byte { + return k.RlpValue().Encode() +} + +func (k *KeyPair) RlpValue() *ethutil.Value { + return ethutil.NewValue(k.PrivateKey) +} diff --git a/crypto/keyring.go b/crypto/keyring.go new file mode 100644 index 000000000..eab13dbc4 --- /dev/null +++ b/crypto/keyring.go @@ -0,0 +1,123 @@ +package crypto + +import ( + "fmt" + "io/ioutil" + "strings" + + "github.com/ethereum/go-ethereum/ethutil" +) + +type KeyRing struct { + keys []*KeyPair +} + +func NewKeyRing() *KeyRing { + return &KeyRing{} +} + +func (k *KeyRing) AddKeyPair(keyPair *KeyPair) { + k.keys = append(k.keys, keyPair) +} + +func (k *KeyRing) GetKeyPair(i int) *KeyPair { + if len(k.keys) > i { + return k.keys[i] + } + + return nil +} + +func (k *KeyRing) Empty() bool { + return k.Len() == 0 +} + +func (k *KeyRing) Len() int { + return len(k.keys) +} + +func (k *KeyRing) Each(f func(*KeyPair)) { + for _, keyPair := range k.keys { + f(keyPair) + } +} + +func NewGeneratedKeyRing(len int) *KeyRing { + keyRing := NewKeyRing() + for i := 0; i < len; i++ { + keyRing.AddKeyPair(GenerateNewKeyPair()) + } + return keyRing +} + +func NewKeyRingFromFile(secfile string) (*KeyRing, error) { + var content []byte + var err error + content, err = ioutil.ReadFile(secfile) + if err != nil { + return nil, err + } + keyRing, err := NewKeyRingFromString(string(content)) + if err != nil { + return nil, err + } + return keyRing, nil +} + +func NewKeyRingFromString(content string) (*KeyRing, error) { + secretStrings := strings.Split(content, "\n") + var secrets [][]byte + for _, secretString := range secretStrings { + secret := secretString + words := strings.Split(secretString, " ") + if len(words) == 24 { + secret = MnemonicDecode(words) + } else if len(words) != 1 { + return nil, fmt.Errorf("Unrecognised key format") + } + + if len(secret) != 0 { + secrets = append(secrets, ethutil.Hex2Bytes(secret)) + } + } + + return NewKeyRingFromSecrets(secrets) +} + +func NewKeyRingFromSecrets(secs [][]byte) (*KeyRing, error) { + keyRing := NewKeyRing() + for _, sec := range secs { + keyPair, err := NewKeyPairFromSec(sec) + if err != nil { + return nil, err + } + keyRing.AddKeyPair(keyPair) + } + return keyRing, nil +} + +func NewKeyRingFromBytes(data []byte) (*KeyRing, error) { + var secrets [][]byte + it := ethutil.NewValueFromBytes(data).NewIterator() + for it.Next() { + secret := it.Value().Bytes() + secrets = append(secrets, secret) + } + keyRing, err := NewKeyRingFromSecrets(secrets) + if err != nil { + return nil, err + } + return keyRing, nil +} + +func (k *KeyRing) RlpEncode() []byte { + return k.RlpValue().Encode() +} + +func (k *KeyRing) RlpValue() *ethutil.Value { + v := ethutil.EmptyValue() + k.Each(func(keyPair *KeyPair) { + v.Append(keyPair.RlpValue()) + }) + return v +} diff --git a/crypto/keys_test.go b/crypto/keys_test.go new file mode 100644 index 000000000..56e851969 --- /dev/null +++ b/crypto/keys_test.go @@ -0,0 +1,122 @@ +package crypto + +// import ( +// "github.com/ethereum/go-ethereum/ethdb" +// // "io/ioutil" +// "fmt" +// "os" +// "path" +// "testing" +// ) + +// // test if persistence layer works +// func TestDBKeyManager(t *testing.T) { +// memdb, _ := ethdb.NewMemDatabase() +// keyManager0 := NewDBKeyManager(memdb) +// err := keyManager0.Init("", 0, false) +// if err != nil { +// t.Error("Unexpected error: ", err) +// } +// keyManager1 := NewDBKeyManager(memdb) +// err = keyManager1.Init("", 0, false) +// if err != nil { +// t.Error("Unexpected error: ", err) +// } +// if string(keyManager0.PrivateKey()) != string(keyManager1.PrivateKey()) { +// t.Error("Expected private keys %x, %x, to be identical via db persistence", keyManager0.PrivateKey(), keyManager1.PrivateKey()) +// } +// err = keyManager1.Init("", 0, true) +// if err != nil { +// t.Error("Unexpected error: ", err) +// } +// if string(keyManager0.PrivateKey()) == string(keyManager1.PrivateKey()) { +// t.Error("Expected private keys %x, %x, to be be different despite db persistence if force generate", keyManager0.PrivateKey(), keyManager1.PrivateKey()) +// } +// } + +// func TestFileKeyManager(t *testing.T) { +// basedir0 := "/tmp/ethtest0" +// os.RemoveAll(basedir0) +// os.Mkdir(basedir0, 0777) + +// keyManager0 := NewFileKeyManager(basedir0) +// err := keyManager0.Init("", 0, false) +// if err != nil { +// t.Error("Unexpected error: ", err) +// } + +// keyManager1 := NewFileKeyManager(basedir0) + +// err = keyManager1.Init("", 0, false) +// if err != nil { +// t.Error("Unexpected error: ", err) +// } +// if string(keyManager0.PrivateKey()) != string(keyManager1.PrivateKey()) { +// t.Error("Expected private keys %x, %x, to be identical via db persistence", keyManager0.PrivateKey(), keyManager1.PrivateKey()) +// } + +// err = keyManager1.Init("", 0, true) +// if err != nil { +// t.Error("Unexpected error: ", err) +// } +// if string(keyManager0.PrivateKey()) == string(keyManager1.PrivateKey()) { +// t.Error("Expected private keys %x, %x, to be be different despite db persistence if force generate", keyManager0.PrivateKey(), keyManager1.PrivateKey()) +// } +// } + +// // cursor errors +// func TestCursorErrors(t *testing.T) { +// memdb, _ := ethdb.NewMemDatabase() +// keyManager0 := NewDBKeyManager(memdb) +// err := keyManager0.Init("", 0, false) +// err = keyManager0.Init("", 1, false) +// if err == nil { +// t.Error("Expected cursor error") +// } +// err = keyManager0.SetCursor(1) +// if err == nil { +// t.Error("Expected cursor error") +// } +// } + +// func TestExportImport(t *testing.T) { +// memdb, _ := ethdb.NewMemDatabase() +// keyManager0 := NewDBKeyManager(memdb) +// err := keyManager0.Init("", 0, false) +// basedir0 := "/tmp/ethtest0" +// os.RemoveAll(basedir0) +// os.Mkdir(basedir0, 0777) +// keyManager0.Export(basedir0) + +// keyManager1 := NewFileKeyManager(basedir0) +// err = keyManager1.Init("", 0, false) +// if err != nil { +// t.Error("Unexpected error: ", err) +// } +// fmt.Printf("keyRing: %v\n", keyManager0.KeyPair()) +// fmt.Printf("keyRing: %v\n", keyManager1.KeyPair()) +// if string(keyManager0.PrivateKey()) != string(keyManager1.PrivateKey()) { +// t.Error("Expected private keys %x, %x, to be identical via export to filestore basedir", keyManager0.PrivateKey(), keyManager1.PrivateKey()) +// } +// path.Join("") + +// // memdb, _ = ethdb.NewMemDatabase() +// // keyManager2 := NewDBKeyManager(memdb) +// // err = keyManager2.InitFromSecretsFile("", 0, path.Join(basedir0, "default.prv")) +// // if err != nil { +// // t.Error("Unexpected error: ", err) +// // } +// // if string(keyManager0.PrivateKey()) != string(keyManager2.PrivateKey()) { +// // t.Error("Expected private keys %s, %s, to be identical via export/import prv", keyManager0.PrivateKey(), keyManager1.PrivateKey()) +// // } + +// // memdb, _ = ethdb.NewMemDatabase() +// // keyManager3 := NewDBKeyManager(memdb) +// // err = keyManager3.InitFromSecretsFile("", 0, path.Join(basedir0, "default.mne")) +// // if err != nil { +// // t.Error("Unexpected error: ", err) +// // } +// // if string(keyManager0.PrivateKey()) != string(keyManager3.PrivateKey()) { +// // t.Error("Expected private keys %s, %s, to be identical via export/import mnemonic file", keyManager0.PrivateKey(), keyManager1.PrivateKey()) +// // } +// } diff --git a/crypto/mnemonic.go b/crypto/mnemonic.go new file mode 100644 index 000000000..0d690f245 --- /dev/null +++ b/crypto/mnemonic.go @@ -0,0 +1,60 @@ +package crypto + +import ( + "fmt" + "strconv" +) + +// TODO: See if we can refactor this into a shared util lib if we need it multiple times +func IndexOf(slice []string, value string) int64 { + for p, v := range slice { + if v == value { + return int64(p) + } + } + return -1 +} + +func MnemonicEncode(message string) []string { + var out []string + n := int64(len(MnemonicWords)) + + for i := 0; i < len(message); i += (len(message) / 8) { + x := message[i : i+8] + bit, _ := strconv.ParseInt(x, 16, 64) + w1 := (bit % n) + w2 := ((bit / n) + w1) % n + w3 := ((bit / n / n) + w2) % n + out = append(out, MnemonicWords[w1], MnemonicWords[w2], MnemonicWords[w3]) + } + return out +} + +func MnemonicDecode(wordsar []string) string { + var out string + n := int64(len(MnemonicWords)) + + for i := 0; i < len(wordsar); i += 3 { + word1 := wordsar[i] + word2 := wordsar[i+1] + word3 := wordsar[i+2] + w1 := IndexOf(MnemonicWords, word1) + w2 := IndexOf(MnemonicWords, word2) + w3 := IndexOf(MnemonicWords, word3) + + y := (w2 - w1) % n + z := (w3 - w2) % n + + // Golang handles modulo with negative numbers different then most languages + // The modulo can be negative, we don't want that. + if z < 0 { + z += n + } + if y < 0 { + y += n + } + x := w1 + n*(y) + n*n*(z) + out += fmt.Sprintf("%08x", x) + } + return out +} diff --git a/crypto/mnemonic_test.go b/crypto/mnemonic_test.go new file mode 100644 index 000000000..beff476e0 --- /dev/null +++ b/crypto/mnemonic_test.go @@ -0,0 +1,74 @@ +package crypto + +import ( + "testing" +) + +func TestMnDecode(t *testing.T) { + words := []string{ + "ink", + "balance", + "gain", + "fear", + "happen", + "melt", + "mom", + "surface", + "stir", + "bottle", + "unseen", + "expression", + "important", + "curl", + "grant", + "fairy", + "across", + "back", + "figure", + "breast", + "nobody", + "scratch", + "worry", + "yesterday", + } + encode := "c61d43dc5bb7a4e754d111dae8105b6f25356492df5e50ecb33b858d94f8c338" + result := MnemonicDecode(words) + if encode != result { + t.Error("We expected", encode, "got", result, "instead") + } +} +func TestMnEncode(t *testing.T) { + encode := "c61d43dc5bb7a4e754d111dae8105b6f25356492df5e50ecb33b858d94f8c338" + result := []string{ + "ink", + "balance", + "gain", + "fear", + "happen", + "melt", + "mom", + "surface", + "stir", + "bottle", + "unseen", + "expression", + "important", + "curl", + "grant", + "fairy", + "across", + "back", + "figure", + "breast", + "nobody", + "scratch", + "worry", + "yesterday", + } + words := MnemonicEncode(encode) + for i, word := range words { + if word != result[i] { + t.Error("Mnenonic does not match:", words, result) + } + } +} diff --git a/crypto/mnemonic_words.go b/crypto/mnemonic_words.go new file mode 100644 index 000000000..ebd0d2690 --- /dev/null +++ b/crypto/mnemonic_words.go @@ -0,0 +1,1630 @@ +package crypto + +var MnemonicWords []string = []string{ + "like", + "just", + "love", + "know", + "never", + "want", + "time", + "out", + "there", + "make", + "look", + "eye", + "down", + "only", + "think", + "heart", + "back", + "then", + "into", + "about", + "more", + "away", + "still", + "them", + "take", + "thing", + "even", + "through", + "long", + "always", + "world", + "too", + "friend", + "tell", + "try", + "hand", + "thought", + "over", + "here", + "other", + "need", + "smile", + "again", + "much", + "cry", + "been", + "night", + "ever", + "little", + "said", + "end", + "some", + "those", + "around", + "mind", + "people", + "girl", + "leave", + "dream", + "left", + "turn", + "myself", + "give", + "nothing", + "really", + "off", + "before", + "something", + "find", + "walk", + "wish", + "good", + "once", + "place", + "ask", + "stop", + "keep", + "watch", + "seem", + "everything", + "wait", + "got", + "yet", + "made", + "remember", + "start", + "alone", + "run", + "hope", + "maybe", + "believe", + "body", + "hate", + "after", + "close", + "talk", + "stand", + "own", + "each", + "hurt", + "help", + "home", + "god", + "soul", + "new", + "many", + "two", + "inside", + "should", + "true", + "first", + "fear", + "mean", + "better", + "play", + "another", + "gone", + "change", + "use", + "wonder", + "someone", + "hair", + "cold", + "open", + "best", + "any", + "behind", + "happen", + "water", + "dark", + "laugh", + "stay", + "forever", + "name", + "work", + "show", + "sky", + "break", + "came", + "deep", + "door", + "put", + "black", + "together", + "upon", + "happy", + "such", + "great", + "white", + "matter", + "fill", + "past", + "please", + "burn", + "cause", + "enough", + "touch", + "moment", + "soon", + "voice", + "scream", + "anything", + "stare", + "sound", + "red", + "everyone", + "hide", + "kiss", + "truth", + "death", + "beautiful", + "mine", + "blood", + "broken", + "very", + "pass", + "next", + "forget", + "tree", + "wrong", + "air", + "mother", + "understand", + "lip", + "hit", + "wall", + "memory", + "sleep", + "free", + "high", + "realize", + "school", + "might", + "skin", + "sweet", + "perfect", + "blue", + "kill", + "breath", + "dance", + "against", + "fly", + "between", + "grow", + "strong", + "under", + "listen", + "bring", + "sometimes", + "speak", + "pull", + "person", + "become", + "family", + "begin", + "ground", + "real", + "small", + "father", + "sure", + "feet", + "rest", + "young", + "finally", + "land", + "across", + "today", + "different", + "guy", + "line", + "fire", + "reason", + "reach", + "second", + "slowly", + "write", + "eat", + "smell", + "mouth", + "step", + "learn", + "three", + "floor", + "promise", + "breathe", + "darkness", + "push", + "earth", + "guess", + "save", + "song", + "above", + "along", + "both", + "color", + "house", + "almost", + "sorry", + "anymore", + "brother", + "okay", + "dear", + "game", + "fade", + "already", + "apart", + "warm", + "beauty", + "heard", + "notice", + "question", + "shine", + "began", + "piece", + "whole", + "shadow", + "secret", + "street", + "within", + "finger", + "point", + "morning", + "whisper", + "child", + "moon", + "green", + "story", + "glass", + "kid", + "silence", + "since", + "soft", + "yourself", + "empty", + "shall", + "angel", + "answer", + "baby", + "bright", + "dad", + "path", + "worry", + "hour", + "drop", + "follow", + "power", + "war", + "half", + "flow", + "heaven", + "act", + "chance", + "fact", + "least", + "tired", + "children", + "near", + "quite", + "afraid", + "rise", + "sea", + "taste", + "window", + "cover", + "nice", + "trust", + "lot", + "sad", + "cool", + "force", + "peace", + "return", + "blind", + "easy", + "ready", + "roll", + "rose", + "drive", + "held", + "music", + "beneath", + "hang", + "mom", + "paint", + "emotion", + "quiet", + "clear", + "cloud", + "few", + "pretty", + "bird", + "outside", + "paper", + "picture", + "front", + "rock", + "simple", + "anyone", + "meant", + "reality", + "road", + "sense", + "waste", + "bit", + "leaf", + "thank", + "happiness", + "meet", + "men", + "smoke", + "truly", + "decide", + "self", + "age", + "book", + "form", + "alive", + "carry", + "escape", + "damn", + "instead", + "able", + "ice", + "minute", + "throw", + "catch", + "leg", + "ring", + "course", + "goodbye", + "lead", + "poem", + "sick", + "corner", + "desire", + "known", + "problem", + "remind", + "shoulder", + "suppose", + "toward", + "wave", + "drink", + "jump", + "woman", + "pretend", + "sister", + "week", + "human", + "joy", + "crack", + "grey", + "pray", + "surprise", + "dry", + "knee", + "less", + "search", + "bleed", + "caught", + "clean", + "embrace", + "future", + "king", + "son", + "sorrow", + "chest", + "hug", + "remain", + "sat", + "worth", + "blow", + "daddy", + "final", + "parent", + "tight", + "also", + "create", + "lonely", + "safe", + "cross", + "dress", + "evil", + "silent", + "bone", + "fate", + "perhaps", + "anger", + "class", + "scar", + "snow", + "tiny", + "tonight", + "continue", + "control", + "dog", + "edge", + "mirror", + "month", + "suddenly", + "comfort", + "given", + "loud", + "quickly", + "gaze", + "plan", + "rush", + "stone", + "town", + "battle", + "ignore", + "spirit", + "stood", + "stupid", + "yours", + "brown", + "build", + "dust", + "hey", + "kept", + "pay", + "phone", + "twist", + "although", + "ball", + "beyond", + "hidden", + "nose", + "taken", + "fail", + "float", + "pure", + "somehow", + "wash", + "wrap", + "angry", + "cheek", + "creature", + "forgotten", + "heat", + "rip", + "single", + "space", + "special", + "weak", + "whatever", + "yell", + "anyway", + "blame", + "job", + "choose", + "country", + "curse", + "drift", + "echo", + "figure", + "grew", + "laughter", + "neck", + "suffer", + "worse", + "yeah", + "disappear", + "foot", + "forward", + "knife", + "mess", + "somewhere", + "stomach", + "storm", + "beg", + "idea", + "lift", + "offer", + "breeze", + "field", + "five", + "often", + "simply", + "stuck", + "win", + "allow", + "confuse", + "enjoy", + "except", + "flower", + "seek", + "strength", + "calm", + "grin", + "gun", + "heavy", + "hill", + "large", + "ocean", + "shoe", + "sigh", + "straight", + "summer", + "tongue", + "accept", + "crazy", + "everyday", + "exist", + "grass", + "mistake", + "sent", + "shut", + "surround", + "table", + "ache", + "brain", + "destroy", + "heal", + "nature", + "shout", + "sign", + "stain", + "choice", + "doubt", + "glance", + "glow", + "mountain", + "queen", + "stranger", + "throat", + "tomorrow", + "city", + "either", + "fish", + "flame", + "rather", + "shape", + "spin", + "spread", + "ash", + "distance", + "finish", + "image", + "imagine", + "important", + "nobody", + "shatter", + "warmth", + "became", + "feed", + "flesh", + "funny", + "lust", + "shirt", + "trouble", + "yellow", + "attention", + "bare", + "bite", + "money", + "protect", + "amaze", + "appear", + "born", + "choke", + "completely", + "daughter", + "fresh", + "friendship", + "gentle", + "probably", + "six", + "deserve", + "expect", + "grab", + "middle", + "nightmare", + "river", + "thousand", + "weight", + "worst", + "wound", + "barely", + "bottle", + "cream", + "regret", + "relationship", + "stick", + "test", + "crush", + "endless", + "fault", + "itself", + "rule", + "spill", + "art", + "circle", + "join", + "kick", + "mask", + "master", + "passion", + "quick", + "raise", + "smooth", + "unless", + "wander", + "actually", + "broke", + "chair", + "deal", + "favorite", + "gift", + "note", + "number", + "sweat", + "box", + "chill", + "clothes", + "lady", + "mark", + "park", + "poor", + "sadness", + "tie", + "animal", + "belong", + "brush", + "consume", + "dawn", + "forest", + "innocent", + "pen", + "pride", + "stream", + "thick", + "clay", + "complete", + "count", + "draw", + "faith", + "press", + "silver", + "struggle", + "surface", + "taught", + "teach", + "wet", + "bless", + "chase", + "climb", + "enter", + "letter", + "melt", + "metal", + "movie", + "stretch", + "swing", + "vision", + "wife", + "beside", + "crash", + "forgot", + "guide", + "haunt", + "joke", + "knock", + "plant", + "pour", + "prove", + "reveal", + "steal", + "stuff", + "trip", + "wood", + "wrist", + "bother", + "bottom", + "crawl", + "crowd", + "fix", + "forgive", + "frown", + "grace", + "loose", + "lucky", + "party", + "release", + "surely", + "survive", + "teacher", + "gently", + "grip", + "speed", + "suicide", + "travel", + "treat", + "vein", + "written", + "cage", + "chain", + "conversation", + "date", + "enemy", + "however", + "interest", + "million", + "page", + "pink", + "proud", + "sway", + "themselves", + "winter", + "church", + "cruel", + "cup", + "demon", + "experience", + "freedom", + "pair", + "pop", + "purpose", + "respect", + "shoot", + "softly", + "state", + "strange", + "bar", + "birth", + "curl", + "dirt", + "excuse", + "lord", + "lovely", + "monster", + "order", + "pack", + "pants", + "pool", + "scene", + "seven", + "shame", + "slide", + "ugly", + "among", + "blade", + "blonde", + "closet", + "creek", + "deny", + "drug", + "eternity", + "gain", + "grade", + "handle", + "key", + "linger", + "pale", + "prepare", + "swallow", + "swim", + "tremble", + "wheel", + "won", + "cast", + "cigarette", + "claim", + "college", + "direction", + "dirty", + "gather", + "ghost", + "hundred", + "loss", + "lung", + "orange", + "present", + "swear", + "swirl", + "twice", + "wild", + "bitter", + "blanket", + "doctor", + "everywhere", + "flash", + "grown", + "knowledge", + "numb", + "pressure", + "radio", + "repeat", + "ruin", + "spend", + "unknown", + "buy", + "clock", + "devil", + "early", + "false", + "fantasy", + "pound", + "precious", + "refuse", + "sheet", + "teeth", + "welcome", + "add", + "ahead", + "block", + "bury", + "caress", + "content", + "depth", + "despite", + "distant", + "marry", + "purple", + "threw", + "whenever", + "bomb", + "dull", + "easily", + "grasp", + "hospital", + "innocence", + "normal", + "receive", + "reply", + "rhyme", + "shade", + "someday", + "sword", + "toe", + "visit", + "asleep", + "bought", + "center", + "consider", + "flat", + "hero", + "history", + "ink", + "insane", + "muscle", + "mystery", + "pocket", + "reflection", + "shove", + "silently", + "smart", + "soldier", + "spot", + "stress", + "train", + "type", + "view", + "whether", + "bus", + "energy", + "explain", + "holy", + "hunger", + "inch", + "magic", + "mix", + "noise", + "nowhere", + "prayer", + "presence", + "shock", + "snap", + "spider", + "study", + "thunder", + "trail", + "admit", + "agree", + "bag", + "bang", + "bound", + "butterfly", + "cute", + "exactly", + "explode", + "familiar", + "fold", + "further", + "pierce", + "reflect", + "scent", + "selfish", + "sharp", + "sink", + "spring", + "stumble", + "universe", + "weep", + "women", + "wonderful", + "action", + "ancient", + "attempt", + "avoid", + "birthday", + "branch", + "chocolate", + "core", + "depress", + "drunk", + "especially", + "focus", + "fruit", + "honest", + "match", + "palm", + "perfectly", + "pillow", + "pity", + "poison", + "roar", + "shift", + "slightly", + "thump", + "truck", + "tune", + "twenty", + "unable", + "wipe", + "wrote", + "coat", + "constant", + "dinner", + "drove", + "egg", + "eternal", + "flight", + "flood", + "frame", + "freak", + "gasp", + "glad", + "hollow", + "motion", + "peer", + "plastic", + "root", + "screen", + "season", + "sting", + "strike", + "team", + "unlike", + "victim", + "volume", + "warn", + "weird", + "attack", + "await", + "awake", + "built", + "charm", + "crave", + "despair", + "fought", + "grant", + "grief", + "horse", + "limit", + "message", + "ripple", + "sanity", + "scatter", + "serve", + "split", + "string", + "trick", + "annoy", + "blur", + "boat", + "brave", + "clearly", + "cling", + "connect", + "fist", + "forth", + "imagination", + "iron", + "jock", + "judge", + "lesson", + "milk", + "misery", + "nail", + "naked", + "ourselves", + "poet", + "possible", + "princess", + "sail", + "size", + "snake", + "society", + "stroke", + "torture", + "toss", + "trace", + "wise", + "bloom", + "bullet", + "cell", + "check", + "cost", + "darling", + "during", + "footstep", + "fragile", + "hallway", + "hardly", + "horizon", + "invisible", + "journey", + "midnight", + "mud", + "nod", + "pause", + "relax", + "shiver", + "sudden", + "value", + "youth", + "abuse", + "admire", + "blink", + "breast", + "bruise", + "constantly", + "couple", + "creep", + "curve", + "difference", + "dumb", + "emptiness", + "gotta", + "honor", + "plain", + "planet", + "recall", + "rub", + "ship", + "slam", + "soar", + "somebody", + "tightly", + "weather", + "adore", + "approach", + "bond", + "bread", + "burst", + "candle", + "coffee", + "cousin", + "crime", + "desert", + "flutter", + "frozen", + "grand", + "heel", + "hello", + "language", + "level", + "movement", + "pleasure", + "powerful", + "random", + "rhythm", + "settle", + "silly", + "slap", + "sort", + "spoken", + "steel", + "threaten", + "tumble", + "upset", + "aside", + "awkward", + "bee", + "blank", + "board", + "button", + "card", + "carefully", + "complain", + "crap", + "deeply", + "discover", + "drag", + "dread", + "effort", + "entire", + "fairy", + "giant", + "gotten", + "greet", + "illusion", + "jeans", + "leap", + "liquid", + "march", + "mend", + "nervous", + "nine", + "replace", + "rope", + "spine", + "stole", + "terror", + "accident", + "apple", + "balance", + "boom", + "childhood", + "collect", + "demand", + "depression", + "eventually", + "faint", + "glare", + "goal", + "group", + "honey", + "kitchen", + "laid", + "limb", + "machine", + "mere", + "mold", + "murder", + "nerve", + "painful", + "poetry", + "prince", + "rabbit", + "shelter", + "shore", + "shower", + "soothe", + "stair", + "steady", + "sunlight", + "tangle", + "tease", + "treasure", + "uncle", + "begun", + "bliss", + "canvas", + "cheer", + "claw", + "clutch", + "commit", + "crimson", + "crystal", + "delight", + "doll", + "existence", + "express", + "fog", + "football", + "gay", + "goose", + "guard", + "hatred", + "illuminate", + "mass", + "math", + "mourn", + "rich", + "rough", + "skip", + "stir", + "student", + "style", + "support", + "thorn", + "tough", + "yard", + "yearn", + "yesterday", + "advice", + "appreciate", + "autumn", + "bank", + "beam", + "bowl", + "capture", + "carve", + "collapse", + "confusion", + "creation", + "dove", + "feather", + "girlfriend", + "glory", + "government", + "harsh", + "hop", + "inner", + "loser", + "moonlight", + "neighbor", + "neither", + "peach", + "pig", + "praise", + "screw", + "shield", + "shimmer", + "sneak", + "stab", + "subject", + "throughout", + "thrown", + "tower", + "twirl", + "wow", + "army", + "arrive", + "bathroom", + "bump", + "cease", + "cookie", + "couch", + "courage", + "dim", + "guilt", + "howl", + "hum", + "husband", + "insult", + "led", + "lunch", + "mock", + "mostly", + "natural", + "nearly", + "needle", + "nerd", + "peaceful", + "perfection", + "pile", + "price", + "remove", + "roam", + "sanctuary", + "serious", + "shiny", + "shook", + "sob", + "stolen", + "tap", + "vain", + "void", + "warrior", + "wrinkle", + "affection", + "apologize", + "blossom", + "bounce", + "bridge", + "cheap", + "crumble", + "decision", + "descend", + "desperately", + "dig", + "dot", + "flip", + "frighten", + "heartbeat", + "huge", + "lazy", + "lick", + "odd", + "opinion", + "process", + "puzzle", + "quietly", + "retreat", + "score", + "sentence", + "separate", + "situation", + "skill", + "soak", + "square", + "stray", + "taint", + "task", + "tide", + "underneath", + "veil", + "whistle", + "anywhere", + "bedroom", + "bid", + "bloody", + "burden", + "careful", + "compare", + "concern", + "curtain", + "decay", + "defeat", + "describe", + "double", + "dreamer", + "driver", + "dwell", + "evening", + "flare", + "flicker", + "grandma", + "guitar", + "harm", + "horrible", + "hungry", + "indeed", + "lace", + "melody", + "monkey", + "nation", + "object", + "obviously", + "rainbow", + "salt", + "scratch", + "shown", + "shy", + "stage", + "stun", + "third", + "tickle", + "useless", + "weakness", + "worship", + "worthless", + "afternoon", + "beard", + "boyfriend", + "bubble", + "busy", + "certain", + "chin", + "concrete", + "desk", + "diamond", + "doom", + "drawn", + "due", + "felicity", + "freeze", + "frost", + "garden", + "glide", + "harmony", + "hopefully", + "hunt", + "jealous", + "lightning", + "mama", + "mercy", + "peel", + "physical", + "position", + "pulse", + "punch", + "quit", + "rant", + "respond", + "salty", + "sane", + "satisfy", + "savior", + "sheep", + "slept", + "social", + "sport", + "tuck", + "utter", + "valley", + "wolf", + "aim", + "alas", + "alter", + "arrow", + "awaken", + "beaten", + "belief", + "brand", + "ceiling", + "cheese", + "clue", + "confidence", + "connection", + "daily", + "disguise", + "eager", + "erase", + "essence", + "everytime", + "expression", + "fan", + "flag", + "flirt", + "foul", + "fur", + "giggle", + "glorious", + "ignorance", + "law", + "lifeless", + "measure", + "mighty", + "muse", + "north", + "opposite", + "paradise", + "patience", + "patient", + "pencil", + "petal", + "plate", + "ponder", + "possibly", + "practice", + "slice", + "spell", + "stock", + "strife", + "strip", + "suffocate", + "suit", + "tender", + "tool", + "trade", + "velvet", + "verse", + "waist", + "witch", + "aunt", + "bench", + "bold", + "cap", + "certainly", + "click", + "companion", + "creator", + "dart", + "delicate", + "determine", + "dish", + "dragon", + "drama", + "drum", + "dude", + "everybody", + "feast", + "forehead", + "former", + "fright", + "fully", + "gas", + "hook", + "hurl", + "invite", + "juice", + "manage", + "moral", + "possess", + "raw", + "rebel", + "royal", + "scale", + "scary", + "several", + "slight", + "stubborn", + "swell", + "talent", + "tea", + "terrible", + "thread", + "torment", + "trickle", + "usually", + "vast", + "violence", + "weave", + "acid", + "agony", + "ashamed", + "awe", + "belly", + "blend", + "blush", + "character", + "cheat", + "common", + "company", + "coward", + "creak", + "danger", + "deadly", + "defense", + "define", + "depend", + "desperate", + "destination", + "dew", + "duck", + "dusty", + "embarrass", + "engine", + "example", + "explore", + "foe", + "freely", + "frustrate", + "generation", + "glove", + "guilty", + "health", + "hurry", + "idiot", + "impossible", + "inhale", + "jaw", + "kingdom", + "mention", + "mist", + "moan", + "mumble", + "mutter", + "observe", + "ode", + "pathetic", + "pattern", + "pie", + "prefer", + "puff", + "rape", + "rare", + "revenge", + "rude", + "scrape", + "spiral", + "squeeze", + "strain", + "sunset", + "suspend", + "sympathy", + "thigh", + "throne", + "total", + "unseen", + "weapon", + "weary", +} diff --git a/crypto/randentropy/rand_entropy.go b/crypto/randentropy/rand_entropy.go new file mode 100644 index 000000000..b87fa564e --- /dev/null +++ b/crypto/randentropy/rand_entropy.go @@ -0,0 +1,84 @@ +package randentropy + +import ( + crand "crypto/rand" + "encoding/binary" + "github.com/ethereum/go-ethereum/crypto/sha3" + "io" + "os" + "strings" + "time" +) + +var Reader io.Reader = &randEntropy{} + +type randEntropy struct { +} + +func (*randEntropy) Read(bytes []byte) (n int, err error) { + readBytes := GetEntropyMixed(len(bytes)) + copy(bytes, readBytes) + return len(bytes), nil +} + +// TODO: copied from crypto.go , move to sha3 package? +func Sha3(data []byte) []byte { + d := sha3.NewKeccak256() + d.Write(data) + + return d.Sum(nil) +} + +// TODO: verify. this needs to be audited +// we start with crypt/rand, then XOR in additional entropy from OS +func GetEntropyMixed(n int) []byte { + startTime := time.Now().UnixNano() + // for each source, we take SHA3 of the source and use it as seed to math/rand + // then read bytes from it and XOR them onto the bytes read from crypto/rand + mainBuff := GetEntropyCSPRNG(n) + // 1. OS entropy sources + startTimeBytes := make([]byte, 32) + binary.PutVarint(startTimeBytes, startTime) + startTimeHash := Sha3(startTimeBytes) + mixBytes(mainBuff, startTimeHash) + + pid := os.Getpid() + pidBytes := make([]byte, 32) + binary.PutUvarint(pidBytes, uint64(pid)) + pidHash := Sha3(pidBytes) + mixBytes(mainBuff, pidHash) + + osEnv := os.Environ() + osEnvBytes := []byte(strings.Join(osEnv, "")) + osEnvHash := Sha3(osEnvBytes) + mixBytes(mainBuff, osEnvHash) + + // not all OS have hostname in env variables + osHostName, err := os.Hostname() + if err != nil { + osHostNameBytes := []byte(osHostName) + osHostNameHash := Sha3(osHostNameBytes) + mixBytes(mainBuff, osHostNameHash) + } + return mainBuff +} + +func GetEntropyCSPRNG(n int) []byte { + mainBuff := make([]byte, n) + _, err := io.ReadFull(crand.Reader, mainBuff) + if err != nil { + panic("reading from crypto/rand failed: " + err.Error()) + } + return mainBuff +} + +func mixBytes(buff []byte, mixBuff []byte) []byte { + bytesToMix := len(buff) + if bytesToMix > 32 { + bytesToMix = 32 + } + for i := 0; i < bytesToMix; i++ { + buff[i] ^= mixBuff[i] + } + return buff +} diff --git a/crypto/secp256k1/.gitignore b/crypto/secp256k1/.gitignore new file mode 100644 index 000000000..802b6744a --- /dev/null +++ b/crypto/secp256k1/.gitignore @@ -0,0 +1,24 @@ +# Compiled Object files, Static and Dynamic libs (Shared Objects) +*.o +*.a +*.so + +# Folders +_obj +_test + +# Architecture specific extensions/prefixes +*.[568vq] +[568vq].out + +*.cgo1.go +*.cgo2.c +_cgo_defun.c +_cgo_gotypes.go +_cgo_export.* + +_testmain.go + +*.exe + +*~ diff --git a/crypto/secp256k1/README.md b/crypto/secp256k1/README.md new file mode 100644 index 000000000..79cdccb38 --- /dev/null +++ b/crypto/secp256k1/README.md @@ -0,0 +1,22 @@ +secp256k1-go +======= + +golang secp256k1 library + +Implements cryptographic operations for the secp256k1 ECDSA curve used by Bitcoin. + +Installing +=== +``` +sudo apt-get install gmp-dev +``` + +Now compiles with cgo! + +Test +=== + +To run tests do +``` +go tests +```
\ No newline at end of file diff --git a/crypto/secp256k1/notes.go b/crypto/secp256k1/notes.go new file mode 100644 index 000000000..7ed16caab --- /dev/null +++ b/crypto/secp256k1/notes.go @@ -0,0 +1,192 @@ +package secp256k1 + +/* +<HaltingState> sipa, int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed); +<HaltingState> is that how i generate private/public keys? +<sipa> HaltingState: you pass in a random 32-byte string as seckey +<sipa> HaltingState: if it is valid, the corresponding pubkey is put in pubkey +<sipa> and true is returned +<sipa> otherwise, false is returned +<sipa> around 1 in 2^128 32-byte strings are invalid, so the odds of even ever seeing one is extremely rare + +<sipa> private keys are mathematically numbers +<sipa> each has a corresponding point on the curve as public key +<sipa> a private key is just a number +<sipa> a public key is a point with x/y coordinates +<sipa> almost every 256-bit number is a valid private key (one with a point on the curve corresponding to it) +<sipa> HaltingState: ok? + +<sipa> more than half of random points are not on the curve +<sipa> and actually, it is less than the square root, not less than half, sorry :) +!!! +<sipa> a private key is a NUMBER +<sipa> a public key is a POINT +<gmaxwell> half the x,y values in the field are not on the curve, a private key is an integer. + +<sipa> HaltingState: yes, n,q = private keys; N,Q = corresponding public keys (N=n*G, Q=q*G); then it follows that n*Q = n*q*G = q*n*G = q*N +<sipa> that's the reason ECDH works +<sipa> multiplication is associative and commutativ +*/ + +/* +<HaltingState> sipa, ok; i am doing compact signatures and I want to know; can someone change the signature to get another valid signature for same message without the private key +<HaltingState> because i know they can do that for the normal 72 byte signatures that openssl was putting out +<sipa> HaltingState: if you don't enforce non-malleability, yes +<sipa> HaltingState: if you force the highest bit of t + +<sipa> it _creates_ signatures that already satisfy that condition +<sipa> but it will accept ones that don't +<sipa> maybe i should change that, and be strict +<HaltingState> yes; i want some way to know signature is valid but fails malleability +<sipa> well if the highest bit of S is 1, you can take its complement +<sipa> and end up with a valid signature +<sipa> that is canonical +*/ + +/* + +<HaltingState> sipa, I am signing messages and highest bit of the compact signature is 1!!! +<HaltingState> if (b & 0x80) == 0x80 { +<HaltingState> log.Panic("b= %v b2= %v \n", b, b&0x80) +<HaltingState> } +<sipa> what bit? +* Pengoo has quit (Ping timeout: 272 seconds) +<HaltingState> the highest bit of the first byte of signature +<sipa> it's the highest bit of S +<sipa> so the 32nd byte +<HaltingState> wtf + +*/ + +/* + For instance, nonces are used in HTTP digest access authentication to calculate an MD5 digest + of the password. The nonces are different each time the 401 authentication challenge + response code is presented, thus making replay attacks virtually impossible. + +can verify client/server match without sending password over network +*/ + +/* +<hanihani> one thing I dont get about armory for instance, +is how the hot-wallet can generate new addresses without +knowing the master key +*/ + +/* +<HaltingState> i am yelling at the telehash people for using secp256r1 +instead of secp256k1; they thing r1 is "more secure" despite fact that +there is no implementation that works and wrapping it is now taking +up massive time, lol +<gmaxwell> ... + +<gmaxwell> You know that the *r curves are selected via an undisclosed +secret process, right? +<gmaxwell> HaltingState: telehash is offtopic for this channel. +*/ +/* + For instance, nonces are used in HTTP digest access authentication to calculate an MD5 digest + of the password. The nonces are different each time the 401 authentication challenge + response code is presented, thus making replay attacks virtually impossible. + +can verify client/server match without sending password over network +*/ + +/* +void secp256k1_start(void); +void secp256k1_stop(void); + + * Verify an ECDSA signature. + * Returns: 1: correct signature + * 0: incorrect signature + * -1: invalid public key + * -2: invalid signature + * +int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, + const unsigned char *sig, int siglen, + const unsigned char *pubkey, int pubkeylen); + +http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html + +Why did this work? ECDSA requires a random number for each signature. If this random +number is ever used twice with the same private key it can be recovered. +This transaction was generated by a hardware bitcoin wallet using a pseudo-random number +generator that was returning the same “random” number every time. + +Nonce is 32 bytes? + + * Create an ECDSA signature. + * Returns: 1: signature created + * 0: nonce invalid, try another one + * In: msg: the message being signed + * msglen: the length of the message being signed + * seckey: pointer to a 32-byte secret key (assumed to be valid) + * nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) + * Out: sig: pointer to a 72-byte array where the signature will be placed. + * siglen: pointer to an int, which will be updated to the signature length (<=72). + * +int secp256k1_ecdsa_sign(const unsigned char *msg, int msglen, + unsigned char *sig, int *siglen, + const unsigned char *seckey, + const unsigned char *nonce); + + + * Create a compact ECDSA signature (64 byte + recovery id). + * Returns: 1: signature created + * 0: nonce invalid, try another one + * In: msg: the message being signed + * msglen: the length of the message being signed + * seckey: pointer to a 32-byte secret key (assumed to be valid) + * nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) + * Out: sig: pointer to a 64-byte array where the signature will be placed. + * recid: pointer to an int, which will be updated to contain the recovery id. + * +int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen, + unsigned char *sig64, + const unsigned char *seckey, + const unsigned char *nonce, + int *recid); + + * Recover an ECDSA public key from a compact signature. + * Returns: 1: public key succesfully recovered (which guarantees a correct signature). + * 0: otherwise. + * In: msg: the message assumed to be signed + * msglen: the length of the message + * compressed: whether to recover a compressed or uncompressed pubkey + * recid: the recovery id (as returned by ecdsa_sign_compact) + * Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey. + * pubkeylen: pointer to an int that will contain the pubkey length. + * + +recovery id is between 0 and 3 + +int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, + const unsigned char *sig64, + unsigned char *pubkey, int *pubkeylen, + int compressed, int recid); + + + * Verify an ECDSA secret key. + * Returns: 1: secret key is valid + * 0: secret key is invalid + * In: seckey: pointer to a 32-byte secret key + * +int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey); + +** Just validate a public key. + * Returns: 1: valid public key + * 0: invalid public key + * +int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen); + +** Compute the public key for a secret key. + * In: compressed: whether the computed public key should be compressed + * seckey: pointer to a 32-byte private key. + * Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed) + * area to store the public key. + * pubkeylen: pointer to int that will be updated to contains the pubkey's + * length. + * Returns: 1: secret was valid, public key stores + * 0: secret was invalid, try again. + * +int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed); +*/ diff --git a/crypto/secp256k1/secp256.go b/crypto/secp256k1/secp256.go new file mode 100644 index 000000000..4864e8d09 --- /dev/null +++ b/crypto/secp256k1/secp256.go @@ -0,0 +1,306 @@ +package secp256k1 + +/* +#cgo CFLAGS: -std=gnu99 -Wno-error +#cgo darwin CFLAGS: -I/usr/local/include +#cgo LDFLAGS: -lgmp +#cgo darwin LDFLAGS: -L/usr/local/lib +#define USE_FIELD_10X26 +#define USE_NUM_GMP +#define USE_FIELD_INV_BUILTIN +#include "./secp256k1/src/secp256k1.c" +*/ +import "C" + +import ( + "bytes" + "errors" + "unsafe" + + "github.com/ethereum/go-ethereum/crypto/randentropy" +) + +//#define USE_FIELD_5X64 + +/* + Todo: + > Centralize key management in module + > add pubkey/private key struct + > Dont let keys leave module; address keys as ints + + > store private keys in buffer and shuffle (deters persistance on swap disc) + > Byte permutation (changing) + > xor with chaning random block (to deter scanning memory for 0x63) (stream cipher?) + + On Disk + > Store keys in wallets + > use slow key derivation function for wallet encryption key (2 seconds) +*/ + +func init() { + C.secp256k1_start() //takes 10ms to 100ms +} + +func Stop() { + C.secp256k1_stop() +} + +/* +int secp256k1_ecdsa_pubkey_create( + unsigned char *pubkey, int *pubkeylen, + const unsigned char *seckey, int compressed); +*/ + +/** Compute the public key for a secret key. + * In: compressed: whether the computed public key should be compressed + * seckey: pointer to a 32-byte private key. + * Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed) + * area to store the public key. + * pubkeylen: pointer to int that will be updated to contains the pubkey's + * length. + * Returns: 1: secret was valid, public key stores + * 0: secret was invalid, try again. + */ + +//pubkey, seckey + +func GenerateKeyPair() ([]byte, []byte) { + + pubkey_len := C.int(65) + const seckey_len = 32 + + var pubkey []byte = make([]byte, pubkey_len) + var seckey []byte = randentropy.GetEntropyMixed(seckey_len) + + var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0])) + var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0])) + + ret := C.secp256k1_ecdsa_pubkey_create( + pubkey_ptr, &pubkey_len, + seckey_ptr, 0) + + if ret != C.int(1) { + return GenerateKeyPair() //invalid secret, try again + } + return pubkey, seckey +} + +func GeneratePubKey(seckey []byte) ([]byte, error) { + if err := VerifySeckeyValidity(seckey); err != nil { + return nil, err + } + + pubkey_len := C.int(65) + const seckey_len = 32 + + var pubkey []byte = make([]byte, pubkey_len) + + var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0])) + var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0])) + + ret := C.secp256k1_ecdsa_pubkey_create( + pubkey_ptr, &pubkey_len, + seckey_ptr, 0) + + if ret != C.int(1) { + return nil, errors.New("Unable to generate pubkey from seckey") + } + + return pubkey, nil +} + +/* +* Create a compact ECDSA signature (64 byte + recovery id). +* Returns: 1: signature created +* 0: nonce invalid, try another one +* In: msg: the message being signed +* msglen: the length of the message being signed +* seckey: pointer to a 32-byte secret key (assumed to be valid) +* nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) +* Out: sig: pointer to a 64-byte array where the signature will be placed. +* recid: pointer to an int, which will be updated to contain the recovery id. + */ + +/* +int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen, + unsigned char *sig64, + const unsigned char *seckey, + const unsigned char *nonce, + int *recid); +*/ + +func Sign(msg []byte, seckey []byte) ([]byte, error) { + nonce := randentropy.GetEntropyMixed(32) + + var sig []byte = make([]byte, 65) + var recid C.int + + var msg_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&msg[0])) + var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0])) + var nonce_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&nonce[0])) + var sig_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&sig[0])) + + if C.secp256k1_ecdsa_seckey_verify(seckey_ptr) != C.int(1) { + return nil, errors.New("Invalid secret key") + } + + ret := C.secp256k1_ecdsa_sign_compact( + msg_ptr, C.int(len(msg)), + sig_ptr, + seckey_ptr, + nonce_ptr, + &recid) + + sig[64] = byte(int(recid)) + + if ret != C.int(1) { + // nonce invalid, retry + return Sign(msg, seckey) + } + + return sig, nil + +} + +/* +* Verify an ECDSA secret key. +* Returns: 1: secret key is valid +* 0: secret key is invalid +* In: seckey: pointer to a 32-byte secret key + */ + +func VerifySeckeyValidity(seckey []byte) error { + if len(seckey) != 32 { + return errors.New("priv key is not 32 bytes") + } + var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0])) + ret := C.secp256k1_ecdsa_seckey_verify(seckey_ptr) + if int(ret) != 1 { + return errors.New("invalid seckey") + } + return nil +} + +/* +* Validate a public key. +* Returns: 1: valid public key +* 0: invalid public key + */ + +func VerifyPubkeyValidity(pubkey []byte) error { + if len(pubkey) != 65 { + return errors.New("pub key is not 65 bytes") + } + var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0])) + ret := C.secp256k1_ecdsa_pubkey_verify(pubkey_ptr, 65) + if int(ret) != 1 { + return errors.New("invalid pubkey") + } + + return nil +} + +func VerifySignatureValidity(sig []byte) bool { + //64+1 + if len(sig) != 65 { + return false + } + //malleability check, highest bit must be 1 + if (sig[32] & 0x80) == 0x80 { + return false + } + //recovery id check + if sig[64] >= 4 { + return false + } + + return true +} + +//for compressed signatures, does not need pubkey +func VerifySignature(msg []byte, sig []byte, pubkey1 []byte) error { + if msg == nil || sig == nil || pubkey1 == nil { + return errors.New("inputs must be non-nil") + } + if len(sig) != 65 { + return errors.New("invalid signature length") + } + if len(pubkey1) != 65 { + return errors.New("Invalid public key length") + } + + //to enforce malleability, highest bit of S must be 0 + //S starts at 32nd byte + if (sig[32] & 0x80) == 0x80 { //highest bit must be 1 + return errors.New("Signature not malleable") + } + + if sig[64] >= 4 { + return errors.New("Recover byte invalid") + } + + // if pubkey recovered, signature valid + pubkey2, err := RecoverPubkey(msg, sig) + if err != nil { + return err + } + if len(pubkey2) != 65 { + return errors.New("Invalid recovered public key length") + } + if !bytes.Equal(pubkey1, pubkey2) { + return errors.New("Public key does not match recovered public key") + } + + return nil +} + +/* +int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, + const unsigned char *sig64, + unsigned char *pubkey, int *pubkeylen, + int compressed, int recid); +*/ + +/* + * Recover an ECDSA public key from a compact signature. + * Returns: 1: public key succesfully recovered (which guarantees a correct signature). + * 0: otherwise. + * In: msg: the message assumed to be signed + * msglen: the length of the message + * compressed: whether to recover a compressed or uncompressed pubkey + * recid: the recovery id (as returned by ecdsa_sign_compact) + * Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey. + * pubkeylen: pointer to an int that will contain the pubkey length. + */ + +//recovers the public key from the signature +//recovery of pubkey means correct signature +func RecoverPubkey(msg []byte, sig []byte) ([]byte, error) { + if len(sig) != 65 { + return nil, errors.New("Invalid signature length") + } + + var pubkey []byte = make([]byte, 65) + + var msg_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&msg[0])) + var sig_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&sig[0])) + var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0])) + + var pubkeylen C.int + + ret := C.secp256k1_ecdsa_recover_compact( + msg_ptr, C.int(len(msg)), + sig_ptr, + pubkey_ptr, &pubkeylen, + C.int(0), C.int(sig[64]), + ) + + if ret == C.int(0) { + return nil, errors.New("Failed to recover public key") + } else if pubkeylen != C.int(65) { + return nil, errors.New("Impossible Error: Invalid recovered public key length") + } else { + return pubkey, nil + } + return nil, errors.New("Impossible Error: func RecoverPubkey has reached an unreachable state") +} diff --git a/crypto/secp256k1/secp256_test.go b/crypto/secp256k1/secp256_test.go new file mode 100644 index 000000000..3599fde38 --- /dev/null +++ b/crypto/secp256k1/secp256_test.go @@ -0,0 +1,238 @@ +package secp256k1 + +import ( + "bytes" + "fmt" + "log" + "testing" + + "github.com/ethereum/go-ethereum/crypto/randentropy" +) + +const TESTS = 10000 // how many tests +const SigSize = 65 //64+1 + +func Test_Secp256_00(t *testing.T) { + + var nonce []byte = randentropy.GetEntropyMixed(32) //going to get bitcoins stolen! + + if len(nonce) != 32 { + t.Fatal() + } + +} + +//tests for Malleability +//highest bit of S must be 0; 32nd byte +func CompactSigTest(sig []byte) { + + var b int = int(sig[32]) + if b < 0 { + log.Panic() + } + if ((b >> 7) == 1) != ((b & 0x80) == 0x80) { + log.Panic("b= %v b2= %v \n", b, b>>7) + } + if (b & 0x80) == 0x80 { + log.Panic("b= %v b2= %v \n", b, b&0x80) + } +} + +//test pubkey/private generation +func Test_Secp256_01(t *testing.T) { + pubkey, seckey := GenerateKeyPair() + if err := VerifySeckeyValidity(seckey); err != nil { + t.Fatal() + } + if err := VerifyPubkeyValidity(pubkey); err != nil { + t.Fatal() + } +} + +//test size of messages +func Test_Secp256_02s(t *testing.T) { + pubkey, seckey := GenerateKeyPair() + msg := randentropy.GetEntropyMixed(32) + sig, _ := Sign(msg, seckey) + CompactSigTest(sig) + if sig == nil { + t.Fatal("Signature nil") + } + if len(pubkey) != 65 { + t.Fail() + } + if len(seckey) != 32 { + t.Fail() + } + if len(sig) != 64+1 { + t.Fail() + } + if int(sig[64]) > 4 { + t.Fail() + } //should be 0 to 4 +} + +//test signing message +func Test_Secp256_02(t *testing.T) { + pubkey1, seckey := GenerateKeyPair() + msg := randentropy.GetEntropyMixed(32) + sig, _ := Sign(msg, seckey) + if sig == nil { + t.Fatal("Signature nil") + } + + pubkey2, _ := RecoverPubkey(msg, sig) + if pubkey2 == nil { + t.Fatal("Recovered pubkey invalid") + } + if bytes.Equal(pubkey1, pubkey2) == false { + t.Fatal("Recovered pubkey does not match") + } + + err := VerifySignature(msg, sig, pubkey1) + if err != nil { + t.Fatal("Signature invalid") + } +} + +//test pubkey recovery +func Test_Secp256_02a(t *testing.T) { + pubkey1, seckey1 := GenerateKeyPair() + msg := randentropy.GetEntropyMixed(32) + sig, _ := Sign(msg, seckey1) + + if sig == nil { + t.Fatal("Signature nil") + } + err := VerifySignature(msg, sig, pubkey1) + if err != nil { + t.Fatal("Signature invalid") + } + + pubkey2, _ := RecoverPubkey(msg, sig) + if len(pubkey1) != len(pubkey2) { + t.Fatal() + } + for i, _ := range pubkey1 { + if pubkey1[i] != pubkey2[i] { + t.Fatal() + } + } + if bytes.Equal(pubkey1, pubkey2) == false { + t.Fatal() + } +} + +//test random messages for the same pub/private key +func Test_Secp256_03(t *testing.T) { + _, seckey := GenerateKeyPair() + for i := 0; i < TESTS; i++ { + msg := randentropy.GetEntropyMixed(32) + sig, _ := Sign(msg, seckey) + CompactSigTest(sig) + + sig[len(sig)-1] %= 4 + pubkey2, _ := RecoverPubkey(msg, sig) + if pubkey2 == nil { + t.Fail() + } + } +} + +//test random messages for different pub/private keys +func Test_Secp256_04(t *testing.T) { + for i := 0; i < TESTS; i++ { + pubkey1, seckey := GenerateKeyPair() + msg := randentropy.GetEntropyMixed(32) + sig, _ := Sign(msg, seckey) + CompactSigTest(sig) + + if sig[len(sig)-1] >= 4 { + t.Fail() + } + pubkey2, _ := RecoverPubkey(msg, sig) + if pubkey2 == nil { + t.Fail() + } + if bytes.Equal(pubkey1, pubkey2) == false { + t.Fail() + } + } +} + +//test random signatures against fixed messages; should fail + +//crashes: +// -SIPA look at this + +func randSig() []byte { + sig := randentropy.GetEntropyMixed(65) + sig[32] &= 0x70 + sig[64] %= 4 + return sig +} + +func Test_Secp256_06a_alt0(t *testing.T) { + pubkey1, seckey := GenerateKeyPair() + msg := randentropy.GetEntropyMixed(32) + sig, _ := Sign(msg, seckey) + + if sig == nil { + t.Fail() + } + if len(sig) != 65 { + t.Fail() + } + for i := 0; i < TESTS; i++ { + sig = randSig() + pubkey2, _ := RecoverPubkey(msg, sig) + + if bytes.Equal(pubkey1, pubkey2) == true { + t.Fail() + } + + if pubkey2 != nil && VerifySignature(msg, sig, pubkey2) != nil { + t.Fail() + } + + if VerifySignature(msg, sig, pubkey1) == nil { + t.Fail() + } + } +} + +//test random messages against valid signature: should fail + +func Test_Secp256_06b(t *testing.T) { + pubkey1, seckey := GenerateKeyPair() + msg := randentropy.GetEntropyMixed(32) + sig, _ := Sign(msg, seckey) + + fail_count := 0 + for i := 0; i < TESTS; i++ { + msg = randentropy.GetEntropyMixed(32) + pubkey2, _ := RecoverPubkey(msg, sig) + if bytes.Equal(pubkey1, pubkey2) == true { + t.Fail() + } + + if pubkey2 != nil && VerifySignature(msg, sig, pubkey2) != nil { + t.Fail() + } + + if VerifySignature(msg, sig, pubkey1) == nil { + t.Fail() + } + } + if fail_count != 0 { + fmt.Printf("ERROR: Accepted signature for %v of %v random messages\n", fail_count, TESTS) + } +} + +func TestInvalidKey(t *testing.T) { + p1 := make([]byte, 32) + err := VerifySeckeyValidity(p1) + if err == nil { + t.Errorf("pvk %x varify sec key should have returned error", p1) + } +} diff --git a/crypto/secp256k1/secp256k1/COPYING b/crypto/secp256k1/secp256k1/COPYING new file mode 100644 index 000000000..4522a5990 --- /dev/null +++ b/crypto/secp256k1/secp256k1/COPYING @@ -0,0 +1,19 @@ +Copyright (c) 2013 Pieter Wuille + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. diff --git a/crypto/secp256k1/secp256k1/Makefile b/crypto/secp256k1/secp256k1/Makefile new file mode 100644 index 000000000..21628f308 --- /dev/null +++ b/crypto/secp256k1/secp256k1/Makefile @@ -0,0 +1,55 @@ +$(shell CC=$(CC) YASM=$(YASM) ./configure) +include config.mk + +FILES := src/*.h src/impl/*.h + +JAVA_FILES := src/java/org_bitcoin_NativeSecp256k1.h src/java/org_bitcoin_NativeSecp256k1.c + +OBJS := + +ifeq ($(USE_ASM), 1) + OBJS := $(OBJS) obj/field_5x$(HAVE_LIMB)_asm.o +endif +STD="gnu99" + +default: tests libsecp256k1.a libsecp256k1.so + +clean: + rm -rf obj/*.o bench tests *.a *.so config.mk + +obj/field_5x52_asm.o: src/field_5x52_asm.asm + $(YASM) -f elf64 -o obj/field_5x52_asm.o src/field_5x52_asm.asm + +obj/field_5x64_asm.o: src/field_5x64_asm.asm + $(YASM) -f elf64 -o obj/field_5x64_asm.o src/field_5x64_asm.asm + +obj/secp256k1.o: $(FILES) src/secp256k1.c include/secp256k1.h + $(CC) -fPIC -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) -DNDEBUG -$(OPTLEVEL) src/secp256k1.c -c -o obj/secp256k1.o + +bench: $(FILES) src/bench.c $(OBJS) + $(CC) -fPIC -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) $(CFLAGS_TEST_EXTRA) -DNDEBUG -$(OPTLEVEL) src/bench.c $(OBJS) $(LDFLAGS_EXTRA) $(LDFLAGS_TEST_EXTRA) -o bench + +tests: $(FILES) src/tests.c $(OBJS) + $(CC) -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) $(CFLAGS_TEST_EXTRA) -DVERIFY -fstack-protector-all -$(OPTLEVEL) -ggdb3 src/tests.c $(OBJS) $(LDFLAGS_EXTRA) $(LDFLAGS_TEST_EXTRA) -o tests + +tests_fuzzer: $(FILES) src/tests_fuzzer.c obj/secp256k1.o $(OBJS) + $(CC) -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) $(CFLAGS_TEST_EXTRA) -DVERIFY -fstack-protector-all -$(OPTLEVEL) -ggdb3 src/tests_fuzzer.c $(OBJS) obj/secp256k1.o $(LDFLAGS_EXTRA) $(LDFLAGS_TEST_EXTRA) -o tests_fuzzer + +coverage: $(FILES) src/tests.c $(OBJS) + rm -rf tests.gcno tests.gcda tests_cov + $(CC) -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) $(CFLAGS_TEST_EXTRA) -DVERIFY --coverage -$(OPTLEVEL) -g src/tests.c $(OBJS) $(LDFLAGS_EXTRA) $(LDFLAGS_TEST_EXTRA) -o tests_cov + rm -rf lcov + mkdir -p lcov + cd lcov; lcov --directory ../ --zerocounters + cd lcov; ../tests_cov + cd lcov; lcov --directory ../ --capture --output-file secp256k1.info + cd lcov; genhtml -o . secp256k1.info + +libsecp256k1.a: obj/secp256k1.o $(OBJS) + $(AR) -rs $@ $(OBJS) obj/secp256k1.o + +libsecp256k1.so: obj/secp256k1.o $(OBJS) + $(CC) -std=$(STD) $(LDFLAGS_EXTRA) $(OBJS) obj/secp256k1.o -shared -o libsecp256k1.so + +libjavasecp256k1.so: $(OBJS) obj/secp256k1.o $(JAVA_FILES) + $(CC) -fPIC -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) -DNDEBUG -$(OPTLEVEL) -I. src/java/org_bitcoin_NativeSecp256k1.c $(LDFLAGS_EXTRA) $(OBJS) obj/secp256k1.o -shared -o libjavasecp256k1.so diff --git a/crypto/secp256k1/secp256k1/TODO b/crypto/secp256k1/secp256k1/TODO new file mode 100644 index 000000000..a300e1c5e --- /dev/null +++ b/crypto/secp256k1/secp256k1/TODO @@ -0,0 +1,3 @@ +* Unit tests for fieldelem/groupelem, including ones intended to + trigger fieldelem's boundary cases. +* Complete constant-time operations for signing/keygen diff --git a/crypto/secp256k1/secp256k1/config.mk b/crypto/secp256k1/secp256k1/config.mk new file mode 100644 index 000000000..3386b7bcb --- /dev/null +++ b/crypto/secp256k1/secp256k1/config.mk @@ -0,0 +1,9 @@ +CC=cc +YASM=yasm +CFLAGS_EXTRA=-DUSE_FIELD_5X52 -DUSE_FIELD_5X52_ASM -DUSE_NUM_GMP -DUSE_FIELD_INV_NUM +CFLAGS_TEST_EXTRA=-DENABLE_OPENSSL_TESTS +LDFLAGS_EXTRA=-lgmp +LDFLAGS_TEST_EXTRA=-lcrypto +USE_ASM=1 +HAVE_LIMB=52 +OPTLEVEL=O2 diff --git a/crypto/secp256k1/secp256k1/configure b/crypto/secp256k1/secp256k1/configure new file mode 100755 index 000000000..cb69239b7 --- /dev/null +++ b/crypto/secp256k1/secp256k1/configure @@ -0,0 +1,175 @@ +#!/bin/sh + +if test -f config.mk; then + exit 0 +fi + +if test -z "$CC"; then + CC=cc +fi + +if test -z "$YASM"; then + YASM=yasm +fi + +# test yasm +$YASM -f elf64 -o /tmp/secp256k1-$$.o - <<EOF + BITS 64 + GLOBAL testyasm + ALIGN 32 +testyasm: + xor r9,r9 +EOF +if [ "$?" = 0 ]; then + $CC $CFLAGS -std=c99 -x c -c - -o /tmp/secp256k1-$$-2.o 2>/dev/null <<EOF +void __attribute__ ((sysv_abi)) testyasm(void); +int main() { + testyasm(); + return 0; +} +EOF + $CC $CFLAGS -std=c99 /tmp/secp256k1-$$-2.o /tmp/secp256k1-$$.o -o /dev/null 2>/dev/null + if [ "$?" = 0 ]; then + HAVE_YASM=1 + fi + rm -rf /tmp/secp256k1-$$-2.o /tmp/secp256k1-$$.o +fi + +# test openssl +HAVE_OPENSSL=0 +$CC $CFLAGS -std=c99 -x c - -o /dev/null -lcrypto 2>/dev/null <<EOF +#include <openssl/bn.h> +int main() { + BN_CTX *ctx = BN_CTX_new(); + BN_CTX_free(ctx); + return 0; +} +EOF +if [ "$?" = 0 ]; then + HAVE_OPENSSL=1 +fi + +# test openssl/EC +HAVE_OPENSSL_EC=0 +if [ "$HAVE_OPENSSL" = "1" ]; then +$CC $CFLAGS -std=c99 -x c - -o /dev/null -lcrypto 2>/dev/null <<EOF +#include <openssl/ec.h> +#include <openssl/ecdsa.h> +#include <openssl/obj_mac.h> +int main() { + EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1); + ECDSA_sign(0, NULL, 0, NULL, NULL, eckey); + ECDSA_verify(0, NULL, 0, NULL, 0, eckey); + EC_KEY_free(eckey); + return 0; +} +EOF +if [ "$?" = 0 ]; then + HAVE_OPENSSL_EC=1 +fi +fi + +# test gmp +HAVE_GMP=0 +$CC $CFLAGS -std=c99 -x c - -o /dev/null -lgmp 2>/dev/null <<EOF +#include <gmp.h> +int main() { + mpz_t n; + mpz_init(n); + mpz_clear(n); + return 0; +} +EOF +if [ "$?" = 0 ]; then + HAVE_GMP=1 +fi + +# test __int128 +HAVE_INT128=0 +$CC $CFLAGS -std=c99 -x c - -o /dev/null 2>/dev/null <<EOF +#include <stdint.h> +int main() { + __int128 x = 0; + return 0; +} +EOF +if [ "$?" = 0 ]; then + HAVE_INT128=1 +fi + +#default limb size +HAVE_LIMB=52 + +for arg in "$@"; do + case "$arg" in + --no-yasm) + HAVE_YASM=0 + ;; + --no-gmp) + HAVE_GMP=0 + ;; + --no-openssl) + HAVE_OPENSSL=0 + ;; + --use-5x64) + HAVE_LIMB=64 + ;; + esac +done + +LINK_OPENSSL=0 +LINK_GMP=0 +USE_ASM=0 + +# select field implementation +if [ "$HAVE_YASM" = "1" ]; then + CFLAGS_FIELD="-DUSE_FIELD_5X$HAVE_LIMB -DUSE_FIELD_5X${HAVE_LIMB}_ASM" + USE_ASM=1 +elif [ "$HAVE_INT128" = "1" ]; then + CFLAGS_FIELD="-DUSE_FIELD_5X$HAVE_LIMB -DUSE_FIELD_5X${HAVE_LIMB}_INT128" +elif [ "$HAVE_GMP" = "1" ]; then + CFLAGS_FIELD="-DUSE_FIELD_GMP" + LINK_GMP=1 +else + CFLAGS_FIELD="-DUSE_FIELD_10X26" +fi + +# select num implementation +if [ "$HAVE_GMP" = "1" ]; then + CFLAGS_NUM="-DUSE_NUM_GMP -DUSE_FIELD_INV_NUM" + LINK_GMP=1 +elif [ "$HAVE_OPENSSL" = "1" ]; then + CFLAGS_NUM="-DUSE_NUM_OPENSSL -DUSE_FIELD_INV_BUILTIN" + LINK_OPENSSL=1 +else + echo "No usable num implementation found" >&2 + exit 1 +fi + +CFLAGS_EXTRA="$CFLAGS_FIELD $CFLAGS_NUM" +LDFLAGS_EXTRA="" +if [ "$LINK_GMP" = "1" ]; then + LDFLAGS_EXTRA="-lgmp" +fi +if [ "$LINK_OPENSSL" = "1" ]; then + LDFLAGS_EXTRA="-lcrypto" +else + if [ "$HAVE_OPENSSL_EC" = "1" ]; then + LDFLAGS_TEST_EXTRA="-lcrypto" + fi +fi + +CFLAGS_TEST_EXTRA="" +if [ "$HAVE_OPENSSL_EC" = "1" ]; then + CFLAGS_TEST_EXTRA="-DENABLE_OPENSSL_TESTS" +fi + +echo "CC=$CC" > config.mk +echo "YASM=$YASM" >>config.mk +echo "CFLAGS_EXTRA=$CFLAGS_EXTRA" >> config.mk +echo "CFLAGS_TEST_EXTRA=$CFLAGS_TEST_EXTRA" >> config.mk +echo "LDFLAGS_EXTRA=$LDFLAGS_EXTRA" >> config.mk +echo "LDFLAGS_TEST_EXTRA=$LDFLAGS_TEST_EXTRA" >> config.mk +echo "USE_ASM=$USE_ASM" >>config.mk +echo "HAVE_LIMB=$HAVE_LIMB" >>config.mk +echo "OPTLEVEL=O2" >>config.mk diff --git a/crypto/secp256k1/secp256k1/include/secp256k1.h b/crypto/secp256k1/secp256k1/include/secp256k1.h new file mode 100644 index 000000000..fd6d6b1f4 --- /dev/null +++ b/crypto/secp256k1/secp256k1/include/secp256k1.h @@ -0,0 +1,121 @@ +#ifndef _SECP256K1_ +#define _SECP256K1_ + +#ifdef __cplusplus +extern "C" { +#endif + +/** Initialize the library. This may take some time (10-100 ms). + * You need to call this before calling any other function. + * It cannot run in parallel with any other functions, but once + * secp256k1_start() returns, all other functions are thread-safe. + */ +void secp256k1_start(void); + +/** Free all memory associated with this library. After this, no + * functions can be called anymore, except secp256k1_start() + */ +void secp256k1_stop(void); + +/** Verify an ECDSA signature. + * Returns: 1: correct signature + * 0: incorrect signature + * -1: invalid public key + * -2: invalid signature + */ +int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, + const unsigned char *sig, int siglen, + const unsigned char *pubkey, int pubkeylen); + +/** Create an ECDSA signature. + * Returns: 1: signature created + * 0: nonce invalid, try another one + * In: msg: the message being signed + * msglen: the length of the message being signed + * seckey: pointer to a 32-byte secret key (assumed to be valid) + * nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) + * Out: sig: pointer to a 72-byte array where the signature will be placed. + * siglen: pointer to an int, which will be updated to the signature length (<=72). + */ +int secp256k1_ecdsa_sign(const unsigned char *msg, int msglen, + unsigned char *sig, int *siglen, + const unsigned char *seckey, + const unsigned char *nonce); + +/** Create a compact ECDSA signature (64 byte + recovery id). + * Returns: 1: signature created + * 0: nonce invalid, try another one + * In: msg: the message being signed + * msglen: the length of the message being signed + * seckey: pointer to a 32-byte secret key (assumed to be valid) + * nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) + * Out: sig: pointer to a 64-byte array where the signature will be placed. + * recid: pointer to an int, which will be updated to contain the recovery id. + */ +int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen, + unsigned char *sig64, + const unsigned char *seckey, + const unsigned char *nonce, + int *recid); + +/** Recover an ECDSA public key from a compact signature. + * Returns: 1: public key succesfully recovered (which guarantees a correct signature). + * 0: otherwise. + * In: msg: the message assumed to be signed + * msglen: the length of the message + * sig64: signature as 64 byte array + * compressed: whether to recover a compressed or uncompressed pubkey + * recid: the recovery id (as returned by ecdsa_sign_compact) + * Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey. + * pubkeylen: pointer to an int that will contain the pubkey length. + */ + +int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, + const unsigned char *sig64, + unsigned char *pubkey, int *pubkeylen, + int compressed, int recid); + +/** Verify an ECDSA secret key. + * Returns: 1: secret key is valid + * 0: secret key is invalid + * In: seckey: pointer to a 32-byte secret key + */ +int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey); + +/** Just validate a public key. + * Returns: 1: valid public key + * 0: invalid public key + */ +int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen); + +/** Compute the public key for a secret key. + * In: compressed: whether the computed public key should be compressed + * seckey: pointer to a 32-byte private key. + * Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed) + * area to store the public key. + * pubkeylen: pointer to int that will be updated to contains the pubkey's + * length. + * Returns: 1: secret was valid, public key stores + * 0: secret was invalid, try again. + */ +int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed); + +int secp256k1_ecdsa_pubkey_decompress(unsigned char *pubkey, int *pubkeylen); + +int secp256k1_ecdsa_privkey_export(const unsigned char *seckey, + unsigned char *privkey, int *privkeylen, + int compressed); + +int secp256k1_ecdsa_privkey_import(unsigned char *seckey, + const unsigned char *privkey, int privkeylen); + +int secp256k1_ecdsa_privkey_tweak_add(unsigned char *seckey, const unsigned char *tweak); +int secp256k1_ecdsa_pubkey_tweak_add(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak); +int secp256k1_ecdsa_privkey_tweak_mul(unsigned char *seckey, const unsigned char *tweak); +int secp256k1_ecdsa_pubkey_tweak_mul(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/crypto/secp256k1/secp256k1/src/bench.c b/crypto/secp256k1/secp256k1/src/bench.c new file mode 100644 index 000000000..eeb71343f --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/bench.c @@ -0,0 +1,64 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include <stdio.h> + +#include "impl/num.h" +#include "impl/field.h" +#include "impl/group.h" +#include "impl/ecmult.h" +#include "impl/ecdsa.h" +#include "impl/util.h" + +void random_num_order(secp256k1_num_t *num) { + do { + unsigned char b32[32]; + secp256k1_rand256(b32); + secp256k1_num_set_bin(num, b32, 32); + if (secp256k1_num_is_zero(num)) + continue; + if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0) + continue; + break; + } while(1); +} + +int main() { + secp256k1_fe_start(); + secp256k1_ge_start(); + secp256k1_ecmult_start(); + + secp256k1_fe_t x; + const secp256k1_num_t *order = &secp256k1_ge_consts->order; + secp256k1_num_t r, s, m; + secp256k1_num_init(&r); + secp256k1_num_init(&s); + secp256k1_num_init(&m); + secp256k1_ecdsa_sig_t sig; + secp256k1_ecdsa_sig_init(&sig); + secp256k1_fe_set_hex(&x, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64); + int cnt = 0; + int good = 0; + for (int i=0; i<1000000; i++) { + random_num_order(&r); + random_num_order(&s); + random_num_order(&m); + secp256k1_ecdsa_sig_set_rs(&sig, &r, &s); + secp256k1_ge_t pubkey; secp256k1_ge_set_xo(&pubkey, &x, 1); + if (secp256k1_ge_is_valid(&pubkey)) { + cnt++; + good += secp256k1_ecdsa_sig_verify(&sig, &pubkey, &m); + } + } + printf("%i/%i\n", good, cnt); + secp256k1_num_free(&r); + secp256k1_num_free(&s); + secp256k1_num_free(&m); + secp256k1_ecdsa_sig_free(&sig); + + secp256k1_ecmult_stop(); + secp256k1_ge_stop(); + secp256k1_fe_stop(); + return 0; +} diff --git a/crypto/secp256k1/secp256k1/src/ecdsa.h b/crypto/secp256k1/secp256k1/src/ecdsa.h new file mode 100644 index 000000000..d9faaa3e8 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/ecdsa.h @@ -0,0 +1,28 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_ECDSA_ +#define _SECP256K1_ECDSA_ + +#include "num.h" + +typedef struct { + secp256k1_num_t r, s; +} secp256k1_ecdsa_sig_t; + +void static secp256k1_ecdsa_sig_init(secp256k1_ecdsa_sig_t *r); +void static secp256k1_ecdsa_sig_free(secp256k1_ecdsa_sig_t *r); + +int static secp256k1_ecdsa_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size); +void static secp256k1_ecdsa_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed); +int static secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size); +int static secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a); +int static secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message); +int static secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *seckey, const secp256k1_num_t *message, const secp256k1_num_t *nonce, int *recid); +int static secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_num_t *message, int recid); +void static secp256k1_ecdsa_sig_set_rs(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *r, const secp256k1_num_t *s); +int static secp256k1_ecdsa_privkey_parse(secp256k1_num_t *key, const unsigned char *privkey, int privkeylen); +int static secp256k1_ecdsa_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_num_t *key, int compressed); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/ecmult.h b/crypto/secp256k1/secp256k1/src/ecmult.h new file mode 100644 index 000000000..856bd284f --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/ecmult.h @@ -0,0 +1,19 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_ECMULT_ +#define _SECP256K1_ECMULT_ + +#include "num.h" +#include "group.h" + +static void secp256k1_ecmult_start(void); +static void secp256k1_ecmult_stop(void); + +/** Multiply with the generator: R = a*G */ +static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *a); +/** Double multiply: R = na*A + ng*G */ +static void secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/field.h b/crypto/secp256k1/secp256k1/src/field.h new file mode 100644 index 000000000..4e0f26179 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/field.h @@ -0,0 +1,101 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_ +#define _SECP256K1_FIELD_ + +/** Field element module. + * + * Field elements can be represented in several ways, but code accessing + * it (and implementations) need to take certain properaties into account: + * - Each field element can be normalized or not. + * - Each field element has a magnitude, which represents how far away + * its representation is away from normalization. Normalized elements + * always have a magnitude of 1, but a magnitude of 1 doesn't imply + * normality. + */ + +#if defined(USE_FIELD_GMP) +#include "field_gmp.h" +#elif defined(USE_FIELD_10X26) +#include "field_10x26.h" +#elif defined(USE_FIELD_5X52) +#include "field_5x52.h" +#elif defined(USE_FIELD_5X64) +#include "field_5x64.h" +#else +#error "Please select field implementation" +#endif + +typedef struct { + secp256k1_num_t p; +} secp256k1_fe_consts_t; + +static const secp256k1_fe_consts_t *secp256k1_fe_consts = NULL; + +/** Initialize field element precomputation data. */ +void static secp256k1_fe_start(void); + +/** Unload field element precomputation data. */ +void static secp256k1_fe_stop(void); + +/** Normalize a field element. */ +void static secp256k1_fe_normalize(secp256k1_fe_t *r); + +/** Set a field element equal to a small integer. Resulting field element is normalized. */ +void static secp256k1_fe_set_int(secp256k1_fe_t *r, int a); + +/** Verify whether a field element is zero. Requires the input to be normalized. */ +int static secp256k1_fe_is_zero(const secp256k1_fe_t *a); + +/** Check the "oddness" of a field element. Requires the input to be normalized. */ +int static secp256k1_fe_is_odd(const secp256k1_fe_t *a); + +/** Compare two field elements. Requires both inputs to be normalized */ +int static secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b); + +/** Set a field element equal to 32-byte big endian value. Resulting field element is normalized. */ +void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a); + +/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ +void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a); + +/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input + * as an argument. The magnitude of the output is one higher. */ +void static secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m); + +/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that + * small integer. */ +void static secp256k1_fe_mul_int(secp256k1_fe_t *r, int a); + +/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */ +void static secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a); + +/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8. + * The output magnitude is 1 (but not guaranteed to be normalized). */ +void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b); + +/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8. + * The output magnitude is 1 (but not guaranteed to be normalized). */ +void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a); + +/** Sets a field element to be the (modular) square root of another. Requires the inputs' magnitude to + * be at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ +void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a); + +/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be + * at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ +void static secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a); + +/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */ +void static secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a); + + +/** Convert a field element to a hexadecimal string. */ +void static secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a); + +/** Convert a hexadecimal string to a field element. */ +void static secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/field_10x26.h b/crypto/secp256k1/secp256k1/src/field_10x26.h new file mode 100644 index 000000000..d544139e8 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/field_10x26.h @@ -0,0 +1,19 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_REPR_ +#define _SECP256K1_FIELD_REPR_ + +#include <stdint.h> + +typedef struct { + // X = sum(i=0..9, elem[i]*2^26) mod n + uint32_t n[10]; +#ifdef VERIFY + int magnitude; + int normalized; +#endif +} secp256k1_fe_t; + +#endif diff --git a/crypto/secp256k1/secp256k1/src/field_5x52.h b/crypto/secp256k1/secp256k1/src/field_5x52.h new file mode 100644 index 000000000..9d5de2cc4 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/field_5x52.h @@ -0,0 +1,19 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_REPR_ +#define _SECP256K1_FIELD_REPR_ + +#include <stdint.h> + +typedef struct { + // X = sum(i=0..4, elem[i]*2^52) mod n + uint64_t n[5]; +#ifdef VERIFY + int magnitude; + int normalized; +#endif +} secp256k1_fe_t; + +#endif diff --git a/crypto/secp256k1/secp256k1/src/field_5x52_asm.asm b/crypto/secp256k1/secp256k1/src/field_5x52_asm.asm new file mode 100644 index 000000000..9237b3687 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/field_5x52_asm.asm @@ -0,0 +1,463 @@ + ;; Added by Diederik Huys, March 2013 + ;; + ;; Provided public procedures: + ;; secp256k1_fe_mul_inner + ;; secp256k1_fe_sqr_inner + ;; + ;; Needed tools: YASM (http://yasm.tortall.net) + ;; + ;; + + BITS 64 + + ;; Procedure ExSetMult + ;; Register Layout: + ;; INPUT: rdi = a->n + ;; rsi = b->n + ;; rdx = r->a + ;; + ;; INTERNAL: rdx:rax = multiplication accumulator + ;; r9:r8 = c + ;; r10-r13 = t0-t3 + ;; r14 = b.n[0] / t4 + ;; r15 = b.n[1] / t5 + ;; rbx = b.n[2] / t6 + ;; rcx = b.n[3] / t7 + ;; rbp = Constant 0FFFFFFFFFFFFFh / t8 + ;; rsi = b.n / b.n[4] / t9 + + GLOBAL secp256k1_fe_mul_inner + ALIGN 32 +secp256k1_fe_mul_inner: + push rbp + push rbx + push r12 + push r13 + push r14 + push r15 + push rdx + mov r14,[rsi+8*0] ; preload b.n[0]. This will be the case until + ; b.n[0] is no longer needed, then we reassign + ; r14 to t4 + ;; c=a.n[0] * b.n[0] + mov rax,[rdi+0*8] ; load a.n[0] + mov rbp,0FFFFFFFFFFFFFh + mul r14 ; rdx:rax=a.n[0]*b.n[0] + mov r15,[rsi+1*8] + mov r10,rbp ; load modulus into target register for t0 + mov r8,rax + and r10,rax ; only need lower qword of c + shrd r8,rdx,52 + xor r9,r9 ; c < 2^64, so we ditch the HO part + + ;; c+=a.n[0] * b.n[1] + a.n[1] * b.n[0] + mov rax,[rdi+0*8] + mul r15 + add r8,rax + adc r9,rdx + + mov rax,[rdi+1*8] + mul r14 + mov r11,rbp + mov rbx,[rsi+2*8] + add r8,rax + adc r9,rdx + and r11,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=a.n[0 1 2] * b.n[2 1 0] + mov rax,[rdi+0*8] + mul rbx + add r8,rax + adc r9,rdx + + mov rax,[rdi+1*8] + mul r15 + add r8,rax + adc r9,rdx + + mov rax,[rdi+2*8] + mul r14 + mov r12,rbp + mov rcx,[rsi+3*8] + add r8,rax + adc r9,rdx + and r12,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=a.n[0 1 2 3] * b.n[3 2 1 0] + mov rax,[rdi+0*8] + mul rcx + add r8,rax + adc r9,rdx + + mov rax,[rdi+1*8] + mul rbx + add r8,rax + adc r9,rdx + + mov rax,[rdi+2*8] + mul r15 + add r8,rax + adc r9,rdx + + mov rax,[rdi+3*8] + mul r14 + mov r13,rbp + mov rsi,[rsi+4*8] ; load b.n[4] and destroy pointer + add r8,rax + adc r9,rdx + and r13,r8 + + shrd r8,r9,52 + xor r9,r9 + + + ;; c+=a.n[0 1 2 3 4] * b.n[4 3 2 1 0] + mov rax,[rdi+0*8] + mul rsi + add r8,rax + adc r9,rdx + + mov rax,[rdi+1*8] + mul rcx + add r8,rax + adc r9,rdx + + mov rax,[rdi+2*8] + mul rbx + add r8,rax + adc r9,rdx + + mov rax,[rdi+3*8] + mul r15 + add r8,rax + adc r9,rdx + + mov rax,[rdi+4*8] + mul r14 + mov r14,rbp ; load modulus into t4 and destroy a.n[0] + add r8,rax + adc r9,rdx + and r14,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=a.n[1 2 3 4] * b.n[4 3 2 1] + mov rax,[rdi+1*8] + mul rsi + add r8,rax + adc r9,rdx + + mov rax,[rdi+2*8] + mul rcx + add r8,rax + adc r9,rdx + + mov rax,[rdi+3*8] + mul rbx + add r8,rax + adc r9,rdx + + mov rax,[rdi+4*8] + mul r15 + mov r15,rbp + add r8,rax + adc r9,rdx + + and r15,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=a.n[2 3 4] * b.n[4 3 2] + mov rax,[rdi+2*8] + mul rsi + add r8,rax + adc r9,rdx + + mov rax,[rdi+3*8] + mul rcx + add r8,rax + adc r9,rdx + + mov rax,[rdi+4*8] + mul rbx + mov rbx,rbp + add r8,rax + adc r9,rdx + + and rbx,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=a.n[3 4] * b.n[4 3] + mov rax,[rdi+3*8] + mul rsi + add r8,rax + adc r9,rdx + + mov rax,[rdi+4*8] + mul rcx + mov rcx,rbp + add r8,rax + adc r9,rdx + and rcx,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=a.n[4] * b.n[4] + mov rax,[rdi+4*8] + mul rsi + ;; mov rbp,rbp ; modulus already there! + add r8,rax + adc r9,rdx + and rbp,r8 + shrd r8,r9,52 + xor r9,r9 + + mov rsi,r8 ; load c into t9 and destroy b.n[4] + + ;; ******************************************************* +common_exit_norm: + mov rdi,01000003D10h ; load constant + + mov rax,r15 ; get t5 + mul rdi + add rax,r10 ; +t0 + adc rdx,0 + mov r10,0FFFFFFFFFFFFFh ; modulus. Sadly, we ran out of registers! + mov r8,rax ; +c + and r10,rax + shrd r8,rdx,52 + xor r9,r9 + + mov rax,rbx ; get t6 + mul rdi + add rax,r11 ; +t1 + adc rdx,0 + mov r11,0FFFFFFFFFFFFFh ; modulus + add r8,rax ; +c + adc r9,rdx + and r11,r8 + shrd r8,r9,52 + xor r9,r9 + + mov rax,rcx ; get t7 + mul rdi + add rax,r12 ; +t2 + adc rdx,0 + pop rbx ; retrieve pointer to this.n + mov r12,0FFFFFFFFFFFFFh ; modulus + add r8,rax ; +c + adc r9,rdx + and r12,r8 + mov [rbx+2*8],r12 ; mov into this.n[2] + shrd r8,r9,52 + xor r9,r9 + + mov rax,rbp ; get t8 + mul rdi + add rax,r13 ; +t3 + adc rdx,0 + mov r13,0FFFFFFFFFFFFFh ; modulus + add r8,rax ; +c + adc r9,rdx + and r13,r8 + mov [rbx+3*8],r13 ; -> this.n[3] + shrd r8,r9,52 + xor r9,r9 + + mov rax,rsi ; get t9 + mul rdi + add rax,r14 ; +t4 + adc rdx,0 + mov r14,0FFFFFFFFFFFFh ; !!! + add r8,rax ; +c + adc r9,rdx + and r14,r8 + mov [rbx+4*8],r14 ; -> this.n[4] + shrd r8,r9,48 ; !!! + xor r9,r9 + + mov rax,01000003D1h + mul r8 + add rax,r10 + adc rdx,0 + mov r10,0FFFFFFFFFFFFFh ; modulus + mov r8,rax + and rax,r10 + shrd r8,rdx,52 + mov [rbx+0*8],rax ; -> this.n[0] + add r8,r11 + mov [rbx+1*8],r8 ; -> this.n[1] + + pop r15 + pop r14 + pop r13 + pop r12 + pop rbx + pop rbp + ret + + + ;; PROC ExSetSquare + ;; Register Layout: + ;; INPUT: rdi = a.n + ;; rsi = this.a + ;; INTERNAL: rdx:rax = multiplication accumulator + ;; r9:r8 = c + ;; r10-r13 = t0-t3 + ;; r14 = a.n[0] / t4 + ;; r15 = a.n[1] / t5 + ;; rbx = a.n[2] / t6 + ;; rcx = a.n[3] / t7 + ;; rbp = 0FFFFFFFFFFFFFh / t8 + ;; rsi = a.n[4] / t9 + GLOBAL secp256k1_fe_sqr_inner + ALIGN 32 +secp256k1_fe_sqr_inner: + push rbp + push rbx + push r12 + push r13 + push r14 + push r15 + push rsi + mov rbp,0FFFFFFFFFFFFFh + + ;; c=a.n[0] * a.n[0] + mov r14,[rdi+0*8] ; r14=a.n[0] + mov r10,rbp ; modulus + mov rax,r14 + mul rax + mov r15,[rdi+1*8] ; a.n[1] + add r14,r14 ; r14=2*a.n[0] + mov r8,rax + and r10,rax ; only need lower qword + shrd r8,rdx,52 + xor r9,r9 + + ;; c+=2*a.n[0] * a.n[1] + mov rax,r14 ; r14=2*a.n[0] + mul r15 + mov rbx,[rdi+2*8] ; rbx=a.n[2] + mov r11,rbp ; modulus + add r8,rax + adc r9,rdx + and r11,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=2*a.n[0]*a.n[2]+a.n[1]*a.n[1] + mov rax,r14 + mul rbx + add r8,rax + adc r9,rdx + + mov rax,r15 + mov r12,rbp ; modulus + mul rax + mov rcx,[rdi+3*8] ; rcx=a.n[3] + add r15,r15 ; r15=a.n[1]*2 + add r8,rax + adc r9,rdx + and r12,r8 ; only need lower dword + shrd r8,r9,52 + xor r9,r9 + + ;; c+=2*a.n[0]*a.n[3]+2*a.n[1]*a.n[2] + mov rax,r14 + mul rcx + add r8,rax + adc r9,rdx + + mov rax,r15 ; rax=2*a.n[1] + mov r13,rbp ; modulus + mul rbx + mov rsi,[rdi+4*8] ; rsi=a.n[4] + add r8,rax + adc r9,rdx + and r13,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=2*a.n[0]*a.n[4]+2*a.n[1]*a.n[3]+a.n[2]*a.n[2] + mov rax,r14 ; last time we need 2*a.n[0] + mul rsi + add r8,rax + adc r9,rdx + + mov rax,r15 + mul rcx + mov r14,rbp ; modulus + add r8,rax + adc r9,rdx + + mov rax,rbx + mul rax + add rbx,rbx ; rcx=2*a.n[2] + add r8,rax + adc r9,rdx + and r14,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=2*a.n[1]*a.n[4]+2*a.n[2]*a.n[3] + mov rax,r15 ; last time we need 2*a.n[1] + mul rsi + add r8,rax + adc r9,rdx + + mov rax,rbx + mul rcx + mov r15,rbp ; modulus + add r8,rax + adc r9,rdx + and r15,r8 + shrd r8,r9,52 + xor r9,r9 + + ;; c+=2*a.n[2]*a.n[4]+a.n[3]*a.n[3] + mov rax,rbx ; last time we need 2*a.n[2] + mul rsi + add r8,rax + adc r9,rdx + + mov rax,rcx ; a.n[3] + mul rax + mov rbx,rbp ; modulus + add r8,rax + adc r9,rdx + and rbx,r8 ; only need lower dword + lea rax,[2*rcx] + shrd r8,r9,52 + xor r9,r9 + + ;; c+=2*a.n[3]*a.n[4] + mul rsi + mov rcx,rbp ; modulus + add r8,rax + adc r9,rdx + and rcx,r8 ; only need lower dword + shrd r8,r9,52 + xor r9,r9 + + ;; c+=a.n[4]*a.n[4] + mov rax,rsi + mul rax + ;; mov rbp,rbp ; modulus is already there! + add r8,rax + adc r9,rdx + and rbp,r8 + shrd r8,r9,52 + xor r9,r9 + + mov rsi,r8 + + ;; ******************************************************* + jmp common_exit_norm + end + + diff --git a/crypto/secp256k1/secp256k1/src/field_5x64.h b/crypto/secp256k1/secp256k1/src/field_5x64.h new file mode 100644 index 000000000..f3d47f547 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/field_5x64.h @@ -0,0 +1,19 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_REPR_ +#define _SECP256K1_FIELD_REPR_ + +#include <stdint.h> + +typedef struct { + // X = sum(i=0..4, elem[i]*2^64) mod n + uint64_t n[5]; +#ifdef VERIFY + int reduced; // n[4] == 0 + int normalized; // reduced and X < 2^256 - 0x100003D1 +#endif +} secp256k1_fe_t; + +#endif diff --git a/crypto/secp256k1/secp256k1/src/field_5x64_asm.asm b/crypto/secp256k1/secp256k1/src/field_5x64_asm.asm new file mode 100644 index 000000000..d449185c7 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/field_5x64_asm.asm @@ -0,0 +1,332 @@ + ;; Added by Diederik Huys, March 2013 + ;; + ;; Provided public procedures: + ;; secp256k1_fe_mul_inner + ;; secp256k1_fe_sqr_inner + ;; + ;; Needed tools: YASM (http://yasm.tortall.net) + ;; + ;; + + BITS 64 + +COMP_LIMB EQU 000000001000003D1h + + ;; Procedure ExSetMult + ;; Register Layout: + ;; INPUT: rdi = a->n + ;; rsi = b->n + ;; rdx = r->a + ;; + ;; INTERNAL: rdx:rax = multiplication accumulator + ;; r8-r10 = c0-c2 + ;; r11-r15 = b.n[0]-b.n[4] / r3 - r7 + ;; rbx = r0 + ;; rcx = r1 + ;; rbp = r2 + ;; + GLOBAL secp256k1_fe_mul_inner + ALIGN 32 +secp256k1_fe_mul_inner: + push rbp + push rbx + push r12 + push r13 + push r14 + push r15 + push rdx + + mov r11,[rsi+8*0] ; preload b.n[0] + + ;; step 1: mul_c2 + mov rax,[rdi+0*8] ; load a.n[0] + mul r11 ; rdx:rax=a.n[0]*b.n[0] + mov r12,[rsi+1*8] ; preload b.n[1] + mov rbx,rax ; retire LO qword (r[0]) + mov r8,rdx ; save overflow + xor r9,r9 ; overflow HO qwords + xor r10,r10 + + ;; c+=a.n[0] * b.n[1] + a.n[1] * b.n[0] + mov rax,[rdi+0*8] + mul r12 + mov r13,[rsi+2*8] ; preload b.n[2] + add r8,rax ; still the same :-) + adc r9,rdx ; + adc r10,0 ; mmm... + + mov rax,[rdi+1*8] + mul r11 + add r8,rax + adc r9,rdx + adc r10,0 + mov rcx,r8 ; retire r[1] + xor r8,r8 + + ;; c+=a.n[0 1 2] * b.n[2 1 0] + mov rax,[rdi+0*8] + mul r13 + mov r14,[rsi+3*8] ; preload b.n[3] + add r9,rax + adc r10,rdx + adc r8,0 + + mov rax,[rdi+1*8] + mul r12 + add r9,rax + adc r10,rdx + adc r8,0 + + mov rax,[rdi+2*8] + mul r11 + add r9,rax + adc r10,rdx + adc r8,0 + mov rbp,r9 ; retire r[2] + xor r9,r9 + + ;; c+=a.n[0 1 2 3] * b.n[3 2 1 0] + mov rax,[rdi+0*8] + mul r14 + add r10,rax + adc r8,rdx + adc r9,0 + + mov rax,[rdi+1*8] + mul r13 + add r10,rax + adc r8,rdx + adc r9,0 + + mov rax,[rdi+2*8] + mul r12 + add r10,rax + adc r8,rdx + adc r9,0 + + mov rax,[rdi+3*8] + mul r11 + add r10,rax + adc r8,rdx + adc r9,0 + mov r11,r10 ; retire r[3] + xor r10,r10 + + ;; c+=a.n[1 2 3] * b.n[3 2 1] + mov rax,[rdi+1*8] + mul r14 + add r8,rax + adc r9,rdx + adc r10,0 + + mov rax,[rdi+2*8] + mul r13 + add r8,rax + adc r9,rdx + adc r10,0 + + mov rax,[rdi+3*8] + mul r12 + add r8,rax + adc r9,rdx + adc r10,0 + mov r12,r8 ; retire r[4] + xor r8,r8 + + ;; c+=a.n[2 3] * b.n[3 2] + mov rax,[rdi+2*8] + mul r14 + add r9,rax ; still the same :-) + adc r10,rdx ; + adc r8,0 ; mmm... + + mov rax,[rdi+3*8] + mul r13 + add r9,rax + adc r10,rdx + adc r8,0 + mov r13,r9 ; retire r[5] + xor r9,r9 + + ;; c+=a.n[3] * b.n[3] + mov rax,[rdi+3*8] + mul r14 + add r10,rax + adc r8,rdx + + mov r14,r10 + mov r15,r8 + + + ;; ******************************************************* +common_exit_norm: + mov rdi,COMP_LIMB + mov rax,r12 + mul rdi + add rax,rbx + adc rcx,rdx + pop rbx + mov [rbx],rax + + mov rax,r13 ; get r5 + mul rdi + add rax,rcx ; +r1 + adc rbp,rdx + mov [rbx+1*8],rax + + mov rax,r14 ; get r6 + mul rdi + add rax,rbp ; +r2 + adc r11,rdx + mov [rbx+2*8],rax + + mov rax,r15 ; get r7 + mul rdi + add rax,r11 ; +r3 + adc rdx,0 + mov [rbx+3*8],rax + mov [rbx+4*8],rdx + + pop r15 + pop r14 + pop r13 + pop r12 + pop rbx + pop rbp + ret + + + ;; PROC ExSetSquare + ;; Register Layout: + ;; INPUT: rdi = a.n + ;; rsi = this.a + ;; INTERNAL: rdx:rax = multiplication accumulator + ;; r8-r10 = c + ;; r11-r15 = a.n[0]-a.n[4] / r3-r7 + ;; rbx = r0 + ;; rcx = r1 + ;; rbp = r2 + GLOBAL secp256k1_fe_sqr_inner + + ALIGN 32 +secp256k1_fe_sqr_inner: + push rbp + push rbx + push r12 + push r13 + push r14 + push r15 + push rsi + + mov r11,[rdi+8*0] ; preload a.n[0] + + ;; step 1: mul_c2 + mov rax,r11 ; load a.n[0] + mul rax ; rdx:rax=a.n[0]² + mov r12,[rdi+1*8] ; preload a.n[1] + mov rbx,rax ; retire LO qword (r[0]) + mov r8,rdx ; save overflow + xor r9,r9 ; overflow HO qwords + xor r10,r10 + + ;; c+=2*a.n[0] * a.n[1] + mov rax,r11 ; load a.n[0] + mul r12 ; rdx:rax=a.n[0] * a.n[1] + mov r13,[rdi+2*8] ; preload a.n[2] + add rax,rax ; rdx:rax*=2 + adc rdx,rdx + adc r10,0 + add r8,rax ; still the same :-) + adc r9,rdx + adc r10,0 ; mmm... + + mov rcx,r8 ; retire r[1] + xor r8,r8 + + ;; c+=2*a.n[0]*a.n[2]+a.n[1]*a.n[1] + mov rax,r11 ; load a.n[0] + mul r13 ; * a.n[2] + mov r14,[rdi+3*8] ; preload a.n[3] + add rax,rax ; rdx:rax*=2 + adc rdx,rdx + adc r8,0 + add r9,rax + adc r10,rdx + adc r8,0 + + mov rax,r12 + mul rax + add r9,rax + adc r10,rdx + adc r8,0 + + + mov rbp,r9 + xor r9,r9 + + ;; c+=2*a.n[0]*a.n[3]+2*a.n[1]*a.n[2] + mov rax,r11 ; load a.n[0] + mul r14 ; * a.n[3] + add rax,rax ; rdx:rax*=2 + adc rdx,rdx + adc r9,0 + add r10,rax + adc r8,rdx + adc r9,0 + + mov rax,r12 ; load a.n[1] + mul r13 ; * a.n[2] + add rax,rax + adc rdx,rdx + adc r9,0 + add r10,rax + adc r8,rdx + adc r9,0 + + mov r11,r10 + xor r10,r10 + + ;; c+=2*a.n[1]*a.n[3]+a.n[2]*a.n[2] + mov rax,r12 ; load a.n[1] + mul r14 ; * a.n[3] + add rax,rax ; rdx:rax*=2 + adc rdx,rdx + adc r10,0 + add r8,rax + adc r9,rdx + adc r10,0 + + mov rax,r13 + mul rax + add r8,rax + adc r9,rdx + adc r10,0 + + mov r12,r8 + xor r8,r8 + ;; c+=2*a.n[2]*a.n[3] + mov rax,r13 ; load a.n[2] + mul r14 ; * a.n[3] + add rax,rax ; rdx:rax*=2 + adc rdx,rdx + adc r8,0 + add r9,rax + adc r10,rdx + adc r8,0 + + mov r13,r9 + xor r9,r9 + + ;; c+=a.n[3]² + mov rax,r14 + mul rax + add r10,rax + adc r8,rdx + + mov r14,r10 + mov r15,r8 + + jmp common_exit_norm + end + + diff --git a/crypto/secp256k1/secp256k1/src/field_gmp.h b/crypto/secp256k1/secp256k1/src/field_gmp.h new file mode 100644 index 000000000..d51dea0af --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/field_gmp.h @@ -0,0 +1,16 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_REPR_ +#define _SECP256K1_FIELD_REPR_ + +#include <gmp.h> + +#define FIELD_LIMBS ((256 + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS) + +typedef struct { + mp_limb_t n[FIELD_LIMBS+1]; +} secp256k1_fe_t; + +#endif diff --git a/crypto/secp256k1/secp256k1/src/group.h b/crypto/secp256k1/secp256k1/src/group.h new file mode 100644 index 000000000..ae291c6ca --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/group.h @@ -0,0 +1,108 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_GROUP_ +#define _SECP256K1_GROUP_ + +#include "num.h" +#include "field.h" + +/** A group element of the secp256k1 curve, in affine coordinates. */ +typedef struct { + secp256k1_fe_t x; + secp256k1_fe_t y; + int infinity; // whether this represents the point at infinity +} secp256k1_ge_t; + +/** A group element of the secp256k1 curve, in jacobian coordinates. */ +typedef struct { + secp256k1_fe_t x; // actual X: x/z^2 + secp256k1_fe_t y; // actual Y: y/z^3 + secp256k1_fe_t z; + int infinity; // whether this represents the point at infinity +} secp256k1_gej_t; + +/** Global constants related to the group */ +typedef struct { + secp256k1_num_t order; // the order of the curve (= order of its generator) + secp256k1_num_t half_order; // half the order of the curve (= order of its generator) + secp256k1_ge_t g; // the generator point + + // constants related to secp256k1's efficiently computable endomorphism + secp256k1_fe_t beta; + secp256k1_num_t lambda, a1b2, b1, a2; +} secp256k1_ge_consts_t; + +static const secp256k1_ge_consts_t *secp256k1_ge_consts = NULL; + +/** Initialize the group module. */ +void static secp256k1_ge_start(void); + +/** De-initialize the group module. */ +void static secp256k1_ge_stop(void); + +/** Set a group element equal to the point at infinity */ +void static secp256k1_ge_set_infinity(secp256k1_ge_t *r); + +/** Set a group element equal to the point with given X and Y coordinates */ +void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); + +/** Set a group element (jacobian) equal to the point with given X coordinate, and given oddness for Y. + The result is not guaranteed to be valid. */ +void static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd); + +/** Check whether a group element is the point at infinity. */ +int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a); + +/** Check whether a group element is valid (i.e., on the curve). */ +int static secp256k1_ge_is_valid(const secp256k1_ge_t *a); + +void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); + +/** Get a hex representation of a point. *rlen will be overwritten with the real length. */ +void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a); + +/** Set a group element equal to another which is given in jacobian coordinates */ +void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a); + + +/** Set a group element (jacobian) equal to the point at infinity. */ +void static secp256k1_gej_set_infinity(secp256k1_gej_t *r); + +/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */ +void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); + +/** Set a group element (jacobian) equal to another which is given in affine coordinates. */ +void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a); + +/** Get the X coordinate of a group element (jacobian). */ +void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a); + +/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ +void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a); + +/** Check whether a group element is the point at infinity. */ +int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a); + +/** Set r equal to the double of a. */ +void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a); + +/** Set r equal to the sum of a and b. */ +void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b); + +/** Set r equal to the sum of a and b (with b given in jacobian coordinates). This is more efficient + than secp256k1_gej_add. */ +void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); + +/** Get a hex representation of a point. *rlen will be overwritten with the real length. */ +void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a); + +/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ +void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a); + +/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (given that a is + not more than 256 bits). */ +void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/ecdsa.h b/crypto/secp256k1/secp256k1/src/impl/ecdsa.h new file mode 100644 index 000000000..dd26cfd11 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/ecdsa.h @@ -0,0 +1,309 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_ECDSA_IMPL_H_ +#define _SECP256K1_ECDSA_IMPL_H_ + +#include "../num.h" +#include "../field.h" +#include "../group.h" +#include "../ecmult.h" +#include "../ecdsa.h" + +void static secp256k1_ecdsa_sig_init(secp256k1_ecdsa_sig_t *r) { + secp256k1_num_init(&r->r); + secp256k1_num_init(&r->s); +} + +void static secp256k1_ecdsa_sig_free(secp256k1_ecdsa_sig_t *r) { + secp256k1_num_free(&r->r); + secp256k1_num_free(&r->s); +} + +int static secp256k1_ecdsa_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size) { + if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) { + secp256k1_fe_t x; + secp256k1_fe_set_b32(&x, pub+1); + secp256k1_ge_set_xo(elem, &x, pub[0] == 0x03); + } else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) { + secp256k1_fe_t x, y; + secp256k1_fe_set_b32(&x, pub+1); + secp256k1_fe_set_b32(&y, pub+33); + secp256k1_ge_set_xy(elem, &x, &y); + if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07)) + return 0; + } else { + return 0; + } + return secp256k1_ge_is_valid(elem); +} + +int static secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) { + if (sig[0] != 0x30) return 0; + int lenr = sig[3]; + if (5+lenr >= size) return 0; + int lens = sig[lenr+5]; + if (sig[1] != lenr+lens+4) return 0; + if (lenr+lens+6 > size) return 0; + if (sig[2] != 0x02) return 0; + if (lenr == 0) return 0; + if (sig[lenr+4] != 0x02) return 0; + if (lens == 0) return 0; + secp256k1_num_set_bin(&r->r, sig+4, lenr); + secp256k1_num_set_bin(&r->s, sig+6+lenr, lens); + return 1; +} + +int static secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a) { + int lenR = (secp256k1_num_bits(&a->r) + 7)/8; + if (lenR == 0 || secp256k1_num_get_bit(&a->r, lenR*8-1)) + lenR++; + int lenS = (secp256k1_num_bits(&a->s) + 7)/8; + if (lenS == 0 || secp256k1_num_get_bit(&a->s, lenS*8-1)) + lenS++; + if (*size < 6+lenS+lenR) + return 0; + *size = 6 + lenS + lenR; + sig[0] = 0x30; + sig[1] = 4 + lenS + lenR; + sig[2] = 0x02; + sig[3] = lenR; + secp256k1_num_get_bin(sig+4, lenR, &a->r); + sig[4+lenR] = 0x02; + sig[5+lenR] = lenS; + secp256k1_num_get_bin(sig+lenR+6, lenS, &a->s); + return 1; +} + +int static secp256k1_ecdsa_sig_recompute(secp256k1_num_t *r2, const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message) { + const secp256k1_ge_consts_t *c = secp256k1_ge_consts; + + if (secp256k1_num_is_neg(&sig->r) || secp256k1_num_is_neg(&sig->s)) + return 0; + if (secp256k1_num_is_zero(&sig->r) || secp256k1_num_is_zero(&sig->s)) + return 0; + if (secp256k1_num_cmp(&sig->r, &c->order) >= 0 || secp256k1_num_cmp(&sig->s, &c->order) >= 0) + return 0; + + int ret = 0; + secp256k1_num_t sn, u1, u2; + secp256k1_num_init(&sn); + secp256k1_num_init(&u1); + secp256k1_num_init(&u2); + secp256k1_num_mod_inverse(&sn, &sig->s, &c->order); + secp256k1_num_mod_mul(&u1, &sn, message, &c->order); + secp256k1_num_mod_mul(&u2, &sn, &sig->r, &c->order); + secp256k1_gej_t pubkeyj; secp256k1_gej_set_ge(&pubkeyj, pubkey); + secp256k1_gej_t pr; secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1); + if (!secp256k1_gej_is_infinity(&pr)) { + secp256k1_fe_t xr; secp256k1_gej_get_x(&xr, &pr); + secp256k1_fe_normalize(&xr); + unsigned char xrb[32]; secp256k1_fe_get_b32(xrb, &xr); + secp256k1_num_set_bin(r2, xrb, 32); + secp256k1_num_mod(r2, &c->order); + ret = 1; + } + secp256k1_num_free(&sn); + secp256k1_num_free(&u1); + secp256k1_num_free(&u2); + return ret; +} + +int static secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_num_t *message, int recid) { + const secp256k1_ge_consts_t *c = secp256k1_ge_consts; + + if (secp256k1_num_is_neg(&sig->r) || secp256k1_num_is_neg(&sig->s)) + return 0; + if (secp256k1_num_is_zero(&sig->r) || secp256k1_num_is_zero(&sig->s)) + return 0; + if (secp256k1_num_cmp(&sig->r, &c->order) >= 0 || secp256k1_num_cmp(&sig->s, &c->order) >= 0) + return 0; + + secp256k1_num_t rx; + secp256k1_num_init(&rx); + secp256k1_num_copy(&rx, &sig->r); + if (recid & 2) { + secp256k1_num_add(&rx, &rx, &c->order); + if (secp256k1_num_cmp(&rx, &secp256k1_fe_consts->p) >= 0) + return 0; + } + unsigned char brx[32]; + secp256k1_num_get_bin(brx, 32, &rx); + secp256k1_num_free(&rx); + secp256k1_fe_t fx; + secp256k1_fe_set_b32(&fx, brx); + secp256k1_ge_t x; + secp256k1_ge_set_xo(&x, &fx, recid & 1); + if (!secp256k1_ge_is_valid(&x)) + return 0; + secp256k1_gej_t xj; + secp256k1_gej_set_ge(&xj, &x); + secp256k1_num_t rn, u1, u2; + secp256k1_num_init(&rn); + secp256k1_num_init(&u1); + secp256k1_num_init(&u2); + secp256k1_num_mod_inverse(&rn, &sig->r, &c->order); + secp256k1_num_mod_mul(&u1, &rn, message, &c->order); + secp256k1_num_sub(&u1, &c->order, &u1); + secp256k1_num_mod_mul(&u2, &rn, &sig->s, &c->order); + secp256k1_gej_t qj; + secp256k1_ecmult(&qj, &xj, &u2, &u1); + if (secp256k1_gej_is_infinity(&qj)) + return 0; + secp256k1_ge_set_gej(pubkey, &qj); + secp256k1_num_free(&rn); + secp256k1_num_free(&u1); + secp256k1_num_free(&u2); + return 1; +} + +int static secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message) { + secp256k1_num_t r2; + secp256k1_num_init(&r2); + int ret = 0; + ret = secp256k1_ecdsa_sig_recompute(&r2, sig, pubkey, message) && secp256k1_num_cmp(&sig->r, &r2) == 0; + secp256k1_num_free(&r2); + return ret; +} + +int static secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *seckey, const secp256k1_num_t *message, const secp256k1_num_t *nonce, int *recid) { + const secp256k1_ge_consts_t *c = secp256k1_ge_consts; + + secp256k1_gej_t rp; + secp256k1_ecmult_gen(&rp, nonce); + secp256k1_ge_t r; + secp256k1_ge_set_gej(&r, &rp); + unsigned char b[32]; + secp256k1_fe_normalize(&r.x); + secp256k1_fe_normalize(&r.y); + secp256k1_fe_get_b32(b, &r.x); + secp256k1_num_set_bin(&sig->r, b, 32); + if (recid) + *recid = (secp256k1_num_cmp(&sig->r, &c->order) >= 0 ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0); + secp256k1_num_mod(&sig->r, &c->order); + secp256k1_num_t n; + secp256k1_num_init(&n); + secp256k1_num_mod_mul(&n, &sig->r, seckey, &c->order); + secp256k1_num_add(&n, &n, message); + secp256k1_num_mod(&n, &c->order); + secp256k1_num_mod_inverse(&sig->s, nonce, &c->order); + secp256k1_num_mod_mul(&sig->s, &sig->s, &n, &c->order); + secp256k1_num_free(&n); + if (secp256k1_num_is_zero(&sig->s)) + return 0; + if (secp256k1_num_cmp(&sig->s, &c->half_order) > 0) { + secp256k1_num_sub(&sig->s, &c->order, &sig->s); + if (recid) + *recid ^= 1; + } + return 1; +} + +void static secp256k1_ecdsa_sig_set_rs(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *r, const secp256k1_num_t *s) { + secp256k1_num_copy(&sig->r, r); + secp256k1_num_copy(&sig->s, s); +} + +void static secp256k1_ecdsa_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed) { + secp256k1_fe_normalize(&elem->x); + secp256k1_fe_normalize(&elem->y); + secp256k1_fe_get_b32(&pub[1], &elem->x); + if (compressed) { + *size = 33; + pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00); + } else { + *size = 65; + pub[0] = 0x04; + secp256k1_fe_get_b32(&pub[33], &elem->y); + } +} + +int static secp256k1_ecdsa_privkey_parse(secp256k1_num_t *key, const unsigned char *privkey, int privkeylen) { + const unsigned char *end = privkey + privkeylen; + // sequence header + if (end < privkey+1 || *privkey != 0x30) + return 0; + privkey++; + // sequence length constructor + int lenb = 0; + if (end < privkey+1 || !(*privkey & 0x80)) + return 0; + lenb = *privkey & ~0x80; privkey++; + if (lenb < 1 || lenb > 2) + return 0; + if (end < privkey+lenb) + return 0; + // sequence length + int len = 0; + len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0); + privkey += lenb; + if (end < privkey+len) + return 0; + // sequence element 0: version number (=1) + if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) + return 0; + privkey += 3; + // sequence element 1: octet string, up to 32 bytes + if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) + return 0; + secp256k1_num_set_bin(key, privkey+2, privkey[1]); + return 1; +} + +int static secp256k1_ecdsa_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_num_t *key, int compressed) { + secp256k1_gej_t rp; + secp256k1_ecmult_gen(&rp, key); + secp256k1_ge_t r; + secp256k1_ge_set_gej(&r, &rp); + if (compressed) { + static const unsigned char begin[] = { + 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20 + }; + static const unsigned char middle[] = { + 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, + 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, + 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, + 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, + 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, + 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00 + }; + unsigned char *ptr = privkey; + memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); + secp256k1_num_get_bin(ptr, 32, key); ptr += 32; + memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); + int pubkeylen = 0; + secp256k1_ecdsa_pubkey_serialize(&r, ptr, &pubkeylen, 1); ptr += pubkeylen; + *privkeylen = ptr - privkey; + } else { + static const unsigned char begin[] = { + 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20 + }; + static const unsigned char middle[] = { + 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, + 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, + 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, + 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, + 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11, + 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10, + 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, + 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00 + }; + unsigned char *ptr = privkey; + memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); + secp256k1_num_get_bin(ptr, 32, key); ptr += 32; + memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); + int pubkeylen = 0; + secp256k1_ecdsa_pubkey_serialize(&r, ptr, &pubkeylen, 0); ptr += pubkeylen; + *privkeylen = ptr - privkey; + } + return 1; +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/ecmult.h b/crypto/secp256k1/secp256k1/src/impl/ecmult.h new file mode 100644 index 000000000..6acb4c408 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/ecmult.h @@ -0,0 +1,238 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_ECMULT_IMPL_H_ +#define _SECP256K1_ECMULT_IMPL_H_ + +#include "../num.h" +#include "../group.h" +#include "../ecmult.h" + +// optimal for 128-bit and 256-bit exponents. +#define WINDOW_A 5 + +// larger numbers may result in slightly better performance, at the cost of +// exponentially larger precomputed tables. WINDOW_G == 14 results in 640 KiB. +#define WINDOW_G 14 + +/** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table. + * pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for + * 2^(w-2) entries. + * + * There are two versions of this function: + * - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation, + * fast to precompute, but slower to use in later additions. + * - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations, + * (much) slower to precompute, but a bit faster to use in later additions. + * To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as + * G is constant, so it only needs to be done once in advance. + */ +void static secp256k1_ecmult_table_precomp_gej(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) { + pre[0] = *a; + secp256k1_gej_t d; secp256k1_gej_double(&d, &pre[0]); + for (int i=1; i<(1 << (w-2)); i++) + secp256k1_gej_add(&pre[i], &d, &pre[i-1]); +} + +void static secp256k1_ecmult_table_precomp_ge(secp256k1_ge_t *pre, const secp256k1_ge_t *a, int w) { + pre[0] = *a; + secp256k1_gej_t x; secp256k1_gej_set_ge(&x, a); + secp256k1_gej_t d; secp256k1_gej_double(&d, &x); + for (int i=1; i<(1 << (w-2)); i++) { + secp256k1_gej_add_ge(&x, &d, &pre[i-1]); + secp256k1_ge_set_gej(&pre[i], &x); + } +} + +/** The number of entries a table with precomputed multiples needs to have. */ +#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) + +/** The following two macro retrieves a particular odd multiple from a table + * of precomputed multiples. */ +#define ECMULT_TABLE_GET(r,pre,n,w,neg) do { \ + assert(((n) & 1) == 1); \ + assert((n) >= -((1 << ((w)-1)) - 1)); \ + assert((n) <= ((1 << ((w)-1)) - 1)); \ + if ((n) > 0) \ + *(r) = (pre)[((n)-1)/2]; \ + else \ + (neg)((r), &(pre)[(-(n)-1)/2]); \ +} while(0) + +#define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg) +#define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg) + +typedef struct { + secp256k1_ge_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of the generator + secp256k1_ge_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of 2^128*generator + secp256k1_ge_t prec[64][16]; // prec[j][i] = 16^j * (i+1) * G + secp256k1_ge_t fin; // -(sum(prec[j][0], j=0..63)) +} secp256k1_ecmult_consts_t; + +static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL; + +static void secp256k1_ecmult_start(void) { + if (secp256k1_ecmult_consts != NULL) + return; + + secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)malloc(sizeof(secp256k1_ecmult_consts_t)); + secp256k1_ecmult_consts = ret; + + // get the generator + const secp256k1_ge_t *g = &secp256k1_ge_consts->g; + + // calculate 2^128*generator + secp256k1_gej_t g_128j; secp256k1_gej_set_ge(&g_128j, g); + for (int i=0; i<128; i++) + secp256k1_gej_double(&g_128j, &g_128j); + secp256k1_ge_t g_128; secp256k1_ge_set_gej(&g_128, &g_128j); + + // precompute the tables with odd multiples + secp256k1_ecmult_table_precomp_ge(ret->pre_g, g, WINDOW_G); + secp256k1_ecmult_table_precomp_ge(ret->pre_g_128, &g_128, WINDOW_G); + + // compute prec and fin + secp256k1_gej_t gg; secp256k1_gej_set_ge(&gg, g); + secp256k1_ge_t ad = *g; + secp256k1_gej_t fn; secp256k1_gej_set_infinity(&fn); + for (int j=0; j<64; j++) { + secp256k1_ge_set_gej(&ret->prec[j][0], &gg); + secp256k1_gej_add(&fn, &fn, &gg); + for (int i=1; i<16; i++) { + secp256k1_gej_add_ge(&gg, &gg, &ad); + secp256k1_ge_set_gej(&ret->prec[j][i], &gg); + } + ad = ret->prec[j][15]; + } + secp256k1_ge_set_gej(&ret->fin, &fn); + secp256k1_ge_neg(&ret->fin, &ret->fin); +} + +static void secp256k1_ecmult_stop(void) { + if (secp256k1_ecmult_consts == NULL) + return; + + secp256k1_ecmult_consts_t *c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts; + free(c); + secp256k1_ecmult_consts = NULL; +} + +/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), + * with the following guarantees: + * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) + * - two non-zero entries in wnaf are separated by at least w-1 zeroes. + * - the index of the highest non-zero entry in wnaf (=return value-1) is at most bits, where + * bits is the number of bits necessary to represent the absolute value of the input. + */ +static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_num_t *a, int w) { + int ret = 0; + int zeroes = 0; + secp256k1_num_t x; + secp256k1_num_init(&x); + secp256k1_num_copy(&x, a); + int sign = 1; + if (secp256k1_num_is_neg(&x)) { + sign = -1; + secp256k1_num_negate(&x); + } + while (!secp256k1_num_is_zero(&x)) { + while (!secp256k1_num_is_odd(&x)) { + zeroes++; + secp256k1_num_shift(&x, 1); + } + int word = secp256k1_num_shift(&x, w); + while (zeroes) { + wnaf[ret++] = 0; + zeroes--; + } + if (word & (1 << (w-1))) { + secp256k1_num_inc(&x); + wnaf[ret++] = sign * (word - (1 << w)); + } else { + wnaf[ret++] = sign * word; + } + zeroes = w-1; + } + secp256k1_num_free(&x); + return ret; +} + +void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn) { + secp256k1_num_t n; + secp256k1_num_init(&n); + secp256k1_num_copy(&n, gn); + const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts; + secp256k1_gej_set_ge(r, &c->prec[0][secp256k1_num_shift(&n, 4)]); + for (int j=1; j<64; j++) + secp256k1_gej_add_ge(r, r, &c->prec[j][secp256k1_num_shift(&n, 4)]); + secp256k1_num_free(&n); + secp256k1_gej_add_ge(r, r, &c->fin); +} + +void static secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng) { + const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts; + + secp256k1_num_t na_1, na_lam; + secp256k1_num_t ng_1, ng_128; + secp256k1_num_init(&na_1); + secp256k1_num_init(&na_lam); + secp256k1_num_init(&ng_1); + secp256k1_num_init(&ng_128); + + // split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) + secp256k1_gej_split_exp(&na_1, &na_lam, na); + // split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) + secp256k1_num_split(&ng_1, &ng_128, ng, 128); + + // build wnaf representation for na_1, na_lam, ng_1, ng_128 + int wnaf_na_1[129]; int bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A); + int wnaf_na_lam[129]; int bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A); + int wnaf_ng_1[129]; int bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G); + int wnaf_ng_128[129]; int bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G); + + // calculate a_lam = a*lambda + secp256k1_gej_t a_lam; secp256k1_gej_mul_lambda(&a_lam, a); + + // calculate odd multiples of a and a_lam + secp256k1_gej_t pre_a_1[ECMULT_TABLE_SIZE(WINDOW_A)], pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; + secp256k1_ecmult_table_precomp_gej(pre_a_1, a, WINDOW_A); + secp256k1_ecmult_table_precomp_gej(pre_a_lam, &a_lam, WINDOW_A); + + int bits = bits_na_1; + if (bits_na_lam > bits) bits = bits_na_lam; + if (bits_ng_1 > bits) bits = bits_ng_1; + if (bits_ng_128 > bits) bits = bits_ng_128; + + secp256k1_gej_set_infinity(r); + secp256k1_gej_t tmpj; + secp256k1_ge_t tmpa; + + for (int i=bits-1; i>=0; i--) { + secp256k1_gej_double(r, r); + int n; + if (i < bits_na_1 && (n = wnaf_na_1[i])) { + ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_1, n, WINDOW_A); + secp256k1_gej_add(r, r, &tmpj); + } + if (i < bits_na_lam && (n = wnaf_na_lam[i])) { + ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A); + secp256k1_gej_add(r, r, &tmpj); + } + if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { + ECMULT_TABLE_GET_GE(&tmpa, c->pre_g, n, WINDOW_G); + secp256k1_gej_add_ge(r, r, &tmpa); + } + if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { + ECMULT_TABLE_GET_GE(&tmpa, c->pre_g_128, n, WINDOW_G); + secp256k1_gej_add_ge(r, r, &tmpa); + } + } + + secp256k1_num_free(&na_1); + secp256k1_num_free(&na_lam); + secp256k1_num_free(&ng_1); + secp256k1_num_free(&ng_128); +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/field.h b/crypto/secp256k1/secp256k1/src/impl/field.h new file mode 100644 index 000000000..edb2acadc --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/field.h @@ -0,0 +1,175 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_IMPL_H_ +#define _SECP256K1_FIELD_IMPL_H_ + +#if defined(USE_FIELD_GMP) +#include "field_gmp.h" +#elif defined(USE_FIELD_10X26) +#include "field_10x26.h" +#elif defined(USE_FIELD_5X52) +#include "field_5x52.h" +#elif defined(USE_FIELD_5X64) +#include "field_5x64.h" +#else +#error "Please select field implementation" +#endif + +void static secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a) { + if (*rlen < 65) { + *rlen = 65; + return; + } + *rlen = 65; + unsigned char tmp[32]; + secp256k1_fe_t b = *a; + secp256k1_fe_normalize(&b); + secp256k1_fe_get_b32(tmp, &b); + for (int i=0; i<32; i++) { + static const char *c = "0123456789ABCDEF"; + r[2*i] = c[(tmp[i] >> 4) & 0xF]; + r[2*i+1] = c[(tmp[i]) & 0xF]; + } + r[64] = 0x00; +} + +void static secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen) { + unsigned char tmp[32] = {}; + static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0, + 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0}; + for (int i=0; i<32; i++) { + if (alen > i*2) + tmp[32 - alen/2 + i] = (cvt[(unsigned char)a[2*i]] << 4) + cvt[(unsigned char)a[2*i+1]]; + } + secp256k1_fe_set_b32(r, tmp); +} + +void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) { + // calculate a^p, with p={15,780,1022,1023} + secp256k1_fe_t a2; secp256k1_fe_sqr(&a2, a); + secp256k1_fe_t a3; secp256k1_fe_mul(&a3, &a2, a); + secp256k1_fe_t a6; secp256k1_fe_sqr(&a6, &a3); + secp256k1_fe_t a12; secp256k1_fe_sqr(&a12, &a6); + secp256k1_fe_t a15; secp256k1_fe_mul(&a15, &a12, &a3); + secp256k1_fe_t a30; secp256k1_fe_sqr(&a30, &a15); + secp256k1_fe_t a60; secp256k1_fe_sqr(&a60, &a30); + secp256k1_fe_t a120; secp256k1_fe_sqr(&a120, &a60); + secp256k1_fe_t a240; secp256k1_fe_sqr(&a240, &a120); + secp256k1_fe_t a255; secp256k1_fe_mul(&a255, &a240, &a15); + secp256k1_fe_t a510; secp256k1_fe_sqr(&a510, &a255); + secp256k1_fe_t a750; secp256k1_fe_mul(&a750, &a510, &a240); + secp256k1_fe_t a780; secp256k1_fe_mul(&a780, &a750, &a30); + secp256k1_fe_t a1020; secp256k1_fe_sqr(&a1020, &a510); + secp256k1_fe_t a1022; secp256k1_fe_mul(&a1022, &a1020, &a2); + secp256k1_fe_t a1023; secp256k1_fe_mul(&a1023, &a1022, a); + secp256k1_fe_t x = a15; + for (int i=0; i<21; i++) { + for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); + secp256k1_fe_mul(&x, &x, &a1023); + } + for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); + secp256k1_fe_mul(&x, &x, &a1022); + for (int i=0; i<2; i++) { + for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); + secp256k1_fe_mul(&x, &x, &a1023); + } + for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); + secp256k1_fe_mul(r, &x, &a780); +} + +void static secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) { + // calculate a^p, with p={45,63,1019,1023} + secp256k1_fe_t a2; secp256k1_fe_sqr(&a2, a); + secp256k1_fe_t a3; secp256k1_fe_mul(&a3, &a2, a); + secp256k1_fe_t a4; secp256k1_fe_sqr(&a4, &a2); + secp256k1_fe_t a5; secp256k1_fe_mul(&a5, &a4, a); + secp256k1_fe_t a10; secp256k1_fe_sqr(&a10, &a5); + secp256k1_fe_t a11; secp256k1_fe_mul(&a11, &a10, a); + secp256k1_fe_t a21; secp256k1_fe_mul(&a21, &a11, &a10); + secp256k1_fe_t a42; secp256k1_fe_sqr(&a42, &a21); + secp256k1_fe_t a45; secp256k1_fe_mul(&a45, &a42, &a3); + secp256k1_fe_t a63; secp256k1_fe_mul(&a63, &a42, &a21); + secp256k1_fe_t a126; secp256k1_fe_sqr(&a126, &a63); + secp256k1_fe_t a252; secp256k1_fe_sqr(&a252, &a126); + secp256k1_fe_t a504; secp256k1_fe_sqr(&a504, &a252); + secp256k1_fe_t a1008; secp256k1_fe_sqr(&a1008, &a504); + secp256k1_fe_t a1019; secp256k1_fe_mul(&a1019, &a1008, &a11); + secp256k1_fe_t a1023; secp256k1_fe_mul(&a1023, &a1019, &a4); + secp256k1_fe_t x = a63; + for (int i=0; i<21; i++) { + for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); + secp256k1_fe_mul(&x, &x, &a1023); + } + for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); + secp256k1_fe_mul(&x, &x, &a1019); + for (int i=0; i<2; i++) { + for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); + secp256k1_fe_mul(&x, &x, &a1023); + } + for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); + secp256k1_fe_mul(r, &x, &a45); +} + +void static secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +#if defined(USE_FIELD_INV_BUILTIN) + secp256k1_fe_inv(r, a); +#elif defined(USE_FIELD_INV_NUM) + unsigned char b[32]; + secp256k1_fe_t c = *a; + secp256k1_fe_normalize(&c); + secp256k1_fe_get_b32(b, &c); + secp256k1_num_t n; + secp256k1_num_init(&n); + secp256k1_num_set_bin(&n, b, 32); + secp256k1_num_mod_inverse(&n, &n, &secp256k1_fe_consts->p); + secp256k1_num_get_bin(b, 32, &n); + secp256k1_num_free(&n); + secp256k1_fe_set_b32(r, b); +#else +#error "Please select field inverse implementation" +#endif +} + +void static secp256k1_fe_start(void) { + static const unsigned char secp256k1_fe_consts_p[] = { + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F + }; + if (secp256k1_fe_consts == NULL) { + secp256k1_fe_inner_start(); + secp256k1_fe_consts_t *ret = (secp256k1_fe_consts_t*)malloc(sizeof(secp256k1_fe_consts_t)); + secp256k1_num_init(&ret->p); + secp256k1_num_set_bin(&ret->p, secp256k1_fe_consts_p, sizeof(secp256k1_fe_consts_p)); + secp256k1_fe_consts = ret; + } +} + +void static secp256k1_fe_stop(void) { + if (secp256k1_fe_consts != NULL) { + secp256k1_fe_consts_t *c = (secp256k1_fe_consts_t*)secp256k1_fe_consts; + secp256k1_num_free(&c->p); + free((void*)c); + secp256k1_fe_consts = NULL; + secp256k1_fe_inner_stop(); + } +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/field_10x26.h b/crypto/secp256k1/secp256k1/src/impl/field_10x26.h new file mode 100644 index 000000000..449769254 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/field_10x26.h @@ -0,0 +1,487 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_REPR_IMPL_H_ +#define _SECP256K1_FIELD_REPR_IMPL_H_ + +#include <stdio.h> +#include <assert.h> +#include <string.h> +#include "../num.h" +#include "../field.h" + +void static secp256k1_fe_inner_start(void) {} +void static secp256k1_fe_inner_stop(void) {} + +void static secp256k1_fe_normalize(secp256k1_fe_t *r) { +// fog("normalize in: ", r); + uint32_t c; + c = r->n[0]; + uint32_t t0 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[1]; + uint32_t t1 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[2]; + uint32_t t2 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[3]; + uint32_t t3 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[4]; + uint32_t t4 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[5]; + uint32_t t5 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[6]; + uint32_t t6 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[7]; + uint32_t t7 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[8]; + uint32_t t8 = c & 0x3FFFFFFUL; + c = (c >> 26) + r->n[9]; + uint32_t t9 = c & 0x03FFFFFUL; + c >>= 22; +/* r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; + r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; + fog(" tm1: ", r); + fprintf(stderr, "out c= %08lx\n", (unsigned long)c);*/ + + // The following code will not modify the t's if c is initially 0. + uint32_t d = c * 0x3D1UL + t0; + t0 = d & 0x3FFFFFFULL; + d = (d >> 26) + t1 + c*0x40; + t1 = d & 0x3FFFFFFULL; + d = (d >> 26) + t2; + t2 = d & 0x3FFFFFFULL; + d = (d >> 26) + t3; + t3 = d & 0x3FFFFFFULL; + d = (d >> 26) + t4; + t4 = d & 0x3FFFFFFULL; + d = (d >> 26) + t5; + t5 = d & 0x3FFFFFFULL; + d = (d >> 26) + t6; + t6 = d & 0x3FFFFFFULL; + d = (d >> 26) + t7; + t7 = d & 0x3FFFFFFULL; + d = (d >> 26) + t8; + t8 = d & 0x3FFFFFFULL; + d = (d >> 26) + t9; + t9 = d & 0x03FFFFFULL; + assert((d >> 22) == 0); +/* r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; + r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; + fog(" tm2: ", r); */ + + // Subtract p if result >= p + uint64_t low = ((uint64_t)t1 << 26) | t0; + uint64_t mask = -(int64_t)((t9 < 0x03FFFFFUL) | (t8 < 0x3FFFFFFUL) | (t7 < 0x3FFFFFFUL) | (t6 < 0x3FFFFFFUL) | (t5 < 0x3FFFFFFUL) | (t4 < 0x3FFFFFFUL) | (t3 < 0x3FFFFFFUL) | (t2 < 0x3FFFFFFUL) | (low < 0xFFFFEFFFFFC2FULL)); + t9 &= mask; + t8 &= mask; + t7 &= mask; + t6 &= mask; + t5 &= mask; + t4 &= mask; + t3 &= mask; + t2 &= mask; + low -= (~mask & 0xFFFFEFFFFFC2FULL); + + // push internal variables back + r->n[0] = low & 0x3FFFFFFUL; r->n[1] = (low >> 26) & 0x3FFFFFFUL; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; + r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; +/* fog(" out: ", r);*/ + +#ifdef VERIFY + r->magnitude = 1; + r->normalized = 1; +#endif +} + +void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { + r->n[0] = a; + r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0; +#ifdef VERIFY + r->magnitude = 1; + r->normalized = 1; +#endif +} + +// TODO: not constant time! +int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0 && a->n[4] == 0 && a->n[5] == 0 && a->n[6] == 0 && a->n[7] == 0 && a->n[8] == 0 && a->n[9] == 0); +} + +int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + return a->n[0] & 1; +} + +// TODO: not constant time! +int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { +#ifdef VERIFY + assert(a->normalized); + assert(b->normalized); +#endif + return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3] && a->n[4] == b->n[4] && + a->n[5] == b->n[5] && a->n[6] == b->n[6] && a->n[7] == b->n[7] && a->n[8] == b->n[8] && a->n[9] == b->n[9]); +} + +void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { + r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; + r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0; + for (int i=0; i<32; i++) { + for (int j=0; j<4; j++) { + int limb = (8*i+2*j)/26; + int shift = (8*i+2*j)%26; + r->n[limb] |= (uint32_t)((a[31-i] >> (2*j)) & 0x3) << shift; + } + } +#ifdef VERIFY + r->magnitude = 1; + r->normalized = 1; +#endif +} + +/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ +void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + for (int i=0; i<32; i++) { + int c = 0; + for (int j=0; j<4; j++) { + int limb = (8*i+2*j)/26; + int shift = (8*i+2*j)%26; + c |= ((a->n[limb] >> shift) & 0x3) << (2 * j); + } + r[31-i] = c; + } +} + +void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { +#ifdef VERIFY + assert(a->magnitude <= m); + r->magnitude = m + 1; + r->normalized = 0; +#endif + r->n[0] = 0x3FFFC2FUL * (m + 1) - a->n[0]; + r->n[1] = 0x3FFFFBFUL * (m + 1) - a->n[1]; + r->n[2] = 0x3FFFFFFUL * (m + 1) - a->n[2]; + r->n[3] = 0x3FFFFFFUL * (m + 1) - a->n[3]; + r->n[4] = 0x3FFFFFFUL * (m + 1) - a->n[4]; + r->n[5] = 0x3FFFFFFUL * (m + 1) - a->n[5]; + r->n[6] = 0x3FFFFFFUL * (m + 1) - a->n[6]; + r->n[7] = 0x3FFFFFFUL * (m + 1) - a->n[7]; + r->n[8] = 0x3FFFFFFUL * (m + 1) - a->n[8]; + r->n[9] = 0x03FFFFFUL * (m + 1) - a->n[9]; +} + +void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { +#ifdef VERIFY + r->magnitude *= a; + r->normalized = 0; +#endif + r->n[0] *= a; + r->n[1] *= a; + r->n[2] *= a; + r->n[3] *= a; + r->n[4] *= a; + r->n[5] *= a; + r->n[6] *= a; + r->n[7] *= a; + r->n[8] *= a; + r->n[9] *= a; +} + +void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +#ifdef VERIFY + r->magnitude += a->magnitude; + r->normalized = 0; +#endif + r->n[0] += a->n[0]; + r->n[1] += a->n[1]; + r->n[2] += a->n[2]; + r->n[3] += a->n[3]; + r->n[4] += a->n[4]; + r->n[5] += a->n[5]; + r->n[6] += a->n[6]; + r->n[7] += a->n[7]; + r->n[8] += a->n[8]; + r->n[9] += a->n[9]; +} + +void static inline secp256k1_fe_mul_inner(const uint32_t *a, const uint32_t *b, uint32_t *r) { + uint64_t c = (uint64_t)a[0] * b[0]; + uint32_t t0 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[1] + + (uint64_t)a[1] * b[0]; + uint32_t t1 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[2] + + (uint64_t)a[1] * b[1] + + (uint64_t)a[2] * b[0]; + uint32_t t2 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[3] + + (uint64_t)a[1] * b[2] + + (uint64_t)a[2] * b[1] + + (uint64_t)a[3] * b[0]; + uint32_t t3 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[4] + + (uint64_t)a[1] * b[3] + + (uint64_t)a[2] * b[2] + + (uint64_t)a[3] * b[1] + + (uint64_t)a[4] * b[0]; + uint32_t t4 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[5] + + (uint64_t)a[1] * b[4] + + (uint64_t)a[2] * b[3] + + (uint64_t)a[3] * b[2] + + (uint64_t)a[4] * b[1] + + (uint64_t)a[5] * b[0]; + uint32_t t5 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[6] + + (uint64_t)a[1] * b[5] + + (uint64_t)a[2] * b[4] + + (uint64_t)a[3] * b[3] + + (uint64_t)a[4] * b[2] + + (uint64_t)a[5] * b[1] + + (uint64_t)a[6] * b[0]; + uint32_t t6 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[7] + + (uint64_t)a[1] * b[6] + + (uint64_t)a[2] * b[5] + + (uint64_t)a[3] * b[4] + + (uint64_t)a[4] * b[3] + + (uint64_t)a[5] * b[2] + + (uint64_t)a[6] * b[1] + + (uint64_t)a[7] * b[0]; + uint32_t t7 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[8] + + (uint64_t)a[1] * b[7] + + (uint64_t)a[2] * b[6] + + (uint64_t)a[3] * b[5] + + (uint64_t)a[4] * b[4] + + (uint64_t)a[5] * b[3] + + (uint64_t)a[6] * b[2] + + (uint64_t)a[7] * b[1] + + (uint64_t)a[8] * b[0]; + uint32_t t8 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[0] * b[9] + + (uint64_t)a[1] * b[8] + + (uint64_t)a[2] * b[7] + + (uint64_t)a[3] * b[6] + + (uint64_t)a[4] * b[5] + + (uint64_t)a[5] * b[4] + + (uint64_t)a[6] * b[3] + + (uint64_t)a[7] * b[2] + + (uint64_t)a[8] * b[1] + + (uint64_t)a[9] * b[0]; + uint32_t t9 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[1] * b[9] + + (uint64_t)a[2] * b[8] + + (uint64_t)a[3] * b[7] + + (uint64_t)a[4] * b[6] + + (uint64_t)a[5] * b[5] + + (uint64_t)a[6] * b[4] + + (uint64_t)a[7] * b[3] + + (uint64_t)a[8] * b[2] + + (uint64_t)a[9] * b[1]; + uint32_t t10 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[2] * b[9] + + (uint64_t)a[3] * b[8] + + (uint64_t)a[4] * b[7] + + (uint64_t)a[5] * b[6] + + (uint64_t)a[6] * b[5] + + (uint64_t)a[7] * b[4] + + (uint64_t)a[8] * b[3] + + (uint64_t)a[9] * b[2]; + uint32_t t11 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[3] * b[9] + + (uint64_t)a[4] * b[8] + + (uint64_t)a[5] * b[7] + + (uint64_t)a[6] * b[6] + + (uint64_t)a[7] * b[5] + + (uint64_t)a[8] * b[4] + + (uint64_t)a[9] * b[3]; + uint32_t t12 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[4] * b[9] + + (uint64_t)a[5] * b[8] + + (uint64_t)a[6] * b[7] + + (uint64_t)a[7] * b[6] + + (uint64_t)a[8] * b[5] + + (uint64_t)a[9] * b[4]; + uint32_t t13 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[5] * b[9] + + (uint64_t)a[6] * b[8] + + (uint64_t)a[7] * b[7] + + (uint64_t)a[8] * b[6] + + (uint64_t)a[9] * b[5]; + uint32_t t14 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[6] * b[9] + + (uint64_t)a[7] * b[8] + + (uint64_t)a[8] * b[7] + + (uint64_t)a[9] * b[6]; + uint32_t t15 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[7] * b[9] + + (uint64_t)a[8] * b[8] + + (uint64_t)a[9] * b[7]; + uint32_t t16 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[8] * b[9] + + (uint64_t)a[9] * b[8]; + uint32_t t17 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[9] * b[9]; + uint32_t t18 = c & 0x3FFFFFFUL; c = c >> 26; + uint32_t t19 = c; + + c = t0 + (uint64_t)t10 * 0x3D10UL; + t0 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t1 + (uint64_t)t10*0x400UL + (uint64_t)t11 * 0x3D10UL; + t1 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t2 + (uint64_t)t11*0x400UL + (uint64_t)t12 * 0x3D10UL; + t2 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t3 + (uint64_t)t12*0x400UL + (uint64_t)t13 * 0x3D10UL; + r[3] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t4 + (uint64_t)t13*0x400UL + (uint64_t)t14 * 0x3D10UL; + r[4] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t5 + (uint64_t)t14*0x400UL + (uint64_t)t15 * 0x3D10UL; + r[5] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t6 + (uint64_t)t15*0x400UL + (uint64_t)t16 * 0x3D10UL; + r[6] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t7 + (uint64_t)t16*0x400UL + (uint64_t)t17 * 0x3D10UL; + r[7] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t8 + (uint64_t)t17*0x400UL + (uint64_t)t18 * 0x3D10UL; + r[8] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t9 + (uint64_t)t18*0x400UL + (uint64_t)t19 * 0x1000003D10ULL; + r[9] = c & 0x03FFFFFUL; c = c >> 22; + uint64_t d = t0 + c * 0x3D1UL; + r[0] = d & 0x3FFFFFFUL; d = d >> 26; + d = d + t1 + c*0x40; + r[1] = d & 0x3FFFFFFUL; d = d >> 26; + r[2] = t2 + d; +} + +void static inline secp256k1_fe_sqr_inner(const uint32_t *a, uint32_t *r) { + uint64_t c = (uint64_t)a[0] * a[0]; + uint32_t t0 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[1]; + uint32_t t1 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[2] + + (uint64_t)a[1] * a[1]; + uint32_t t2 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[3] + + (uint64_t)(a[1]*2) * a[2]; + uint32_t t3 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[4] + + (uint64_t)(a[1]*2) * a[3] + + (uint64_t)a[2] * a[2]; + uint32_t t4 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[5] + + (uint64_t)(a[1]*2) * a[4] + + (uint64_t)(a[2]*2) * a[3]; + uint32_t t5 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[6] + + (uint64_t)(a[1]*2) * a[5] + + (uint64_t)(a[2]*2) * a[4] + + (uint64_t)a[3] * a[3]; + uint32_t t6 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[7] + + (uint64_t)(a[1]*2) * a[6] + + (uint64_t)(a[2]*2) * a[5] + + (uint64_t)(a[3]*2) * a[4]; + uint32_t t7 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[8] + + (uint64_t)(a[1]*2) * a[7] + + (uint64_t)(a[2]*2) * a[6] + + (uint64_t)(a[3]*2) * a[5] + + (uint64_t)a[4] * a[4]; + uint32_t t8 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[0]*2) * a[9] + + (uint64_t)(a[1]*2) * a[8] + + (uint64_t)(a[2]*2) * a[7] + + (uint64_t)(a[3]*2) * a[6] + + (uint64_t)(a[4]*2) * a[5]; + uint32_t t9 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[1]*2) * a[9] + + (uint64_t)(a[2]*2) * a[8] + + (uint64_t)(a[3]*2) * a[7] + + (uint64_t)(a[4]*2) * a[6] + + (uint64_t)a[5] * a[5]; + uint32_t t10 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[2]*2) * a[9] + + (uint64_t)(a[3]*2) * a[8] + + (uint64_t)(a[4]*2) * a[7] + + (uint64_t)(a[5]*2) * a[6]; + uint32_t t11 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[3]*2) * a[9] + + (uint64_t)(a[4]*2) * a[8] + + (uint64_t)(a[5]*2) * a[7] + + (uint64_t)a[6] * a[6]; + uint32_t t12 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[4]*2) * a[9] + + (uint64_t)(a[5]*2) * a[8] + + (uint64_t)(a[6]*2) * a[7]; + uint32_t t13 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[5]*2) * a[9] + + (uint64_t)(a[6]*2) * a[8] + + (uint64_t)a[7] * a[7]; + uint32_t t14 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[6]*2) * a[9] + + (uint64_t)(a[7]*2) * a[8]; + uint32_t t15 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[7]*2) * a[9] + + (uint64_t)a[8] * a[8]; + uint32_t t16 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)(a[8]*2) * a[9]; + uint32_t t17 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + (uint64_t)a[9] * a[9]; + uint32_t t18 = c & 0x3FFFFFFUL; c = c >> 26; + uint32_t t19 = c; + + c = t0 + (uint64_t)t10 * 0x3D10UL; + t0 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t1 + (uint64_t)t10*0x400UL + (uint64_t)t11 * 0x3D10UL; + t1 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t2 + (uint64_t)t11*0x400UL + (uint64_t)t12 * 0x3D10UL; + t2 = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t3 + (uint64_t)t12*0x400UL + (uint64_t)t13 * 0x3D10UL; + r[3] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t4 + (uint64_t)t13*0x400UL + (uint64_t)t14 * 0x3D10UL; + r[4] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t5 + (uint64_t)t14*0x400UL + (uint64_t)t15 * 0x3D10UL; + r[5] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t6 + (uint64_t)t15*0x400UL + (uint64_t)t16 * 0x3D10UL; + r[6] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t7 + (uint64_t)t16*0x400UL + (uint64_t)t17 * 0x3D10UL; + r[7] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t8 + (uint64_t)t17*0x400UL + (uint64_t)t18 * 0x3D10UL; + r[8] = c & 0x3FFFFFFUL; c = c >> 26; + c = c + t9 + (uint64_t)t18*0x400UL + (uint64_t)t19 * 0x1000003D10ULL; + r[9] = c & 0x03FFFFFUL; c = c >> 22; + uint64_t d = t0 + c * 0x3D1UL; + r[0] = d & 0x3FFFFFFUL; d = d >> 26; + d = d + t1 + c*0x40; + r[1] = d & 0x3FFFFFFUL; d = d >> 26; + r[2] = t2 + d; +} + + +void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) { +#ifdef VERIFY + assert(a->magnitude <= 8); + assert(b->magnitude <= 8); + r->magnitude = 1; + r->normalized = 0; +#endif + secp256k1_fe_mul_inner(a->n, b->n, r->n); +} + +void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->magnitude <= 8); + r->magnitude = 1; + r->normalized = 0; +#endif + secp256k1_fe_sqr_inner(a->n, r->n); +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/field_5x52.h b/crypto/secp256k1/secp256k1/src/impl/field_5x52.h new file mode 100644 index 000000000..5347189f1 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/field_5x52.h @@ -0,0 +1,196 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_REPR_IMPL_H_ +#define _SECP256K1_FIELD_REPR_IMPL_H_ + +#include <assert.h> +#include <string.h> +#include "../num.h" +#include "../field.h" + +#if defined(USE_FIELD_5X52_ASM) +#include "field_5x52_asm.h" +#elif defined(USE_FIELD_5X52_INT128) +#include "field_5x52_int128.h" +#else +#error "Please select field_5x52 implementation" +#endif + +/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, + * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular, + * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element + * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations + * accept any input with magnitude at most M, and have different rules for propagating magnitude to their + * output. + */ + +void static secp256k1_fe_inner_start(void) {} +void static secp256k1_fe_inner_stop(void) {} + +void static secp256k1_fe_normalize(secp256k1_fe_t *r) { + uint64_t c; + c = r->n[0]; + uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; + c = (c >> 52) + r->n[1]; + uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; + c = (c >> 52) + r->n[2]; + uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; + c = (c >> 52) + r->n[3]; + uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; + c = (c >> 52) + r->n[4]; + uint64_t t4 = c & 0x0FFFFFFFFFFFFULL; + c >>= 48; + + // The following code will not modify the t's if c is initially 0. + c = c * 0x1000003D1ULL + t0; + t0 = c & 0xFFFFFFFFFFFFFULL; + c = (c >> 52) + t1; + t1 = c & 0xFFFFFFFFFFFFFULL; + c = (c >> 52) + t2; + t2 = c & 0xFFFFFFFFFFFFFULL; + c = (c >> 52) + t3; + t3 = c & 0xFFFFFFFFFFFFFULL; + c = (c >> 52) + t4; + t4 = c & 0x0FFFFFFFFFFFFULL; + assert((c >> 48) == 0); + + // Subtract p if result >= p + uint64_t mask = -(int64_t)((t4 < 0xFFFFFFFFFFFFULL) | (t3 < 0xFFFFFFFFFFFFFULL) | (t2 < 0xFFFFFFFFFFFFFULL) | (t1 < 0xFFFFFFFFFFFFFULL) | (t0 < 0xFFFFEFFFFFC2FULL)); + t4 &= mask; + t3 &= mask; + t2 &= mask; + t1 &= mask; + t0 -= (~mask & 0xFFFFEFFFFFC2FULL); + + // push internal variables back + r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; + +#ifdef VERIFY + r->magnitude = 1; + r->normalized = 1; +#endif +} + +void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { + r->n[0] = a; + r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; +#ifdef VERIFY + r->magnitude = 1; + r->normalized = 1; +#endif +} + +// TODO: not constant time! +int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0 && a->n[4] == 0); +} + +int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + return a->n[0] & 1; +} + +// TODO: not constant time! +int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { +#ifdef VERIFY + assert(a->normalized); + assert(b->normalized); +#endif + return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3] && a->n[4] == b->n[4]); +} + +void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { + r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; + for (int i=0; i<32; i++) { + for (int j=0; j<2; j++) { + int limb = (8*i+4*j)/52; + int shift = (8*i+4*j)%52; + r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift; + } + } +#ifdef VERIFY + r->magnitude = 1; + r->normalized = 1; +#endif +} + +/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ +void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + for (int i=0; i<32; i++) { + int c = 0; + for (int j=0; j<2; j++) { + int limb = (8*i+4*j)/52; + int shift = (8*i+4*j)%52; + c |= ((a->n[limb] >> shift) & 0xF) << (4 * j); + } + r[31-i] = c; + } +} + +void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { +#ifdef VERIFY + assert(a->magnitude <= m); + r->magnitude = m + 1; + r->normalized = 0; +#endif + r->n[0] = 0xFFFFEFFFFFC2FULL * (m + 1) - a->n[0]; + r->n[1] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[1]; + r->n[2] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[2]; + r->n[3] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[3]; + r->n[4] = 0x0FFFFFFFFFFFFULL * (m + 1) - a->n[4]; +} + +void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { +#ifdef VERIFY + r->magnitude *= a; + r->normalized = 0; +#endif + r->n[0] *= a; + r->n[1] *= a; + r->n[2] *= a; + r->n[3] *= a; + r->n[4] *= a; +} + +void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +#ifdef VERIFY + r->magnitude += a->magnitude; + r->normalized = 0; +#endif + r->n[0] += a->n[0]; + r->n[1] += a->n[1]; + r->n[2] += a->n[2]; + r->n[3] += a->n[3]; + r->n[4] += a->n[4]; +} + +void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) { +#ifdef VERIFY + assert(a->magnitude <= 8); + assert(b->magnitude <= 8); + r->magnitude = 1; + r->normalized = 0; +#endif + secp256k1_fe_mul_inner(a->n, b->n, r->n); +} + +void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->magnitude <= 8); + r->magnitude = 1; + r->normalized = 0; +#endif + secp256k1_fe_sqr_inner(a->n, r->n); +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/field_5x52_asm.h b/crypto/secp256k1/secp256k1/src/impl/field_5x52_asm.h new file mode 100644 index 000000000..93c6ab6b5 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/field_5x52_asm.h @@ -0,0 +1,11 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_ +#define _SECP256K1_FIELD_INNER5X52_IMPL_H_ + +void __attribute__ ((sysv_abi)) secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r); +void __attribute__ ((sysv_abi)) secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/field_5x52_int128.h b/crypto/secp256k1/secp256k1/src/impl/field_5x52_int128.h new file mode 100644 index 000000000..23cb13462 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/field_5x52_int128.h @@ -0,0 +1,105 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_ +#define _SECP256K1_FIELD_INNER5X52_IMPL_H_ + +#include <stdint.h> + +void static inline secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r) { + __int128 c = (__int128)a[0] * b[0]; + uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0 + c = c + (__int128)a[0] * b[1] + + (__int128)a[1] * b[0]; + uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF + c = c + (__int128)a[0] * b[2] + + (__int128)a[1] * b[1] + + (__int128)a[2] * b[0]; + uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0 + c = c + (__int128)a[0] * b[3] + + (__int128)a[1] * b[2] + + (__int128)a[2] * b[1] + + (__int128)a[3] * b[0]; + uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280 + c = c + (__int128)a[0] * b[4] + + (__int128)a[1] * b[3] + + (__int128)a[2] * b[2] + + (__int128)a[3] * b[1] + + (__int128)a[4] * b[0]; + uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E + c = c + (__int128)a[1] * b[4] + + (__int128)a[2] * b[3] + + (__int128)a[3] * b[2] + + (__int128)a[4] * b[1]; + uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE + c = c + (__int128)a[2] * b[4] + + (__int128)a[3] * b[3] + + (__int128)a[4] * b[2]; + uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE + c = c + (__int128)a[3] * b[4] + + (__int128)a[4] * b[3]; + uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE + c = c + (__int128)a[4] * b[4]; + uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E + uint64_t t9 = c; + + c = t0 + (__int128)t5 * 0x1000003D10ULL; + t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 + c = c + t1 + (__int128)t6 * 0x1000003D10ULL; + t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 + c = c + t2 + (__int128)t7 * 0x1000003D10ULL; + r[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 + c = c + t3 + (__int128)t8 * 0x1000003D10ULL; + r[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 + c = c + t4 + (__int128)t9 * 0x1000003D10ULL; + r[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110 + c = t0 + (__int128)c * 0x1000003D1ULL; + r[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008 + r[1] = t1 + c; + +} + +void static inline secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r) { + __int128 c = (__int128)a[0] * a[0]; + uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0 + c = c + (__int128)(a[0]*2) * a[1]; + uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF + c = c + (__int128)(a[0]*2) * a[2] + + (__int128)a[1] * a[1]; + uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0 + c = c + (__int128)(a[0]*2) * a[3] + + (__int128)(a[1]*2) * a[2]; + uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280 + c = c + (__int128)(a[0]*2) * a[4] + + (__int128)(a[1]*2) * a[3] + + (__int128)a[2] * a[2]; + uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E + c = c + (__int128)(a[1]*2) * a[4] + + (__int128)(a[2]*2) * a[3]; + uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE + c = c + (__int128)(a[2]*2) * a[4] + + (__int128)a[3] * a[3]; + uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE + c = c + (__int128)(a[3]*2) * a[4]; + uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE + c = c + (__int128)a[4] * a[4]; + uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E + uint64_t t9 = c; + c = t0 + (__int128)t5 * 0x1000003D10ULL; + t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 + c = c + t1 + (__int128)t6 * 0x1000003D10ULL; + t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 + c = c + t2 + (__int128)t7 * 0x1000003D10ULL; + r[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 + c = c + t3 + (__int128)t8 * 0x1000003D10ULL; + r[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 + c = c + t4 + (__int128)t9 * 0x1000003D10ULL; + r[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110 + c = t0 + (__int128)c * 0x1000003D1ULL; + r[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008 + r[1] = t1 + c; + +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/field_5x64.h b/crypto/secp256k1/secp256k1/src/impl/field_5x64.h new file mode 100644 index 000000000..1e645cddb --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/field_5x64.h @@ -0,0 +1,371 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_REPR_IMPL_H_ +#define _SECP256K1_FIELD_REPR_IMPL_H_ + +#include <assert.h> +#include <string.h> +#include "../num.h" +#include "../field.h" + +#include <stdio.h> +#include "field_5x64_asm.h" + +/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, + * represented as 4 uint64_t's in base 2^64, and one overflow uint64_t. + */ + +#define FULL_LIMB (0xFFFFFFFFFFFFFFFFULL) +#define LAST_LIMB (0xFFFFFFFEFFFFFC2FULL) +#define COMP_LIMB (0x00000001000003D1ULL) + +void static secp256k1_fe_inner_start(void) {} +void static secp256k1_fe_inner_stop(void) {} + +void static secp256k1_fe_reduce(secp256k1_fe_t *r) { + unsigned __int128 c = (unsigned __int128)r->n[4] * COMP_LIMB + r->n[0]; + uint64_t n0 = c; + c = (c >> 64) + r->n[1]; + uint64_t n1 = c; + c = (c >> 64) + r->n[2]; + r->n[2] = c; + c = (c >> 64) + r->n[3]; + r->n[3] = c; + c = (c >> 64) * COMP_LIMB + n0; + r->n[0] = c; + r->n[1] = n1 + (c >> 64); + assert(r->n[1] >= n1); + r->n[4] = 0; +#ifdef VERIFY + r->reduced = 1; +#endif +} + +void static secp256k1_fe_normalize(secp256k1_fe_t *r) { + secp256k1_fe_reduce(r); + + // Subtract p if result >= p + uint64_t mask = -(int64_t)((r->n[0] < LAST_LIMB) | (r->n[1] != ~0ULL) | (r->n[2] != ~0ULL) | (r->n[3] != ~0ULL)); + r->n[0] -= (~mask & LAST_LIMB); + r->n[1] &= mask; + r->n[2] &= mask; + r->n[3] &= mask; + assert(r->n[4] == 0); + +#ifdef VERIFY + r->normalized = 1; +#endif +} + +void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { + r->n[0] = a; + r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; + +#ifdef VERIFY + r->reduced = 1; + r->normalized = 1; +#endif +} + +// TODO: not constant time! +int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0); +} + +int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + return a->n[0] & 1; +} + +// TODO: not constant time! +int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { +#ifdef VERIFY + assert(a->normalized); + assert(b->normalized); +#endif + return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3]); +} + +void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { + r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; + for (int i=0; i<32; i++) { + r->n[i/8] |= (uint64_t)a[31-i] << (i&7)*8; + } +#ifdef VERIFY + r->reduced = 1; + r->normalized = 0; +#endif +} + +/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ +void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { +#ifdef VERIFY + assert(a->normalized); +#endif + for (int i=0; i<32; i++) { + r[31-i] = a->n[i/8] >> ((i&7)*8); + } +} + +void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *ac, int m) { + secp256k1_fe_t a = *ac; + secp256k1_fe_reduce(&a); + unsigned __int128 c = (unsigned __int128)(~a.n[0]) + LAST_LIMB + 1; + r->n[0] = c; + c = (c >> 64) + (~a.n[1]) + FULL_LIMB; + r->n[1] = c; + c = (c >> 64) + (~a.n[2]) + FULL_LIMB; + r->n[2] = c; + c = (c >> 64) + (~a.n[3]) + FULL_LIMB; + r->n[3] = c; + r->n[4] = 0; +#ifdef VERIFY + r->reduced = 1; + r->normalized = 0; +#endif +} + +void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { +#ifdef VERIFY + r->reduced = 0; + r->normalized = 0; +#endif + unsigned __int128 c = (unsigned __int128)r->n[0] * a; + r->n[0] = c; + c = (c >> 64) + (unsigned __int128)r->n[1] * a; + r->n[1] = c; + c = (c >> 64) + (unsigned __int128)r->n[2] * a; + r->n[2] = c; + c = (c >> 64) + (unsigned __int128)r->n[3] * a; + r->n[3] = c; + c = (c >> 64) + (unsigned __int128)r->n[4] * a; + r->n[4] = c; +} + +void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { +#ifdef VERIFY + r->reduced = 0; + r->normalized = 0; +#endif + unsigned __int128 c = (unsigned __int128)r->n[0] + a->n[0]; + r->n[0] = c; + c = (unsigned __int128)r->n[1] + a->n[1] + (c >> 64); + r->n[1] = c; + c = (unsigned __int128)r->n[2] + a->n[2] + (c >> 64); + r->n[2] = c; + c = (unsigned __int128)r->n[3] + a->n[3] + (c >> 64); + r->n[3] = c; + c = (unsigned __int128)r->n[4] + a->n[4] + (c >> 64); + r->n[4] = c; + assert((c >> 64) == 0); +} + +#if 0 +#define muladd_c3(a,b,c0,c1,c2) { \ + unsigned __int128 q1 = ((unsigned __int128)(a)) * (b) + (c0); \ + (c0) = q1; \ + unsigned __int128 q2 = (q1 >> 64) + (c1) + (((unsigned __int128)(c2)) << 64); \ + (c1) = q2; \ + (c2) = q2 >> 64; \ +} + +#define sqradd_c3(a,c0,c1,c2) muladd_c3(a,a,c0,c1,c2) + +/*#define muladd_c3(a,b,c0,c1,c2) { \ + unsigned __int128 q = (unsigned __int128)(a) * (b) + (c0); \ + (c0) = q; \ + (c1) += (q >> 64); \ + (c2) += ((c1) < (q >> 64))?1:0; \ +}*/ + +#define muladd2_c3(a,b,c0,c1,c2) { \ + unsigned __int128 q = (unsigned __int128)(a) * (b); \ + uint64_t t1 = (q >> 64); \ + uint64_t t0 = q; \ + uint64_t t2 = t1+t1; (c2) += (t2<t1)?1:0; \ + t1 = t0+t0; t2 += (t1<t0)?1:0; \ + (c0) += t1; t2 += ((c0)<t1)?1:0; \ + (c1) += t2; (c2) += ((c1)<t2)?1:0; \ +} + +/*#define muladd2_c3(a,b,c0,c1,c2) { \ + muladd_c3(a,b,c0,c1,c2); \ + muladd_c3(a,b,c0,c1,c2); \ +}*/ +#else + +#define muladd_c3(a,b,c0,c1,c2) { \ + register uint64_t t1, t2; \ + asm ("mulq %3" \ + : "=a"(t1),"=d"(t2) \ + : "a"(a),"m"(b) \ + : "cc"); \ + asm ("addq %2,%0; adcq %3,%1" \ + : "+r"(c0),"+d"(t2) \ + : "a"(t1),"g"(0) \ + : "cc"); \ + asm ("addq %2,%0; adcq %3,%1" \ + : "+r"(c1),"+r"(c2) \ + : "d"(t2),"g"(0) \ + : "cc"); \ + } + +#define sqradd_c3(a,c0,c1,c2) { \ + register uint64_t t1, t2; \ + asm ("mulq %2" \ + : "=a"(t1),"=d"(t2) \ + : "a"(a) \ + : "cc"); \ + asm ("addq %2,%0; adcq %3,%1" \ + : "+r"(c0),"+d"(t2) \ + : "a"(t1),"g"(0) \ + : "cc"); \ + asm ("addq %2,%0; adcq %3,%1" \ + : "+r"(c1),"+r"(c2) \ + : "d"(t2),"g"(0) \ + : "cc"); \ + } + +#define muladd2_c3(a,b,c0,c1,c2) { \ + register uint64_t t1, t2; \ + asm ("mulq %3" \ + : "=a"(t1),"=d"(t2) \ + : "a"(a),"m"(b) \ + : "cc"); \ + asm ("addq %0,%0; adcq %2,%1" \ + : "+d"(t2),"+r"(c2) \ + : "g"(0) \ + : "cc"); \ + asm ("addq %0,%0; adcq %2,%1" \ + : "+a"(t1),"+d"(t2) \ + : "g"(0) \ + : "cc"); \ + asm ("addq %2,%0; adcq %3,%1" \ + : "+r"(c0),"+d"(t2) \ + : "a"(t1),"g"(0) \ + : "cc"); \ + asm ("addq %2,%0; adcq %3,%1" \ + : "+r"(c1),"+r"(c2) \ + : "d"(t2),"g"(0) \ + : "cc"); \ + } +#endif + +#define mul_c2(a,b,c0,c1) { \ + unsigned __int128 q = (unsigned __int128)(a) * (b); \ + (c0) = q; \ + (c1) = (q >> 64); \ +} + +void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *ac, const secp256k1_fe_t *bc) { + + secp256k1_fe_t a = *ac, b = *bc; + secp256k1_fe_reduce(&a); + secp256k1_fe_reduce(&b); + +#ifdef USE_FIELD_5X64_ASM + secp256k1_fe_mul_inner((&a)->n,(&b)->n,r->n); +#else + uint64_t c1,c2,c3; + c3=0; + mul_c2(a.n[0], b.n[0], c1, c2); + uint64_t r0 = c1; c1 = 0; + muladd_c3(a.n[0], b.n[1], c2, c3, c1); + muladd_c3(a.n[1], b.n[0], c2, c3, c1); + uint64_t r1 = c2; c2 = 0; + muladd_c3(a.n[2], b.n[0], c3, c1, c2); + muladd_c3(a.n[1], b.n[1], c3, c1, c2); + muladd_c3(a.n[0], b.n[2], c3, c1, c2); + uint64_t r2 = c3; c3 = 0; + muladd_c3(a.n[0], b.n[3], c1, c2, c3); + muladd_c3(a.n[1], b.n[2], c1, c2, c3); + muladd_c3(a.n[2], b.n[1], c1, c2, c3); + muladd_c3(a.n[3], b.n[0], c1, c2, c3); + uint64_t r3 = c1; c1 = 0; + muladd_c3(a.n[3], b.n[1], c2, c3, c1); + muladd_c3(a.n[2], b.n[2], c2, c3, c1); + muladd_c3(a.n[1], b.n[3], c2, c3, c1); + uint64_t r4 = c2; c2 = 0; + muladd_c3(a.n[2], b.n[3], c3, c1, c2); + muladd_c3(a.n[3], b.n[2], c3, c1, c2); + uint64_t r5 = c3; c3 = 0; + muladd_c3(a.n[3], b.n[3], c1, c2, c3); + uint64_t r6 = c1; + uint64_t r7 = c2; + assert(c3 == 0); + unsigned __int128 c = (unsigned __int128)r4 * COMP_LIMB + r0; + r->n[0] = c; + c = (unsigned __int128)r5 * COMP_LIMB + r1 + (c >> 64); + r->n[1] = c; + c = (unsigned __int128)r6 * COMP_LIMB + r2 + (c >> 64); + r->n[2] = c; + c = (unsigned __int128)r7 * COMP_LIMB + r3 + (c >> 64); + r->n[3] = c; + r->n[4] = c >> 64; +#endif + +#ifdef VERIFY + r->normalized = 0; + r->reduced = 0; +#endif + secp256k1_fe_reduce(r); +} + +/*void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { + secp256k1_fe_mul(r, a, a); +}*/ + +void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *ac) { + secp256k1_fe_t a = *ac; + secp256k1_fe_reduce(&a); + +#ifdef USE_FIELD_5X64_ASM + secp256k1_fe_sqr_inner((&a)->n,r->n); +#else + uint64_t c1,c2,c3; + c3=0; + mul_c2(a.n[0], a.n[0], c1, c2); + uint64_t r0 = c1; c1 = 0; + muladd2_c3(a.n[0], a.n[1], c2, c3, c1); + uint64_t r1 = c2; c2 = 0; + muladd2_c3(a.n[2], a.n[0], c3, c1, c2); + sqradd_c3(a.n[1], c3, c1, c2); + uint64_t r2 = c3; c3 = 0; + muladd2_c3(a.n[0], a.n[3], c1, c2, c3); + muladd2_c3(a.n[1], a.n[2], c1, c2, c3); + uint64_t r3 = c1; c1 = 0; + muladd2_c3(a.n[3], a.n[1], c2, c3, c1); + sqradd_c3(a.n[2], c2, c3, c1); + uint64_t r4 = c2; c2 = 0; + muladd2_c3(a.n[2], a.n[3], c3, c1, c2); + uint64_t r5 = c3; c3 = 0; + sqradd_c3(a.n[3], c1, c2, c3); + uint64_t r6 = c1; + uint64_t r7 = c2; + assert(c3 == 0); + unsigned __int128 c = (unsigned __int128)r4 * COMP_LIMB + r0; + r->n[0] = c; + c = (unsigned __int128)r5 * COMP_LIMB + r1 + (c >> 64); + r->n[1] = c; + c = (unsigned __int128)r6 * COMP_LIMB + r2 + (c >> 64); + r->n[2] = c; + c = (unsigned __int128)r7 * COMP_LIMB + r3 + (c >> 64); + r->n[3] = c; + r->n[4] = c >> 64; +#endif + +#ifdef VERIFY + r->normalized = 0; + r->reduced = 0; +#endif + secp256k1_fe_reduce(r); +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/field_5x64_asm.h b/crypto/secp256k1/secp256k1/src/impl/field_5x64_asm.h new file mode 100644 index 000000000..93c6ab6b5 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/field_5x64_asm.h @@ -0,0 +1,11 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_ +#define _SECP256K1_FIELD_INNER5X52_IMPL_H_ + +void __attribute__ ((sysv_abi)) secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r); +void __attribute__ ((sysv_abi)) secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/field_gmp.h b/crypto/secp256k1/secp256k1/src/impl/field_gmp.h new file mode 100644 index 000000000..6172ef48e --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/field_gmp.h @@ -0,0 +1,155 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_FIELD_REPR_IMPL_H_ +#define _SECP256K1_FIELD_REPR_IMPL_H_ + +#include <stdio.h> +#include <assert.h> +#include <string.h> +#include "../num.h" +#include "../field.h" + +static mp_limb_t secp256k1_field_p[FIELD_LIMBS]; +static mp_limb_t secp256k1_field_pc[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS]; + +void static secp256k1_fe_inner_start(void) { + for (int i=0; i<(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; i++) + secp256k1_field_pc[i] = 0; + secp256k1_field_pc[0] += 0x3D1UL; + secp256k1_field_pc[32/GMP_NUMB_BITS] += (1UL << (32 % GMP_NUMB_BITS)); + for (int i=0; i<FIELD_LIMBS; i++) { + secp256k1_field_p[i] = 0; + } + mpn_sub(secp256k1_field_p, secp256k1_field_p, FIELD_LIMBS, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS); +} + +void static secp256k1_fe_inner_stop(void) { +} + +void static secp256k1_fe_normalize(secp256k1_fe_t *r) { + if (r->n[FIELD_LIMBS] != 0) { +#if (GMP_NUMB_BITS >= 40) + mp_limb_t carry = mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x1000003D1ULL * r->n[FIELD_LIMBS]); + mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x1000003D1ULL * carry); +#else + mp_limb_t carry = mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x3D1UL * r->n[FIELD_LIMBS]) + + mpn_add_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), r->n[FIELD_LIMBS] << (32 % GMP_NUMB_BITS)); + mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x3D1UL * carry); + mpn_add_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), carry << (32%GMP_NUMB_BITS)); +#endif + r->n[FIELD_LIMBS] = 0; + } + if (mpn_cmp(r->n, secp256k1_field_p, FIELD_LIMBS) >= 0) + mpn_sub(r->n, r->n, FIELD_LIMBS, secp256k1_field_p, FIELD_LIMBS); +} + +void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { + r->n[0] = a; + for (int i=1; i<FIELD_LIMBS+1; i++) + r->n[i] = 0; +} + +int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) { + int ret = 1; + for (int i=0; i<FIELD_LIMBS+1; i++) + ret &= (a->n[i] == 0); + return ret; +} + +int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) { + return a->n[0] & 1; +} + +int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { + int ret = 1; + for (int i=0; i<FIELD_LIMBS+1; i++) + ret &= (a->n[i] == b->n[i]); + return ret; +} + +void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { + for (int i=0; i<FIELD_LIMBS+1; i++) + r->n[i] = 0; + for (int i=0; i<256; i++) { + int limb = i/GMP_NUMB_BITS; + int shift = i%GMP_NUMB_BITS; + r->n[limb] |= (mp_limb_t)((a[31-i/8] >> (i%8)) & 0x1) << shift; + } +} + +/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ +void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { + for (int i=0; i<32; i++) { + int c = 0; + for (int j=0; j<8; j++) { + int limb = (8*i+j)/GMP_NUMB_BITS; + int shift = (8*i+j)%GMP_NUMB_BITS; + c |= ((a->n[limb] >> shift) & 0x1) << j; + } + r[31-i] = c; + } +} + +void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { + *r = *a; + secp256k1_fe_normalize(r); + for (int i=0; i<FIELD_LIMBS; i++) + r->n[i] = ~(r->n[i]); +#if (GMP_NUMB_BITS >= 33) + mpn_sub_1(r->n, r->n, FIELD_LIMBS, 0x1000003D0ULL); +#else + mpn_sub_1(r->n, r->n, FIELD_LIMBS, 0x3D0UL); + mpn_sub_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), 0x1UL << (32%GMP_NUMB_BITS)); +#endif +} + +void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { + mpn_mul_1(r->n, r->n, FIELD_LIMBS+1, a); +} + +void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { + mpn_add(r->n, r->n, FIELD_LIMBS+1, a->n, FIELD_LIMBS+1); +} + +void static secp256k1_fe_reduce(secp256k1_fe_t *r, mp_limb_t *tmp) { + // <A1 A2 A3 A4> <B1 B2 B3 B4> + // B1 B2 B3 B4 + // + C * A1 A2 A3 A4 + // + A1 A2 A3 A4 + +#if (GMP_NUMB_BITS >= 33) + mp_limb_t o = mpn_addmul_1(tmp, tmp+FIELD_LIMBS, FIELD_LIMBS, 0x1000003D1ULL); +#else + mp_limb_t o = mpn_addmul_1(tmp, tmp+FIELD_LIMBS, FIELD_LIMBS, 0x3D1UL) + + mpn_addmul_1(tmp+(32/GMP_NUMB_BITS), tmp+FIELD_LIMBS, FIELD_LIMBS-(32/GMP_NUMB_BITS), 0x1UL << (32%GMP_NUMB_BITS)); +#endif + mp_limb_t q[1+(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS]; + q[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS] = mpn_mul_1(q, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS, o); +#if (GMP_NUMB_BITS <= 32) + mp_limb_t o2 = tmp[2*FIELD_LIMBS-(32/GMP_NUMB_BITS)] << (32%GMP_NUMB_BITS); + q[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS] += mpn_addmul_1(q, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS, o2); +#endif + r->n[FIELD_LIMBS] = mpn_add(r->n, tmp, FIELD_LIMBS, q, 1+(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS); +} + +void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) { + secp256k1_fe_t ac = *a; + secp256k1_fe_t bc = *b; + secp256k1_fe_normalize(&ac); + secp256k1_fe_normalize(&bc); + mp_limb_t tmp[2*FIELD_LIMBS]; + mpn_mul_n(tmp, ac.n, bc.n, FIELD_LIMBS); + secp256k1_fe_reduce(r, tmp); +} + +void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { + secp256k1_fe_t ac = *a; + secp256k1_fe_normalize(&ac); + mp_limb_t tmp[2*FIELD_LIMBS]; + mpn_sqr(tmp, ac.n, FIELD_LIMBS); + secp256k1_fe_reduce(r, tmp); +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/group.h b/crypto/secp256k1/secp256k1/src/impl/group.h new file mode 100644 index 000000000..ce8d7b204 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/group.h @@ -0,0 +1,397 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_GROUP_IMPL_H_ +#define _SECP256K1_GROUP_IMPL_H_ + +#include <string.h> + +#include "../num.h" +#include "../field.h" +#include "../group.h" + +void static secp256k1_ge_set_infinity(secp256k1_ge_t *r) { + r->infinity = 1; +} + +void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { + r->infinity = 0; + r->x = *x; + r->y = *y; +} + +int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a) { + return a->infinity; +} + +void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; + secp256k1_fe_normalize(&r->y); + secp256k1_fe_negate(&r->y, &r->y, 1); +} + +void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a) { + char cx[65]; int lx=65; + char cy[65]; int ly=65; + secp256k1_fe_get_hex(cx, &lx, &a->x); + secp256k1_fe_get_hex(cy, &ly, &a->y); + lx = strlen(cx); + ly = strlen(cy); + int len = lx + ly + 3 + 1; + if (*rlen < len) { + *rlen = len; + return; + } + *rlen = len; + r[0] = '('; + memcpy(r+1, cx, lx); + r[1+lx] = ','; + memcpy(r+2+lx, cy, ly); + r[2+lx+ly] = ')'; + r[3+lx+ly] = 0; +} + +void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { + secp256k1_fe_inv_var(&a->z, &a->z); + secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); + secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &a->z, &z2); + secp256k1_fe_mul(&a->x, &a->x, &z2); + secp256k1_fe_mul(&a->y, &a->y, &z3); + secp256k1_fe_set_int(&a->z, 1); + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; +} + +void static secp256k1_gej_set_infinity(secp256k1_gej_t *r) { + r->infinity = 1; +} + +void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { + r->infinity = 0; + r->x = *x; + r->y = *y; + secp256k1_fe_set_int(&r->z, 1); +} + +void static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) { + r->x = *x; + secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x); + secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2); + r->infinity = 0; + secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); + secp256k1_fe_add(&c, &x3); + secp256k1_fe_sqrt(&r->y, &c); + secp256k1_fe_normalize(&r->y); + if (secp256k1_fe_is_odd(&r->y) != odd) + secp256k1_fe_negate(&r->y, &r->y, 1); +} + +void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) { + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; + secp256k1_fe_set_int(&r->z, 1); +} + +void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a) { + secp256k1_fe_t zi2; secp256k1_fe_inv_var(&zi2, &a->z); secp256k1_fe_sqr(&zi2, &zi2); + secp256k1_fe_mul(r, &a->x, &zi2); +} + +void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; + r->z = a->z; + secp256k1_fe_normalize(&r->y); + secp256k1_fe_negate(&r->y, &r->y, 1); +} + +int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a) { + return a->infinity; +} + +int static secp256k1_gej_is_valid(const secp256k1_gej_t *a) { + if (a->infinity) + return 0; + // y^2 = x^3 + 7 + // (Y/Z^3)^2 = (X/Z^2)^3 + 7 + // Y^2 / Z^6 = X^3 / Z^6 + 7 + // Y^2 = X^3 + 7*Z^6 + secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); + secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); + secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); + secp256k1_fe_t z6; secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); + secp256k1_fe_mul_int(&z6, 7); + secp256k1_fe_add(&x3, &z6); + secp256k1_fe_normalize(&y2); + secp256k1_fe_normalize(&x3); + return secp256k1_fe_equal(&y2, &x3); +} + +int static secp256k1_ge_is_valid(const secp256k1_ge_t *a) { + if (a->infinity) + return 0; + // y^2 = x^3 + 7 + secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); + secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); + secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); + secp256k1_fe_add(&x3, &c); + secp256k1_fe_normalize(&y2); + secp256k1_fe_normalize(&x3); + return secp256k1_fe_equal(&y2, &x3); +} + +void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a) { + secp256k1_fe_t t5 = a->y; + secp256k1_fe_normalize(&t5); + if (a->infinity || secp256k1_fe_is_zero(&t5)) { + r->infinity = 1; + return; + } + + secp256k1_fe_t t1,t2,t3,t4; + secp256k1_fe_mul(&r->z, &t5, &a->z); + secp256k1_fe_mul_int(&r->z, 2); // Z' = 2*Y*Z (2) + secp256k1_fe_sqr(&t1, &a->x); + secp256k1_fe_mul_int(&t1, 3); // T1 = 3*X^2 (3) + secp256k1_fe_sqr(&t2, &t1); // T2 = 9*X^4 (1) + secp256k1_fe_sqr(&t3, &t5); + secp256k1_fe_mul_int(&t3, 2); // T3 = 2*Y^2 (2) + secp256k1_fe_sqr(&t4, &t3); + secp256k1_fe_mul_int(&t4, 2); // T4 = 8*Y^4 (2) + secp256k1_fe_mul(&t3, &a->x, &t3); // T3 = 2*X*Y^2 (1) + r->x = t3; + secp256k1_fe_mul_int(&r->x, 4); // X' = 8*X*Y^2 (4) + secp256k1_fe_negate(&r->x, &r->x, 4); // X' = -8*X*Y^2 (5) + secp256k1_fe_add(&r->x, &t2); // X' = 9*X^4 - 8*X*Y^2 (6) + secp256k1_fe_negate(&t2, &t2, 1); // T2 = -9*X^4 (2) + secp256k1_fe_mul_int(&t3, 6); // T3 = 12*X*Y^2 (6) + secp256k1_fe_add(&t3, &t2); // T3 = 12*X*Y^2 - 9*X^4 (8) + secp256k1_fe_mul(&r->y, &t1, &t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) + secp256k1_fe_negate(&t2, &t4, 2); // T2 = -8*Y^4 (3) + secp256k1_fe_add(&r->y, &t2); // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) + r->infinity = 0; +} + +void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) { + if (a->infinity) { + *r = *b; + return; + } + if (b->infinity) { + *r = *a; + return; + } + r->infinity = 0; + secp256k1_fe_t z22; secp256k1_fe_sqr(&z22, &b->z); + secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); + secp256k1_fe_t u1; secp256k1_fe_mul(&u1, &a->x, &z22); + secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); + secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); + secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); + secp256k1_fe_normalize(&u1); + secp256k1_fe_normalize(&u2); + if (secp256k1_fe_equal(&u1, &u2)) { + secp256k1_fe_normalize(&s1); + secp256k1_fe_normalize(&s2); + if (secp256k1_fe_equal(&s1, &s2)) { + secp256k1_gej_double(r, a); + } else { + r->infinity = 1; + } + return; + } + secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); + secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); + secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); + secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); + secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); + secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h); + secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); + r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); + secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); + secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); + secp256k1_fe_add(&r->y, &h3); +} + +void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { + if (a->infinity) { + r->infinity = b->infinity; + r->x = b->x; + r->y = b->y; + secp256k1_fe_set_int(&r->z, 1); + return; + } + if (b->infinity) { + *r = *a; + return; + } + r->infinity = 0; + secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); + secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize(&u1); + secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); + secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize(&s1); + secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); + secp256k1_fe_normalize(&u1); + secp256k1_fe_normalize(&u2); + if (secp256k1_fe_equal(&u1, &u2)) { + secp256k1_fe_normalize(&s1); + secp256k1_fe_normalize(&s2); + if (secp256k1_fe_equal(&s1, &s2)) { + secp256k1_gej_double(r, a); + } else { + r->infinity = 1; + } + return; + } + secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); + secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); + secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); + secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); + secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); + r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); + secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); + r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); + secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); + secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); + secp256k1_fe_add(&r->y, &h3); +} + +void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a) { + secp256k1_gej_t c = *a; + secp256k1_ge_t t; secp256k1_ge_set_gej(&t, &c); + secp256k1_ge_get_hex(r, rlen, &t); +} + +void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) { + const secp256k1_fe_t *beta = &secp256k1_ge_consts->beta; + *r = *a; + secp256k1_fe_mul(&r->x, &r->x, beta); +} + +void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a) { + const secp256k1_ge_consts_t *c = secp256k1_ge_consts; + secp256k1_num_t bnc1, bnc2, bnt1, bnt2, bnn2; + + secp256k1_num_init(&bnc1); + secp256k1_num_init(&bnc2); + secp256k1_num_init(&bnt1); + secp256k1_num_init(&bnt2); + secp256k1_num_init(&bnn2); + + secp256k1_num_copy(&bnn2, &c->order); + secp256k1_num_shift(&bnn2, 1); + + secp256k1_num_mul(&bnc1, a, &c->a1b2); + secp256k1_num_add(&bnc1, &bnc1, &bnn2); + secp256k1_num_div(&bnc1, &bnc1, &c->order); + + secp256k1_num_mul(&bnc2, a, &c->b1); + secp256k1_num_add(&bnc2, &bnc2, &bnn2); + secp256k1_num_div(&bnc2, &bnc2, &c->order); + + secp256k1_num_mul(&bnt1, &bnc1, &c->a1b2); + secp256k1_num_mul(&bnt2, &bnc2, &c->a2); + secp256k1_num_add(&bnt1, &bnt1, &bnt2); + secp256k1_num_sub(r1, a, &bnt1); + secp256k1_num_mul(&bnt1, &bnc1, &c->b1); + secp256k1_num_mul(&bnt2, &bnc2, &c->a1b2); + secp256k1_num_sub(r2, &bnt1, &bnt2); + + secp256k1_num_free(&bnc1); + secp256k1_num_free(&bnc2); + secp256k1_num_free(&bnt1); + secp256k1_num_free(&bnt2); + secp256k1_num_free(&bnn2); +} + + +void static secp256k1_ge_start(void) { + static const unsigned char secp256k1_ge_consts_order[] = { + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, + 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, + 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 + }; + static const unsigned char secp256k1_ge_consts_g_x[] = { + 0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC, + 0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07, + 0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9, + 0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98 + }; + static const unsigned char secp256k1_ge_consts_g_y[] = { + 0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65, + 0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8, + 0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19, + 0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8 + }; + // properties of secp256k1's efficiently computable endomorphism + static const unsigned char secp256k1_ge_consts_lambda[] = { + 0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0, + 0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, + 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78, + 0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72 + }; + static const unsigned char secp256k1_ge_consts_beta[] = { + 0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10, + 0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9, + 0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95, + 0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee + }; + static const unsigned char secp256k1_ge_consts_a1b2[] = { + 0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd, + 0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15 + }; + static const unsigned char secp256k1_ge_consts_b1[] = { + 0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28, + 0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3 + }; + static const unsigned char secp256k1_ge_consts_a2[] = { + 0x01, + 0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6, + 0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8 + }; + if (secp256k1_ge_consts == NULL) { + secp256k1_ge_consts_t *ret = (secp256k1_ge_consts_t*)malloc(sizeof(secp256k1_ge_consts_t)); + secp256k1_num_init(&ret->order); + secp256k1_num_init(&ret->half_order); + secp256k1_num_init(&ret->lambda); + secp256k1_num_init(&ret->a1b2); + secp256k1_num_init(&ret->a2); + secp256k1_num_init(&ret->b1); + secp256k1_num_set_bin(&ret->order, secp256k1_ge_consts_order, sizeof(secp256k1_ge_consts_order)); + secp256k1_num_set_bin(&ret->lambda, secp256k1_ge_consts_lambda, sizeof(secp256k1_ge_consts_lambda)); + secp256k1_num_set_bin(&ret->a1b2, secp256k1_ge_consts_a1b2, sizeof(secp256k1_ge_consts_a1b2)); + secp256k1_num_set_bin(&ret->a2, secp256k1_ge_consts_a2, sizeof(secp256k1_ge_consts_a2)); + secp256k1_num_set_bin(&ret->b1, secp256k1_ge_consts_b1, sizeof(secp256k1_ge_consts_b1)); + secp256k1_num_copy(&ret->half_order, &ret->order); + secp256k1_num_shift(&ret->half_order, 1); + secp256k1_fe_set_b32(&ret->beta, secp256k1_ge_consts_beta); + secp256k1_fe_t g_x, g_y; + secp256k1_fe_set_b32(&g_x, secp256k1_ge_consts_g_x); + secp256k1_fe_set_b32(&g_y, secp256k1_ge_consts_g_y); + secp256k1_ge_set_xy(&ret->g, &g_x, &g_y); + secp256k1_ge_consts = ret; + } +} + +void static secp256k1_ge_stop(void) { + if (secp256k1_ge_consts != NULL) { + secp256k1_ge_consts_t *c = (secp256k1_ge_consts_t*)secp256k1_ge_consts; + secp256k1_num_free(&c->order); + secp256k1_num_free(&c->half_order); + secp256k1_num_free(&c->lambda); + secp256k1_num_free(&c->a1b2); + secp256k1_num_free(&c->a2); + secp256k1_num_free(&c->b1); + free((void*)c); + secp256k1_ge_consts = NULL; + } +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/num.h b/crypto/secp256k1/secp256k1/src/impl/num.h new file mode 100644 index 000000000..fc6d05c3d --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/num.h @@ -0,0 +1,18 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_NUM_IMPL_H_ +#define _SECP256K1_NUM_IMPL_H_ + +#include "../num.h" + +#if defined(USE_NUM_GMP) +#include "num_gmp.h" +#elif defined(USE_NUM_OPENSSL) +#include "num_openssl.h" +#else +#error "Please select num implementation" +#endif + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/num_gmp.h b/crypto/secp256k1/secp256k1/src/impl/num_gmp.h new file mode 100644 index 000000000..067c15180 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/num_gmp.h @@ -0,0 +1,346 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_NUM_REPR_IMPL_H_ +#define _SECP256K1_NUM_REPR_IMPL_H_ + +#include <assert.h> +#include <string.h> +#include <stdlib.h> +#include <gmp.h> + +#include "num.h" + +#ifdef VERIFY +void static secp256k1_num_sanity(const secp256k1_num_t *a) { + assert(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0)); +} +#else +#define secp256k1_num_sanity(a) do { } while(0) +#endif + +void static secp256k1_num_init(secp256k1_num_t *r) { + r->neg = 0; + r->limbs = 1; + r->data[0] = 0; +} + +void static secp256k1_num_free(secp256k1_num_t *r) { +} + +void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) { + *r = *a; +} + +int static secp256k1_num_bits(const secp256k1_num_t *a) { + int ret=(a->limbs-1)*GMP_NUMB_BITS; + mp_limb_t x=a->data[a->limbs-1]; + while (x) { + x >>= 1; + ret++; + } + return ret; +} + + +void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) { + unsigned char tmp[65]; + int len = 0; + if (a->limbs>1 || a->data[0] != 0) { + len = mpn_get_str(tmp, 256, (mp_limb_t*)a->data, a->limbs); + } + int shift = 0; + while (shift < len && tmp[shift] == 0) shift++; + assert(len-shift <= rlen); + memset(r, 0, rlen - len + shift); + if (len > shift) + memcpy(r + rlen - len + shift, tmp + shift, len - shift); +} + +void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) { + assert(alen > 0); + assert(alen <= 64); + int len = mpn_set_str(r->data, a, alen, 256); + assert(len <= NUM_LIMBS*2); + r->limbs = len; + r->neg = 0; + while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--; +} + +void static secp256k1_num_set_int(secp256k1_num_t *r, int a) { + r->limbs = 1; + r->neg = (a < 0); + r->data[0] = (a < 0) ? -a : a; +} + +void static secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs); + r->limbs = a->limbs; + if (c != 0) { + assert(r->limbs < 2*NUM_LIMBS); + r->data[r->limbs++] = c; + } +} + +void static secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs); + assert(c == 0); + r->limbs = a->limbs; + while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--; +} + +void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) { + secp256k1_num_sanity(r); + secp256k1_num_sanity(m); + + if (r->limbs >= m->limbs) { + mp_limb_t t[2*NUM_LIMBS]; + mpn_tdiv_qr(t, r->data, 0, r->data, r->limbs, m->data, m->limbs); + r->limbs = m->limbs; + while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--; + } + + if (r->neg && (r->limbs > 1 || r->data[0] != 0)) { + secp256k1_num_sub_abs(r, m, r); + r->neg = 0; + } +} + +void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) { + secp256k1_num_sanity(a); + secp256k1_num_sanity(m); + + // mpn_gcdext computes: (G,S) = gcdext(U,V), where + // * G = gcd(U,V) + // * G = U*S + V*T + // * U has equal or more limbs than V, and V has no padding + // If we set U to be (a padded version of) a, and V = m: + // G = a*S + m*T + // G = a*S mod m + // Assuming G=1: + // S = 1/a mod m + assert(m->limbs <= NUM_LIMBS); + assert(m->data[m->limbs-1] != 0); + mp_limb_t g[NUM_LIMBS+1]; + mp_limb_t u[NUM_LIMBS+1]; + mp_limb_t v[NUM_LIMBS+1]; + for (int i=0; i < m->limbs; i++) { + u[i] = (i < a->limbs) ? a->data[i] : 0; + v[i] = m->data[i]; + } + mp_size_t sn = NUM_LIMBS+1; + mp_size_t gn = mpn_gcdext(g, r->data, &sn, u, m->limbs, v, m->limbs); + assert(gn == 1); + assert(g[0] == 1); + r->neg = a->neg ^ m->neg; + if (sn < 0) { + mpn_sub(r->data, m->data, m->limbs, r->data, -sn); + r->limbs = m->limbs; + while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--; + } else { + r->limbs = sn; + } +} + +int static secp256k1_num_is_zero(const secp256k1_num_t *a) { + return (a->limbs == 1 && a->data[0] == 0); +} + +int static secp256k1_num_is_odd(const secp256k1_num_t *a) { + return a->data[0] & 1; +} + +int static secp256k1_num_is_neg(const secp256k1_num_t *a) { + return (a->limbs > 1 || a->data[0] != 0) && a->neg; +} + +int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) { + if (a->limbs > b->limbs) return 1; + if (a->limbs < b->limbs) return -1; + return mpn_cmp(a->data, b->data, a->limbs); +} + +void static secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, int bneg) { + if (!(b->neg ^ bneg ^ a->neg)) { // a and b have the same sign + r->neg = a->neg; + if (a->limbs >= b->limbs) { + secp256k1_num_add_abs(r, a, b); + } else { + secp256k1_num_add_abs(r, b, a); + } + } else { + if (secp256k1_num_cmp(a, b) > 0) { + r->neg = a->neg; + secp256k1_num_sub_abs(r, a, b); + } else { + r->neg = b->neg ^ bneg; + secp256k1_num_sub_abs(r, b, a); + } + } +} + +void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + secp256k1_num_sanity(a); + secp256k1_num_sanity(b); + secp256k1_num_subadd(r, a, b, 0); +} + +void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + secp256k1_num_sanity(a); + secp256k1_num_sanity(b); + secp256k1_num_subadd(r, a, b, 1); +} + +void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + secp256k1_num_sanity(a); + secp256k1_num_sanity(b); + + mp_limb_t tmp[2*NUM_LIMBS+1]; + assert(a->limbs + b->limbs <= 2*NUM_LIMBS+1); + if ((a->limbs==1 && a->data[0]==0) || (b->limbs==1 && b->data[0]==0)) { + r->limbs = 1; + r->neg = 0; + r->data[0] = 0; + return; + } + if (a->limbs >= b->limbs) + mpn_mul(tmp, a->data, a->limbs, b->data, b->limbs); + else + mpn_mul(tmp, b->data, b->limbs, a->data, a->limbs); + r->limbs = a->limbs + b->limbs; + if (r->limbs > 1 && tmp[r->limbs - 1]==0) r->limbs--; + assert(r->limbs <= 2*NUM_LIMBS); + mpn_copyi(r->data, tmp, r->limbs); + r->neg = a->neg ^ b->neg; +} + +void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + secp256k1_num_sanity(a); + secp256k1_num_sanity(b); + if (b->limbs > a->limbs) { + r->limbs = 1; + r->data[0] = 0; + r->neg = 0; + return; + } + + mp_limb_t quo[2*NUM_LIMBS+1]; + mp_limb_t rem[2*NUM_LIMBS+1]; + mpn_tdiv_qr(quo, rem, 0, a->data, a->limbs, b->data, b->limbs); + mpn_copyi(r->data, quo, a->limbs - b->limbs + 1); + r->limbs = a->limbs - b->limbs + 1; + while (r->limbs > 1 && r->data[r->limbs - 1]==0) r->limbs--; + r->neg = a->neg ^ b->neg; +} + +void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m) { + secp256k1_num_mul(r, a, b); + secp256k1_num_mod(r, m); +} + + +int static secp256k1_num_shift(secp256k1_num_t *r, int bits) { + assert(bits <= GMP_NUMB_BITS); + mp_limb_t ret = mpn_rshift(r->data, r->data, r->limbs, bits); + if (r->limbs>1 && r->data[r->limbs-1]==0) r->limbs--; + ret >>= (GMP_NUMB_BITS - bits); + return ret; +} + +int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos) { + return (a->limbs*GMP_NUMB_BITS > pos) && ((a->data[pos/GMP_NUMB_BITS] >> (pos % GMP_NUMB_BITS)) & 1); +} + +void static secp256k1_num_inc(secp256k1_num_t *r) { + mp_limb_t ret = mpn_add_1(r->data, r->data, r->limbs, (mp_limb_t)1); + if (ret) { + assert(r->limbs < 2*NUM_LIMBS); + r->data[r->limbs++] = ret; + } +} + +void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen) { + static const unsigned char cvt[256] = { + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0, + 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, + 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0 + }; + unsigned char num[257] = {}; + for (int i=0; i<alen; i++) { + num[i] = cvt[a[i]]; + } + r->limbs = mpn_set_str(r->data, num, alen, 16); + while (r->limbs > 1 && r->data[r->limbs-1] == 0) r->limbs--; +} + +void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a) { + static const unsigned char cvt[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; + unsigned char *tmp = malloc(257); + mp_size_t len = mpn_get_str(tmp, 16, (mp_limb_t*)a->data, a->limbs); + assert(len <= rlen); + for (int i=0; i<len; i++) { + assert(rlen-len+i >= 0); + assert(rlen-len+i < rlen); + assert(tmp[i] >= 0); + assert(tmp[i] < 16); + r[rlen-len+i] = cvt[tmp[i]]; + } + for (int i=0; i<rlen-len; i++) { + assert(i >= 0); + assert(i < rlen); + r[i] = cvt[0]; + } + free(tmp); +} + +void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits) { + assert(bits > 0); + rh->neg = a->neg; + if (bits >= a->limbs * GMP_NUMB_BITS) { + *rl = *a; + rh->limbs = 1; + rh->data[0] = 0; + return; + } + rl->limbs = 0; + rl->neg = a->neg; + int left = bits; + while (left >= GMP_NUMB_BITS) { + rl->data[rl->limbs] = a->data[rl->limbs]; + rl->limbs++; + left -= GMP_NUMB_BITS; + } + if (left == 0) { + mpn_copyi(rh->data, a->data + rl->limbs, a->limbs - rl->limbs); + rh->limbs = a->limbs - rl->limbs; + } else { + mpn_rshift(rh->data, a->data + rl->limbs, a->limbs - rl->limbs, left); + rh->limbs = a->limbs - rl->limbs; + while (rh->limbs>1 && rh->data[rh->limbs-1]==0) rh->limbs--; + } + if (left > 0) { + rl->data[rl->limbs] = a->data[rl->limbs] & ((((mp_limb_t)1) << left) - 1); + rl->limbs++; + } + while (rl->limbs>1 && rl->data[rl->limbs-1]==0) rl->limbs--; +} + +void static secp256k1_num_negate(secp256k1_num_t *r) { + r->neg ^= 1; +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/num_openssl.h b/crypto/secp256k1/secp256k1/src/impl/num_openssl.h new file mode 100644 index 000000000..0a54689ac --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/num_openssl.h @@ -0,0 +1,145 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_NUM_REPR_IMPL_H_ +#define _SECP256K1_NUM_REPR_IMPL_H_ + +#include <assert.h> +#include <string.h> +#include <stdlib.h> +#include <openssl/bn.h> +#include <openssl/crypto.h> + +#include "../num.h" + +void static secp256k1_num_init(secp256k1_num_t *r) { + BN_init(&r->bn); +} + +void static secp256k1_num_free(secp256k1_num_t *r) { + BN_free(&r->bn); +} + +void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) { + BN_copy(&r->bn, &a->bn); +} + +void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) { + unsigned int size = BN_num_bytes(&a->bn); + assert(size <= rlen); + memset(r,0,rlen); + BN_bn2bin(&a->bn, r + rlen - size); +} + +void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) { + BN_bin2bn(a, alen, &r->bn); +} + +void static secp256k1_num_set_int(secp256k1_num_t *r, int a) { + BN_set_word(&r->bn, a < 0 ? -a : a); + BN_set_negative(&r->bn, a < 0); +} + +void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) { + BN_CTX *ctx = BN_CTX_new(); + BN_mod_inverse(&r->bn, &a->bn, &m->bn, ctx); + BN_CTX_free(ctx); +} + +void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m) { + BN_CTX *ctx = BN_CTX_new(); + BN_mod_mul(&r->bn, &a->bn, &b->bn, &m->bn, ctx); + BN_CTX_free(ctx); +} + +int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) { + return BN_cmp(&a->bn, &b->bn); +} + +void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + BN_add(&r->bn, &a->bn, &b->bn); +} + +void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + BN_sub(&r->bn, &a->bn, &b->bn); +} + +void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + BN_CTX *ctx = BN_CTX_new(); + BN_mul(&r->bn, &a->bn, &b->bn, ctx); + BN_CTX_free(ctx); +} + +void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { + BN_CTX *ctx = BN_CTX_new(); + BN_div(&r->bn, NULL, &a->bn, &b->bn, ctx); + BN_CTX_free(ctx); +} + +void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) { + BN_CTX *ctx = BN_CTX_new(); + BN_nnmod(&r->bn, &r->bn, &m->bn, ctx); + BN_CTX_free(ctx); +} + +int static secp256k1_num_bits(const secp256k1_num_t *a) { + return BN_num_bits(&a->bn); +} + +int static secp256k1_num_shift(secp256k1_num_t *r, int bits) { + int ret = BN_is_zero(&r->bn) ? 0 : r->bn.d[0] & ((1 << bits) - 1); + BN_rshift(&r->bn, &r->bn, bits); + return ret; +} + +int static secp256k1_num_is_zero(const secp256k1_num_t *a) { + return BN_is_zero(&a->bn); +} + +int static secp256k1_num_is_odd(const secp256k1_num_t *a) { + return BN_is_odd(&a->bn); +} + +int static secp256k1_num_is_neg(const secp256k1_num_t *a) { + return BN_is_negative(&a->bn); +} + +int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos) { + return BN_is_bit_set(&a->bn, pos); +} + +void static secp256k1_num_inc(secp256k1_num_t *r) { + BN_add_word(&r->bn, 1); +} + +void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen) { + char *str = (char*)malloc(alen+1); + memcpy(str, a, alen); + str[alen] = 0; + BIGNUM *pbn = &r->bn; + BN_hex2bn(&pbn, str); + free(str); +} + +void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a) { + char *str = BN_bn2hex(&a->bn); + int len = strlen(str); + assert(rlen >= len); + for (int i=0; i<rlen-len; i++) + r[i] = '0'; + memcpy(r+rlen-len, str, len); + OPENSSL_free(str); +} + +void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits) { + BN_copy(&rl->bn, &a->bn); + BN_rshift(&rh->bn, &a->bn, bits); + BN_mask_bits(&rl->bn, bits); +} + +void static secp256k1_num_negate(secp256k1_num_t *r) { + BN_set_negative(&r->bn, !BN_is_negative(&r->bn)); +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/impl/util.h b/crypto/secp256k1/secp256k1/src/impl/util.h new file mode 100644 index 000000000..a59a00cac --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/impl/util.h @@ -0,0 +1,45 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_UTIL_IMPL_H_ +#define _SECP256K1_UTIL_IMPL_H_ + +#include <stdint.h> +#include <string.h> + +#include "../util.h" + +static inline uint32_t secp256k1_rand32(void) { + static uint32_t Rz = 11, Rw = 11; + Rz = 36969 * (Rz & 0xFFFF) + (Rz >> 16); + Rw = 18000 * (Rw & 0xFFFF) + (Rw >> 16); + return (Rw << 16) + (Rw >> 16) + Rz; +} + +static void secp256k1_rand256(unsigned char *b32) { + for (int i=0; i<8; i++) { + uint32_t r = secp256k1_rand32(); + b32[i*4 + 0] = (r >> 0) & 0xFF; + b32[i*4 + 1] = (r >> 8) & 0xFF; + b32[i*4 + 2] = (r >> 16) & 0xFF; + b32[i*4 + 3] = (r >> 24) & 0xFF; + } +} + +static void secp256k1_rand256_test(unsigned char *b32) { + int bits=0; + memset(b32, 0, 32); + while (bits < 256) { + uint32_t ent = secp256k1_rand32(); + int now = 1 + ((ent % 64)*((ent >> 6) % 32)+16)/31; + uint32_t val = 1 & (ent >> 11); + while (now > 0 && bits < 256) { + b32[bits / 8] |= val << (bits % 8); + now--; + bits++; + } + } +} + +#endif diff --git a/crypto/secp256k1/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java b/crypto/secp256k1/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java new file mode 100644 index 000000000..90a498eaa --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java @@ -0,0 +1,60 @@ +package org.bitcoin; + +import java.nio.ByteBuffer; +import java.nio.ByteOrder; + +import com.google.common.base.Preconditions; + + +/** + * This class holds native methods to handle ECDSA verification. + * You can find an example library that can be used for this at + * https://github.com/sipa/secp256k1 + */ +public class NativeSecp256k1 { + public static final boolean enabled; + static { + boolean isEnabled = true; + try { + System.loadLibrary("javasecp256k1"); + } catch (UnsatisfiedLinkError e) { + isEnabled = false; + } + enabled = isEnabled; + } + + private static ThreadLocal<ByteBuffer> nativeECDSABuffer = new ThreadLocal<ByteBuffer>(); + /** + * Verifies the given secp256k1 signature in native code. + * Calling when enabled == false is undefined (probably library not loaded) + * + * @param data The data which was signed, must be exactly 32 bytes + * @param signature The signature + * @param pub The public key which did the signing + */ + public static boolean verify(byte[] data, byte[] signature, byte[] pub) { + Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520); + + ByteBuffer byteBuff = nativeECDSABuffer.get(); + if (byteBuff == null) { + byteBuff = ByteBuffer.allocateDirect(32 + 8 + 520 + 520); + byteBuff.order(ByteOrder.nativeOrder()); + nativeECDSABuffer.set(byteBuff); + } + byteBuff.rewind(); + byteBuff.put(data); + byteBuff.putInt(signature.length); + byteBuff.putInt(pub.length); + byteBuff.put(signature); + byteBuff.put(pub); + return secp256k1_ecdsa_verify(byteBuff) == 1; + } + + /** + * @param byteBuff signature format is byte[32] data, + * native-endian int signatureLength, native-endian int pubkeyLength, + * byte[signatureLength] signature, byte[pubkeyLength] pub + * @returns 1 for valid signature, anything else for invalid + */ + private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff); +} diff --git a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c b/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c new file mode 100644 index 000000000..ed65cccf6 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c @@ -0,0 +1,23 @@ +#include "org_bitcoin_NativeSecp256k1.h" +#include "include/secp256k1.h" + +JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify + (JNIEnv* env, jclass classObject, jobject byteBufferObject) +{ + unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); + int sigLen = *((int*)(data + 32)); + int pubLen = *((int*)(data + 32 + 4)); + + return secp256k1_ecdsa_verify(data, 32, data+32+8, sigLen, data+32+8+sigLen, pubLen); +} + +static void __javasecp256k1_attach(void) __attribute__((constructor)); +static void __javasecp256k1_detach(void) __attribute__((destructor)); + +static void __javasecp256k1_attach(void) { + secp256k1_start(); +} + +static void __javasecp256k1_detach(void) { + secp256k1_stop(); +} diff --git a/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h b/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h new file mode 100644 index 000000000..d7fb004fa --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h @@ -0,0 +1,21 @@ +/* DO NOT EDIT THIS FILE - it is machine generated */ +#include <jni.h> +/* Header for class org_bitcoin_NativeSecp256k1 */ + +#ifndef _Included_org_bitcoin_NativeSecp256k1 +#define _Included_org_bitcoin_NativeSecp256k1 +#ifdef __cplusplus +extern "C" { +#endif +/* + * Class: org_bitcoin_NativeSecp256k1 + * Method: secp256k1_ecdsa_verify + * Signature: (Ljava/nio/ByteBuffer;)I + */ +JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify + (JNIEnv *, jclass, jobject); + +#ifdef __cplusplus +} +#endif +#endif diff --git a/crypto/secp256k1/secp256k1/src/num.h b/crypto/secp256k1/secp256k1/src/num.h new file mode 100644 index 000000000..b2e7462bc --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/num.h @@ -0,0 +1,93 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_NUM_ +#define _SECP256K1_NUM_ + +#if defined(USE_NUM_GMP) +#include "num_gmp.h" +#elif defined(USE_NUM_OPENSSL) +#include "num_openssl.h" +#else +#error "Please select num implementation" +#endif + +/** Initialize a number. */ +void static secp256k1_num_init(secp256k1_num_t *r); + +/** Free a number. */ +void static secp256k1_num_free(secp256k1_num_t *r); + +/** Copy a number. */ +void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a); + +/** Convert a number's absolute value to a binary big-endian string. + * There must be enough place. */ +void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a); + +/** Set a number to the value of a binary big-endian string. */ +void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen); + +/** Set a number equal to a (signed) integer. */ +void static secp256k1_num_set_int(secp256k1_num_t *r, int a); + +/** Compute a modular inverse. The input must be less than the modulus. */ +void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m); + +/** Multiply two numbers modulo another. */ +void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m); + +/** Compare the absolute value of two numbers. */ +int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b); + +/** Add two (signed) numbers. */ +void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); + +/** Subtract two (signed) numbers. */ +void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); + +/** Multiply two (signed) numbers. */ +void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); + +/** Divide two (signed) numbers. */ +void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); + +/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1, + even if r was negative. */ +void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m); + +/** Calculate the number of bits in (the absolute value of) a number. */ +int static secp256k1_num_bits(const secp256k1_num_t *a); + +/** Right-shift the passed number by bits bits, and return those bits. */ +int static secp256k1_num_shift(secp256k1_num_t *r, int bits); + +/** Check whether a number is zero. */ +int static secp256k1_num_is_zero(const secp256k1_num_t *a); + +/** Check whether a number is odd. */ +int static secp256k1_num_is_odd(const secp256k1_num_t *a); + +/** Check whether a number is strictly negative. */ +int static secp256k1_num_is_neg(const secp256k1_num_t *a); + +/** Check whether a particular bit is set in a number. */ +int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos); + +/** Increase a number by 1. */ +void static secp256k1_num_inc(secp256k1_num_t *r); + +/** Set a number equal to the value of a hex string (unsigned). */ +void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen); + +/** Convert (the absolute value of) a number to a hexadecimal string. */ +void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a); + +/** Split a number into a low and high part. */ +void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits); + +/** Change a number's sign. */ +void static secp256k1_num_negate(secp256k1_num_t *r); + +#endif diff --git a/crypto/secp256k1/secp256k1/src/num_gmp.h b/crypto/secp256k1/secp256k1/src/num_gmp.h new file mode 100644 index 000000000..960df8605 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/num_gmp.h @@ -0,0 +1,18 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_NUM_REPR_ +#define _SECP256K1_NUM_REPR_ + +#include <gmp.h> + +#define NUM_LIMBS ((256+GMP_NUMB_BITS-1)/GMP_NUMB_BITS) + +typedef struct { + mp_limb_t data[2*NUM_LIMBS]; + int neg; + int limbs; +} secp256k1_num_t; + +#endif diff --git a/crypto/secp256k1/secp256k1/src/num_openssl.h b/crypto/secp256k1/secp256k1/src/num_openssl.h new file mode 100644 index 000000000..7d03757f6 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/num_openssl.h @@ -0,0 +1,14 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_NUM_REPR_ +#define _SECP256K1_NUM_REPR_ + +#include <openssl/bn.h> + +typedef struct { + BIGNUM bn; +} secp256k1_num_t; + +#endif diff --git a/crypto/secp256k1/secp256k1/src/secp256k1.c b/crypto/secp256k1/secp256k1/src/secp256k1.c new file mode 100644 index 000000000..ed8bf2e95 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/secp256k1.c @@ -0,0 +1,269 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include "impl/num.h" +#include "impl/field.h" +#include "impl/group.h" +#include "impl/ecmult.h" +#include "impl/ecdsa.h" + +void secp256k1_start(void) { + secp256k1_fe_start(); + secp256k1_ge_start(); + secp256k1_ecmult_start(); +} + +void secp256k1_stop(void) { + secp256k1_ecmult_stop(); + secp256k1_ge_stop(); + secp256k1_fe_stop(); +} + +int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, const unsigned char *sig, int siglen, const unsigned char *pubkey, int pubkeylen) { + int ret = -3; + secp256k1_num_t m; + secp256k1_num_init(&m); + secp256k1_ecdsa_sig_t s; + secp256k1_ecdsa_sig_init(&s); + secp256k1_ge_t q; + secp256k1_num_set_bin(&m, msg, msglen); + + if (!secp256k1_ecdsa_pubkey_parse(&q, pubkey, pubkeylen)) { + ret = -1; + goto end; + } + if (!secp256k1_ecdsa_sig_parse(&s, sig, siglen)) { + ret = -2; + goto end; + } + if (!secp256k1_ecdsa_sig_verify(&s, &q, &m)) { + ret = 0; + goto end; + } + ret = 1; +end: + secp256k1_ecdsa_sig_free(&s); + secp256k1_num_free(&m); + return ret; +} + +int secp256k1_ecdsa_sign(const unsigned char *message, int messagelen, unsigned char *signature, int *signaturelen, const unsigned char *seckey, const unsigned char *nonce) { + secp256k1_num_t sec, non, msg; + secp256k1_num_init(&sec); + secp256k1_num_init(&non); + secp256k1_num_init(&msg); + secp256k1_num_set_bin(&sec, seckey, 32); + secp256k1_num_set_bin(&non, nonce, 32); + secp256k1_num_set_bin(&msg, message, messagelen); + secp256k1_ecdsa_sig_t sig; + secp256k1_ecdsa_sig_init(&sig); + int ret = secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, NULL); + if (ret) { + secp256k1_ecdsa_sig_serialize(signature, signaturelen, &sig); + } + secp256k1_ecdsa_sig_free(&sig); + secp256k1_num_free(&msg); + secp256k1_num_free(&non); + secp256k1_num_free(&sec); + return ret; +} + +int secp256k1_ecdsa_sign_compact(const unsigned char *message, int messagelen, unsigned char *sig64, const unsigned char *seckey, const unsigned char *nonce, int *recid) { + secp256k1_num_t sec, non, msg; + secp256k1_num_init(&sec); + secp256k1_num_init(&non); + secp256k1_num_init(&msg); + secp256k1_num_set_bin(&sec, seckey, 32); + secp256k1_num_set_bin(&non, nonce, 32); + secp256k1_num_set_bin(&msg, message, messagelen); + secp256k1_ecdsa_sig_t sig; + secp256k1_ecdsa_sig_init(&sig); + int ret = secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, recid); + if (ret) { + secp256k1_num_get_bin(sig64, 32, &sig.r); + secp256k1_num_get_bin(sig64 + 32, 32, &sig.s); + } + secp256k1_ecdsa_sig_free(&sig); + secp256k1_num_free(&msg); + secp256k1_num_free(&non); + secp256k1_num_free(&sec); + return ret; +} + +int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, const unsigned char *sig64, unsigned char *pubkey, int *pubkeylen, int compressed, int recid) { + int ret = 0; + secp256k1_num_t m; + secp256k1_num_init(&m); + secp256k1_ecdsa_sig_t sig; + secp256k1_ecdsa_sig_init(&sig); + secp256k1_num_set_bin(&sig.r, sig64, 32); + secp256k1_num_set_bin(&sig.s, sig64 + 32, 32); + secp256k1_num_set_bin(&m, msg, msglen); + + secp256k1_ge_t q; + if (secp256k1_ecdsa_sig_recover(&sig, &q, &m, recid)) { + secp256k1_ecdsa_pubkey_serialize(&q, pubkey, pubkeylen, compressed); + ret = 1; + } + secp256k1_ecdsa_sig_free(&sig); + secp256k1_num_free(&m); + return ret; +} + +int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey) { + secp256k1_num_t sec; + secp256k1_num_init(&sec); + secp256k1_num_set_bin(&sec, seckey, 32); + int ret = !secp256k1_num_is_zero(&sec) && + (secp256k1_num_cmp(&sec, &secp256k1_ge_consts->order) < 0); + secp256k1_num_free(&sec); + return ret; +} + +int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen) { + secp256k1_ge_t q; + return secp256k1_ecdsa_pubkey_parse(&q, pubkey, pubkeylen); +} + +int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed) { + secp256k1_num_t sec; + secp256k1_num_init(&sec); + secp256k1_num_set_bin(&sec, seckey, 32); + secp256k1_gej_t pj; + secp256k1_ecmult_gen(&pj, &sec); + secp256k1_ge_t p; + secp256k1_ge_set_gej(&p, &pj); + secp256k1_ecdsa_pubkey_serialize(&p, pubkey, pubkeylen, compressed); + return 1; +} + +int secp256k1_ecdsa_pubkey_decompress(unsigned char *pubkey, int *pubkeylen) { + secp256k1_ge_t p; + if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, *pubkeylen)) + return 0; + secp256k1_ecdsa_pubkey_serialize(&p, pubkey, pubkeylen, 0); + return 1; +} + +int secp256k1_ecdsa_privkey_tweak_add(unsigned char *seckey, const unsigned char *tweak) { + int ret = 1; + secp256k1_num_t term; + secp256k1_num_init(&term); + secp256k1_num_set_bin(&term, tweak, 32); + if (secp256k1_num_cmp(&term, &secp256k1_ge_consts->order) >= 0) + ret = 0; + secp256k1_num_t sec; + secp256k1_num_init(&sec); + if (ret) { + secp256k1_num_set_bin(&sec, seckey, 32); + secp256k1_num_add(&sec, &sec, &term); + secp256k1_num_mod(&sec, &secp256k1_ge_consts->order); + if (secp256k1_num_is_zero(&sec)) + ret = 0; + } + if (ret) + secp256k1_num_get_bin(seckey, 32, &sec); + secp256k1_num_free(&sec); + secp256k1_num_free(&term); + return ret; +} + +int secp256k1_ecdsa_pubkey_tweak_add(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) { + int ret = 1; + secp256k1_num_t term; + secp256k1_num_init(&term); + secp256k1_num_set_bin(&term, tweak, 32); + if (secp256k1_num_cmp(&term, &secp256k1_ge_consts->order) >= 0) + ret = 0; + secp256k1_ge_t p; + if (ret) { + if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, pubkeylen)) + ret = 0; + } + if (ret) { + secp256k1_gej_t pt; + secp256k1_ecmult_gen(&pt, &term); + secp256k1_gej_add_ge(&pt, &pt, &p); + if (secp256k1_gej_is_infinity(&pt)) + ret = 0; + secp256k1_ge_set_gej(&p, &pt); + int oldlen = pubkeylen; + secp256k1_ecdsa_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33); + assert(pubkeylen == oldlen); + } + secp256k1_num_free(&term); + return ret; +} + +int secp256k1_ecdsa_privkey_tweak_mul(unsigned char *seckey, const unsigned char *tweak) { + int ret = 1; + secp256k1_num_t factor; + secp256k1_num_init(&factor); + secp256k1_num_set_bin(&factor, tweak, 32); + if (secp256k1_num_is_zero(&factor)) + ret = 0; + if (secp256k1_num_cmp(&factor, &secp256k1_ge_consts->order) >= 0) + ret = 0; + secp256k1_num_t sec; + secp256k1_num_init(&sec); + if (ret) { + secp256k1_num_set_bin(&sec, seckey, 32); + secp256k1_num_mod_mul(&sec, &sec, &factor, &secp256k1_ge_consts->order); + } + if (ret) + secp256k1_num_get_bin(seckey, 32, &sec); + secp256k1_num_free(&sec); + secp256k1_num_free(&factor); + return ret; +} + +int secp256k1_ecdsa_pubkey_tweak_mul(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) { + int ret = 1; + secp256k1_num_t factor; + secp256k1_num_init(&factor); + secp256k1_num_set_bin(&factor, tweak, 32); + if (secp256k1_num_is_zero(&factor)) + ret = 0; + if (secp256k1_num_cmp(&factor, &secp256k1_ge_consts->order) >= 0) + ret = 0; + secp256k1_ge_t p; + if (ret) { + if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, pubkeylen)) + ret = 0; + } + if (ret) { + secp256k1_num_t zero; + secp256k1_num_init(&zero); + secp256k1_num_set_int(&zero, 0); + secp256k1_gej_t pt; + secp256k1_gej_set_ge(&pt, &p); + secp256k1_ecmult(&pt, &pt, &factor, &zero); + secp256k1_num_free(&zero); + secp256k1_ge_set_gej(&p, &pt); + int oldlen = pubkeylen; + secp256k1_ecdsa_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33); + assert(pubkeylen == oldlen); + } + secp256k1_num_free(&factor); + return ret; +} + +int secp256k1_ecdsa_privkey_export(const unsigned char *seckey, unsigned char *privkey, int *privkeylen, int compressed) { + secp256k1_num_t key; + secp256k1_num_init(&key); + secp256k1_num_set_bin(&key, seckey, 32); + int ret = secp256k1_ecdsa_privkey_serialize(privkey, privkeylen, &key, compressed); + secp256k1_num_free(&key); + return ret; +} + +int secp256k1_ecdsa_privkey_import(unsigned char *seckey, const unsigned char *privkey, int privkeylen) { + secp256k1_num_t key; + secp256k1_num_init(&key); + int ret = secp256k1_ecdsa_privkey_parse(&key, privkey, privkeylen); + if (ret) + secp256k1_num_get_bin(seckey, 32, &key); + secp256k1_num_free(&key); + return ret; +} diff --git a/crypto/secp256k1/secp256k1/src/tests.c b/crypto/secp256k1/secp256k1/src/tests.c new file mode 100644 index 000000000..af7bbaad0 --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/tests.c @@ -0,0 +1,465 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include <assert.h> + +#include "impl/num.h" +#include "impl/field.h" +#include "impl/group.h" +#include "impl/ecmult.h" +#include "impl/ecdsa.h" +#include "impl/util.h" + +#ifdef ENABLE_OPENSSL_TESTS +#include "openssl/bn.h" +#include "openssl/ec.h" +#include "openssl/ecdsa.h" +#include "openssl/obj_mac.h" +#endif + +static int count = 100; + +/***** NUM TESTS *****/ + +void random_num_negate(secp256k1_num_t *num) { + if (secp256k1_rand32() & 1) + secp256k1_num_negate(num); +} + +void random_num_order_test(secp256k1_num_t *num) { + do { + unsigned char b32[32]; + secp256k1_rand256_test(b32); + secp256k1_num_set_bin(num, b32, 32); + if (secp256k1_num_is_zero(num)) + continue; + if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0) + continue; + break; + } while(1); +} + +void random_num_order(secp256k1_num_t *num) { + do { + unsigned char b32[32]; + secp256k1_rand256(b32); + secp256k1_num_set_bin(num, b32, 32); + if (secp256k1_num_is_zero(num)) + continue; + if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0) + continue; + break; + } while(1); +} + +void test_num_copy_inc_cmp() { + secp256k1_num_t n1,n2; + secp256k1_num_init(&n1); + secp256k1_num_init(&n2); + random_num_order(&n1); + secp256k1_num_copy(&n2, &n1); + assert(secp256k1_num_cmp(&n1, &n2) == 0); + assert(secp256k1_num_cmp(&n2, &n1) == 0); + secp256k1_num_inc(&n2); + assert(secp256k1_num_cmp(&n1, &n2) != 0); + assert(secp256k1_num_cmp(&n2, &n1) != 0); + secp256k1_num_free(&n1); + secp256k1_num_free(&n2); +} + + +void test_num_get_set_hex() { + secp256k1_num_t n1,n2; + secp256k1_num_init(&n1); + secp256k1_num_init(&n2); + random_num_order_test(&n1); + char c[64]; + secp256k1_num_get_hex(c, 64, &n1); + secp256k1_num_set_hex(&n2, c, 64); + assert(secp256k1_num_cmp(&n1, &n2) == 0); + for (int i=0; i<64; i++) { + // check whether the lower 4 bits correspond to the last hex character + int low1 = secp256k1_num_shift(&n1, 4); + int lowh = c[63]; + int low2 = (lowh>>6)*9+(lowh-'0')&15; + assert(low1 == low2); + // shift bits off the hex representation, and compare + memmove(c+1, c, 63); + c[0] = '0'; + secp256k1_num_set_hex(&n2, c, 64); + assert(secp256k1_num_cmp(&n1, &n2) == 0); + } + secp256k1_num_free(&n2); + secp256k1_num_free(&n1); +} + +void test_num_get_set_bin() { + secp256k1_num_t n1,n2; + secp256k1_num_init(&n1); + secp256k1_num_init(&n2); + random_num_order_test(&n1); + unsigned char c[32]; + secp256k1_num_get_bin(c, 32, &n1); + secp256k1_num_set_bin(&n2, c, 32); + assert(secp256k1_num_cmp(&n1, &n2) == 0); + for (int i=0; i<32; i++) { + // check whether the lower 8 bits correspond to the last byte + int low1 = secp256k1_num_shift(&n1, 8); + int low2 = c[31]; + assert(low1 == low2); + // shift bits off the byte representation, and compare + memmove(c+1, c, 31); + c[0] = 0; + secp256k1_num_set_bin(&n2, c, 32); + assert(secp256k1_num_cmp(&n1, &n2) == 0); + } + secp256k1_num_free(&n2); + secp256k1_num_free(&n1); +} + +void run_num_int() { + secp256k1_num_t n1; + secp256k1_num_init(&n1); + for (int i=-255; i<256; i++) { + unsigned char c1[3] = {}; + c1[2] = abs(i); + unsigned char c2[3] = {0x11,0x22,0x33}; + secp256k1_num_set_int(&n1, i); + secp256k1_num_get_bin(c2, 3, &n1); + assert(memcmp(c1, c2, 3) == 0); + } + secp256k1_num_free(&n1); +} + +void test_num_negate() { + secp256k1_num_t n1; + secp256k1_num_t n2; + secp256k1_num_init(&n1); + secp256k1_num_init(&n2); + random_num_order_test(&n1); // n1 = R + random_num_negate(&n1); + secp256k1_num_copy(&n2, &n1); // n2 = R + secp256k1_num_sub(&n1, &n2, &n1); // n1 = n2-n1 = 0 + assert(secp256k1_num_is_zero(&n1)); + secp256k1_num_copy(&n1, &n2); // n1 = R + secp256k1_num_negate(&n1); // n1 = -R + assert(!secp256k1_num_is_zero(&n1)); + secp256k1_num_add(&n1, &n2, &n1); // n1 = n2+n1 = 0 + assert(secp256k1_num_is_zero(&n1)); + secp256k1_num_copy(&n1, &n2); // n1 = R + secp256k1_num_negate(&n1); // n1 = -R + assert(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2)); + secp256k1_num_negate(&n1); // n1 = R + assert(secp256k1_num_cmp(&n1, &n2) == 0); + assert(secp256k1_num_is_neg(&n1) == secp256k1_num_is_neg(&n2)); + secp256k1_num_free(&n2); + secp256k1_num_free(&n1); +} + +void test_num_add_sub() { + secp256k1_num_t n1; + secp256k1_num_t n2; + secp256k1_num_init(&n1); + secp256k1_num_init(&n2); + random_num_order_test(&n1); // n1 = R1 + random_num_negate(&n1); + random_num_order_test(&n2); // n2 = R2 + random_num_negate(&n2); + secp256k1_num_t n1p2, n2p1, n1m2, n2m1; + secp256k1_num_init(&n1p2); + secp256k1_num_init(&n2p1); + secp256k1_num_init(&n1m2); + secp256k1_num_init(&n2m1); + secp256k1_num_add(&n1p2, &n1, &n2); // n1p2 = R1 + R2 + secp256k1_num_add(&n2p1, &n2, &n1); // n2p1 = R2 + R1 + secp256k1_num_sub(&n1m2, &n1, &n2); // n1m2 = R1 - R2 + secp256k1_num_sub(&n2m1, &n2, &n1); // n2m1 = R2 - R1 + assert(secp256k1_num_cmp(&n1p2, &n2p1) == 0); + assert(secp256k1_num_cmp(&n1p2, &n1m2) != 0); + secp256k1_num_negate(&n2m1); // n2m1 = -R2 + R1 + assert(secp256k1_num_cmp(&n2m1, &n1m2) == 0); + assert(secp256k1_num_cmp(&n2m1, &n1) != 0); + secp256k1_num_add(&n2m1, &n2m1, &n2); // n2m1 = -R2 + R1 + R2 = R1 + assert(secp256k1_num_cmp(&n2m1, &n1) == 0); + assert(secp256k1_num_cmp(&n2p1, &n1) != 0); + secp256k1_num_sub(&n2p1, &n2p1, &n2); // n2p1 = R2 + R1 - R2 = R1 + assert(secp256k1_num_cmp(&n2p1, &n1) == 0); + secp256k1_num_free(&n2m1); + secp256k1_num_free(&n1m2); + secp256k1_num_free(&n2p1); + secp256k1_num_free(&n1p2); + secp256k1_num_free(&n2); + secp256k1_num_free(&n1); +} + +void run_num_smalltests() { + for (int i=0; i<100*count; i++) { + test_num_copy_inc_cmp(); + test_num_get_set_hex(); + test_num_get_set_bin(); + test_num_negate(); + test_num_add_sub(); + } + run_num_int(); +} + +void run_ecmult_chain() { + // random starting point A (on the curve) + secp256k1_fe_t ax; secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64); + secp256k1_fe_t ay; secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64); + secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay); + // two random initial factors xn and gn + secp256k1_num_t xn; + secp256k1_num_init(&xn); + secp256k1_num_set_hex(&xn, "84cc5452f7fde1edb4d38a8ce9b1b84ccef31f146e569be9705d357a42985407", 64); + secp256k1_num_t gn; + secp256k1_num_init(&gn); + secp256k1_num_set_hex(&gn, "a1e58d22553dcd42b23980625d4c57a96e9323d42b3152e5ca2c3990edc7c9de", 64); + // two small multipliers to be applied to xn and gn in every iteration: + secp256k1_num_t xf; + secp256k1_num_init(&xf); + secp256k1_num_set_hex(&xf, "1337", 4); + secp256k1_num_t gf; + secp256k1_num_init(&gf); + secp256k1_num_set_hex(&gf, "7113", 4); + // accumulators with the resulting coefficients to A and G + secp256k1_num_t ae; + secp256k1_num_init(&ae); + secp256k1_num_set_int(&ae, 1); + secp256k1_num_t ge; + secp256k1_num_init(&ge); + secp256k1_num_set_int(&ge, 0); + // the point being computed + secp256k1_gej_t x = a; + const secp256k1_num_t *order = &secp256k1_ge_consts->order; + for (int i=0; i<200*count; i++) { + // in each iteration, compute X = xn*X + gn*G; + secp256k1_ecmult(&x, &x, &xn, &gn); + // also compute ae and ge: the actual accumulated factors for A and G + // if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) + secp256k1_num_mod_mul(&ae, &ae, &xn, order); + secp256k1_num_mod_mul(&ge, &ge, &xn, order); + secp256k1_num_add(&ge, &ge, &gn); + secp256k1_num_mod(&ge, order); + // modify xn and gn + secp256k1_num_mod_mul(&xn, &xn, &xf, order); + secp256k1_num_mod_mul(&gn, &gn, &gf, order); + + // verify + if (i == 19999) { + char res[132]; int resl = 132; + secp256k1_gej_get_hex(res, &resl, &x); + assert(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0); + } + } + // redo the computation, but directly with the resulting ae and ge coefficients: + secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge); + char res[132]; int resl = 132; + char res2[132]; int resl2 = 132; + secp256k1_gej_get_hex(res, &resl, &x); + secp256k1_gej_get_hex(res2, &resl2, &x2); + assert(strcmp(res, res2) == 0); + assert(strlen(res) == 131); + secp256k1_num_free(&xn); + secp256k1_num_free(&gn); + secp256k1_num_free(&xf); + secp256k1_num_free(&gf); + secp256k1_num_free(&ae); + secp256k1_num_free(&ge); +} + +void test_point_times_order(const secp256k1_gej_t *point) { + // either the point is not on the curve, or multiplying it by the order results in O + if (!secp256k1_gej_is_valid(point)) + return; + + const secp256k1_num_t *order = &secp256k1_ge_consts->order; + secp256k1_num_t zero; + secp256k1_num_init(&zero); + secp256k1_num_set_int(&zero, 0); + secp256k1_gej_t res; + secp256k1_ecmult(&res, point, order, order); // calc res = order * point + order * G; + assert(secp256k1_gej_is_infinity(&res)); + secp256k1_num_free(&zero); +} + +void run_point_times_order() { + secp256k1_fe_t x; secp256k1_fe_set_hex(&x, "02", 2); + for (int i=0; i<500; i++) { + secp256k1_ge_t p; secp256k1_ge_set_xo(&p, &x, 1); + secp256k1_gej_t j; secp256k1_gej_set_ge(&j, &p); + test_point_times_order(&j); + secp256k1_fe_sqr(&x, &x); + } + char c[65]; int cl=65; + secp256k1_fe_get_hex(c, &cl, &x); + assert(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0); +} + +void test_wnaf(const secp256k1_num_t *number, int w) { + secp256k1_num_t x, two, t; + secp256k1_num_init(&x); + secp256k1_num_init(&two); + secp256k1_num_init(&t); + secp256k1_num_set_int(&x, 0); + secp256k1_num_set_int(&two, 2); + int wnaf[257]; + int bits = secp256k1_ecmult_wnaf(wnaf, number, w); + int zeroes = -1; + for (int i=bits-1; i>=0; i--) { + secp256k1_num_mul(&x, &x, &two); + int v = wnaf[i]; + if (v) { + assert(zeroes == -1 || zeroes >= w-1); // check that distance between non-zero elements is at least w-1 + zeroes=0; + assert((v & 1) == 1); // check non-zero elements are odd + assert(v <= (1 << (w-1)) - 1); // check range below + assert(v >= -(1 << (w-1)) - 1); // check range above + } else { + assert(zeroes != -1); // check that no unnecessary zero padding exists + zeroes++; + } + secp256k1_num_set_int(&t, v); + secp256k1_num_add(&x, &x, &t); + } + assert(secp256k1_num_cmp(&x, number) == 0); // check that wnaf represents number + secp256k1_num_free(&x); + secp256k1_num_free(&two); + secp256k1_num_free(&t); +} + +void run_wnaf() { + secp256k1_num_t n; + secp256k1_num_init(&n); + for (int i=0; i<count; i++) { + random_num_order(&n); + if (i % 1) + secp256k1_num_negate(&n); + test_wnaf(&n, 4+(i%10)); + } + secp256k1_num_free(&n); +} + +void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *key, const secp256k1_num_t *msg, int *recid) { + secp256k1_num_t nonce; + secp256k1_num_init(&nonce); + do { + random_num_order_test(&nonce); + } while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid)); + secp256k1_num_free(&nonce); +} + +void test_ecdsa_sign_verify() { + const secp256k1_ge_consts_t *c = secp256k1_ge_consts; + secp256k1_num_t msg, key; + secp256k1_num_init(&msg); + random_num_order_test(&msg); + secp256k1_num_init(&key); + random_num_order_test(&key); + secp256k1_gej_t pubj; secp256k1_ecmult_gen(&pubj, &key); + secp256k1_ge_t pub; secp256k1_ge_set_gej(&pub, &pubj); + secp256k1_ecdsa_sig_t sig; + secp256k1_ecdsa_sig_init(&sig); + random_sign(&sig, &key, &msg, NULL); + assert(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); + secp256k1_num_inc(&msg); + assert(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); + secp256k1_ecdsa_sig_free(&sig); + secp256k1_num_free(&msg); + secp256k1_num_free(&key); +} + +void run_ecdsa_sign_verify() { + for (int i=0; i<10*count; i++) { + test_ecdsa_sign_verify(); + } +} + +#ifdef ENABLE_OPENSSL_TESTS +EC_KEY *get_openssl_key(const secp256k1_num_t *key) { + unsigned char privkey[300]; + int privkeylen; + int compr = secp256k1_rand32() & 1; + const unsigned char* pbegin = privkey; + EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1); + assert(secp256k1_ecdsa_privkey_serialize(privkey, &privkeylen, key, compr)); + assert(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen)); + assert(EC_KEY_check_key(ec_key)); + return ec_key; +} + +void test_ecdsa_openssl() { + const secp256k1_ge_consts_t *c = secp256k1_ge_consts; + secp256k1_num_t key, msg; + secp256k1_num_init(&msg); + unsigned char message[32]; + secp256k1_rand256_test(message); + secp256k1_num_set_bin(&msg, message, 32); + secp256k1_num_init(&key); + random_num_order_test(&key); + secp256k1_gej_t qj; + secp256k1_ecmult_gen(&qj, &key); + secp256k1_ge_t q; + secp256k1_ge_set_gej(&q, &qj); + EC_KEY *ec_key = get_openssl_key(&key); + assert(ec_key); + unsigned char signature[80]; + int sigsize = 80; + assert(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key)); + secp256k1_ecdsa_sig_t sig; + secp256k1_ecdsa_sig_init(&sig); + assert(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize)); + assert(secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); + secp256k1_num_inc(&sig.r); + assert(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); + + random_sign(&sig, &key, &msg, NULL); + sigsize = 80; + assert(secp256k1_ecdsa_sig_serialize(signature, &sigsize, &sig)); + assert(ECDSA_verify(0, message, sizeof(message), signature, sigsize, ec_key) == 1); + + secp256k1_ecdsa_sig_free(&sig); + EC_KEY_free(ec_key); + secp256k1_num_free(&key); + secp256k1_num_free(&msg); +} + +void run_ecdsa_openssl() { + for (int i=0; i<10*count; i++) { + test_ecdsa_openssl(); + } +} +#endif + +int main(int argc, char **argv) { + if (argc > 1) + count = strtol(argv[1], NULL, 0)*47; + + printf("test count = %i\n", count); + + // initialize + secp256k1_fe_start(); + secp256k1_ge_start(); + secp256k1_ecmult_start(); + + // num tests + run_num_smalltests(); + + // ecmult tests + run_wnaf(); + run_point_times_order(); + run_ecmult_chain(); + + // ecdsa tests + run_ecdsa_sign_verify(); +#ifdef ENABLE_OPENSSL_TESTS + run_ecdsa_openssl(); +#endif + + // shutdown + secp256k1_ecmult_stop(); + secp256k1_ge_stop(); + secp256k1_fe_stop(); + return 0; +} diff --git a/crypto/secp256k1/secp256k1/src/util.h b/crypto/secp256k1/secp256k1/src/util.h new file mode 100644 index 000000000..357c7e06b --- /dev/null +++ b/crypto/secp256k1/secp256k1/src/util.h @@ -0,0 +1,19 @@ +// Copyright (c) 2013 Pieter Wuille +// Distributed under the MIT/X11 software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#ifndef _SECP256K1_UTIL_H_ +#define _SECP256K1_UTIL_H_ + +/** Generate a pseudorandom 32-bit number. */ +static uint32_t secp256k1_rand32(void); + +/** Generate a pseudorandom 32-byte array. */ +static void secp256k1_rand256(unsigned char *b32); + +/** Generate a pseudorandom 32-byte array with long sequences of zero and one bits. */ +static void secp256k1_rand256_test(unsigned char *b32); + +#include "impl/util.h" + +#endif diff --git a/crypto/sha3/keccakf.go b/crypto/sha3/keccakf.go new file mode 100644 index 000000000..3baf13ba3 --- /dev/null +++ b/crypto/sha3/keccakf.go @@ -0,0 +1,171 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package sha3 + +// This file implements the core Keccak permutation function necessary for computing SHA3. +// This is implemented in a separate file to allow for replacement by an optimized implementation. +// Nothing in this package is exported. +// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/). + +// rc stores the round constants for use in the ι step. +var rc = [...]uint64{ + 0x0000000000000001, + 0x0000000000008082, + 0x800000000000808A, + 0x8000000080008000, + 0x000000000000808B, + 0x0000000080000001, + 0x8000000080008081, + 0x8000000000008009, + 0x000000000000008A, + 0x0000000000000088, + 0x0000000080008009, + 0x000000008000000A, + 0x000000008000808B, + 0x800000000000008B, + 0x8000000000008089, + 0x8000000000008003, + 0x8000000000008002, + 0x8000000000000080, + 0x000000000000800A, + 0x800000008000000A, + 0x8000000080008081, + 0x8000000000008080, + 0x0000000080000001, + 0x8000000080008008, +} + +// ro_xx represent the rotation offsets for use in the χ step. +// Defining them as const instead of in an array allows the compiler to insert constant shifts. +const ( + ro_00 = 0 + ro_01 = 36 + ro_02 = 3 + ro_03 = 41 + ro_04 = 18 + ro_05 = 1 + ro_06 = 44 + ro_07 = 10 + ro_08 = 45 + ro_09 = 2 + ro_10 = 62 + ro_11 = 6 + ro_12 = 43 + ro_13 = 15 + ro_14 = 61 + ro_15 = 28 + ro_16 = 55 + ro_17 = 25 + ro_18 = 21 + ro_19 = 56 + ro_20 = 27 + ro_21 = 20 + ro_22 = 39 + ro_23 = 8 + ro_24 = 14 +) + +// keccakF computes the complete Keccak-f function consisting of 24 rounds with a different +// constant (rc) in each round. This implementation fully unrolls the round function to avoid +// inner loops, as well as pre-calculating shift offsets. +func (d *digest) keccakF() { + for _, roundConstant := range rc { + // θ step + d.c[0] = d.a[0] ^ d.a[5] ^ d.a[10] ^ d.a[15] ^ d.a[20] + d.c[1] = d.a[1] ^ d.a[6] ^ d.a[11] ^ d.a[16] ^ d.a[21] + d.c[2] = d.a[2] ^ d.a[7] ^ d.a[12] ^ d.a[17] ^ d.a[22] + d.c[3] = d.a[3] ^ d.a[8] ^ d.a[13] ^ d.a[18] ^ d.a[23] + d.c[4] = d.a[4] ^ d.a[9] ^ d.a[14] ^ d.a[19] ^ d.a[24] + + d.d[0] = d.c[4] ^ (d.c[1]<<1 ^ d.c[1]>>63) + d.d[1] = d.c[0] ^ (d.c[2]<<1 ^ d.c[2]>>63) + d.d[2] = d.c[1] ^ (d.c[3]<<1 ^ d.c[3]>>63) + d.d[3] = d.c[2] ^ (d.c[4]<<1 ^ d.c[4]>>63) + d.d[4] = d.c[3] ^ (d.c[0]<<1 ^ d.c[0]>>63) + + d.a[0] ^= d.d[0] + d.a[1] ^= d.d[1] + d.a[2] ^= d.d[2] + d.a[3] ^= d.d[3] + d.a[4] ^= d.d[4] + d.a[5] ^= d.d[0] + d.a[6] ^= d.d[1] + d.a[7] ^= d.d[2] + d.a[8] ^= d.d[3] + d.a[9] ^= d.d[4] + d.a[10] ^= d.d[0] + d.a[11] ^= d.d[1] + d.a[12] ^= d.d[2] + d.a[13] ^= d.d[3] + d.a[14] ^= d.d[4] + d.a[15] ^= d.d[0] + d.a[16] ^= d.d[1] + d.a[17] ^= d.d[2] + d.a[18] ^= d.d[3] + d.a[19] ^= d.d[4] + d.a[20] ^= d.d[0] + d.a[21] ^= d.d[1] + d.a[22] ^= d.d[2] + d.a[23] ^= d.d[3] + d.a[24] ^= d.d[4] + + // ρ and π steps + d.b[0] = d.a[0] + d.b[1] = d.a[6]<<ro_06 ^ d.a[6]>>(64-ro_06) + d.b[2] = d.a[12]<<ro_12 ^ d.a[12]>>(64-ro_12) + d.b[3] = d.a[18]<<ro_18 ^ d.a[18]>>(64-ro_18) + d.b[4] = d.a[24]<<ro_24 ^ d.a[24]>>(64-ro_24) + d.b[5] = d.a[3]<<ro_15 ^ d.a[3]>>(64-ro_15) + d.b[6] = d.a[9]<<ro_21 ^ d.a[9]>>(64-ro_21) + d.b[7] = d.a[10]<<ro_02 ^ d.a[10]>>(64-ro_02) + d.b[8] = d.a[16]<<ro_08 ^ d.a[16]>>(64-ro_08) + d.b[9] = d.a[22]<<ro_14 ^ d.a[22]>>(64-ro_14) + d.b[10] = d.a[1]<<ro_05 ^ d.a[1]>>(64-ro_05) + d.b[11] = d.a[7]<<ro_11 ^ d.a[7]>>(64-ro_11) + d.b[12] = d.a[13]<<ro_17 ^ d.a[13]>>(64-ro_17) + d.b[13] = d.a[19]<<ro_23 ^ d.a[19]>>(64-ro_23) + d.b[14] = d.a[20]<<ro_04 ^ d.a[20]>>(64-ro_04) + d.b[15] = d.a[4]<<ro_20 ^ d.a[4]>>(64-ro_20) + d.b[16] = d.a[5]<<ro_01 ^ d.a[5]>>(64-ro_01) + d.b[17] = d.a[11]<<ro_07 ^ d.a[11]>>(64-ro_07) + d.b[18] = d.a[17]<<ro_13 ^ d.a[17]>>(64-ro_13) + d.b[19] = d.a[23]<<ro_19 ^ d.a[23]>>(64-ro_19) + d.b[20] = d.a[2]<<ro_10 ^ d.a[2]>>(64-ro_10) + d.b[21] = d.a[8]<<ro_16 ^ d.a[8]>>(64-ro_16) + d.b[22] = d.a[14]<<ro_22 ^ d.a[14]>>(64-ro_22) + d.b[23] = d.a[15]<<ro_03 ^ d.a[15]>>(64-ro_03) + d.b[24] = d.a[21]<<ro_09 ^ d.a[21]>>(64-ro_09) + + // χ step + d.a[0] = d.b[0] ^ (^d.b[1] & d.b[2]) + d.a[1] = d.b[1] ^ (^d.b[2] & d.b[3]) + d.a[2] = d.b[2] ^ (^d.b[3] & d.b[4]) + d.a[3] = d.b[3] ^ (^d.b[4] & d.b[0]) + d.a[4] = d.b[4] ^ (^d.b[0] & d.b[1]) + d.a[5] = d.b[5] ^ (^d.b[6] & d.b[7]) + d.a[6] = d.b[6] ^ (^d.b[7] & d.b[8]) + d.a[7] = d.b[7] ^ (^d.b[8] & d.b[9]) + d.a[8] = d.b[8] ^ (^d.b[9] & d.b[5]) + d.a[9] = d.b[9] ^ (^d.b[5] & d.b[6]) + d.a[10] = d.b[10] ^ (^d.b[11] & d.b[12]) + d.a[11] = d.b[11] ^ (^d.b[12] & d.b[13]) + d.a[12] = d.b[12] ^ (^d.b[13] & d.b[14]) + d.a[13] = d.b[13] ^ (^d.b[14] & d.b[10]) + d.a[14] = d.b[14] ^ (^d.b[10] & d.b[11]) + d.a[15] = d.b[15] ^ (^d.b[16] & d.b[17]) + d.a[16] = d.b[16] ^ (^d.b[17] & d.b[18]) + d.a[17] = d.b[17] ^ (^d.b[18] & d.b[19]) + d.a[18] = d.b[18] ^ (^d.b[19] & d.b[15]) + d.a[19] = d.b[19] ^ (^d.b[15] & d.b[16]) + d.a[20] = d.b[20] ^ (^d.b[21] & d.b[22]) + d.a[21] = d.b[21] ^ (^d.b[22] & d.b[23]) + d.a[22] = d.b[22] ^ (^d.b[23] & d.b[24]) + d.a[23] = d.b[23] ^ (^d.b[24] & d.b[20]) + d.a[24] = d.b[24] ^ (^d.b[20] & d.b[21]) + + // ι step + d.a[0] ^= roundConstant + } +} diff --git a/crypto/sha3/sha3.go b/crypto/sha3/sha3.go new file mode 100644 index 000000000..22df0ef11 --- /dev/null +++ b/crypto/sha3/sha3.go @@ -0,0 +1,216 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package sha3 implements the SHA3 hash algorithm (formerly called Keccak) chosen by NIST in 2012. +// This file provides a SHA3 implementation which implements the standard hash.Hash interface. +// Writing input data, including padding, and reading output data are computed in this file. +// Note that the current implementation can compute the hash of an integral number of bytes only. +// This is a consequence of the hash interface in which a buffer of bytes is passed in. +// The internals of the Keccak-f function are computed in keccakf.go. +// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/). +package sha3 + +import ( + "encoding/binary" + "hash" +) + +// laneSize is the size in bytes of each "lane" of the internal state of SHA3 (5 * 5 * 8). +// Note that changing this size would requires using a type other than uint64 to store each lane. +const laneSize = 8 + +// sliceSize represents the dimensions of the internal state, a square matrix of +// sliceSize ** 2 lanes. This is the size of both the "rows" and "columns" dimensions in the +// terminology of the SHA3 specification. +const sliceSize = 5 + +// numLanes represents the total number of lanes in the state. +const numLanes = sliceSize * sliceSize + +// stateSize is the size in bytes of the internal state of SHA3 (5 * 5 * WSize). +const stateSize = laneSize * numLanes + +// digest represents the partial evaluation of a checksum. +// Note that capacity, and not outputSize, is the critical security parameter, as SHA3 can output +// an arbitrary number of bytes for any given capacity. The Keccak proposal recommends that +// capacity = 2*outputSize to ensure that finding a collision of size outputSize requires +// O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the +// capacity/outputSize ratio to allow for more output with lower cryptographic security. +type digest struct { + a [numLanes]uint64 // main state of the hash + b [numLanes]uint64 // intermediate states + c [sliceSize]uint64 // intermediate states + d [sliceSize]uint64 // intermediate states + outputSize int // desired output size in bytes + capacity int // number of bytes to leave untouched during squeeze/absorb + absorbed int // number of bytes absorbed thus far +} + +// minInt returns the lesser of two integer arguments, to simplify the absorption routine. +func minInt(v1, v2 int) int { + if v1 <= v2 { + return v1 + } + return v2 +} + +// rate returns the number of bytes of the internal state which can be absorbed or squeezed +// in between calls to the permutation function. +func (d *digest) rate() int { + return stateSize - d.capacity +} + +// Reset clears the internal state by zeroing bytes in the state buffer. +// This can be skipped for a newly-created hash state; the default zero-allocated state is correct. +func (d *digest) Reset() { + d.absorbed = 0 + for i := range d.a { + d.a[i] = 0 + } +} + +// BlockSize, required by the hash.Hash interface, does not have a standard intepretation +// for a sponge-based construction like SHA3. We return the data rate: the number of bytes which +// can be absorbed per invocation of the permutation function. For Merkle-Damgård based hashes +// (ie SHA1, SHA2, MD5) the output size of the internal compression function is returned. +// We consider this to be roughly equivalent because it represents the number of bytes of output +// produced per cryptographic operation. +func (d *digest) BlockSize() int { return d.rate() } + +// Size returns the output size of the hash function in bytes. +func (d *digest) Size() int { + return d.outputSize +} + +// unalignedAbsorb is a helper function for Write, which absorbs data that isn't aligned with an +// 8-byte lane. This requires shifting the individual bytes into position in a uint64. +func (d *digest) unalignedAbsorb(p []byte) { + var t uint64 + for i := len(p) - 1; i >= 0; i-- { + t <<= 8 + t |= uint64(p[i]) + } + offset := (d.absorbed) % d.rate() + t <<= 8 * uint(offset%laneSize) + d.a[offset/laneSize] ^= t + d.absorbed += len(p) +} + +// Write "absorbs" bytes into the state of the SHA3 hash, updating as needed when the sponge +// "fills up" with rate() bytes. Since lanes are stored internally as type uint64, this requires +// converting the incoming bytes into uint64s using a little endian interpretation. This +// implementation is optimized for large, aligned writes of multiples of 8 bytes (laneSize). +// Non-aligned or uneven numbers of bytes require shifting and are slower. +func (d *digest) Write(p []byte) (int, error) { + // An initial offset is needed if the we aren't absorbing to the first lane initially. + offset := d.absorbed % d.rate() + toWrite := len(p) + + // The first lane may need to absorb unaligned and/or incomplete data. + if (offset%laneSize != 0 || len(p) < 8) && len(p) > 0 { + toAbsorb := minInt(laneSize-(offset%laneSize), len(p)) + d.unalignedAbsorb(p[:toAbsorb]) + p = p[toAbsorb:] + offset = (d.absorbed) % d.rate() + + // For every rate() bytes absorbed, the state must be permuted via the F Function. + if (d.absorbed)%d.rate() == 0 { + d.keccakF() + } + } + + // This loop should absorb the bulk of the data into full, aligned lanes. + // It will call the update function as necessary. + for len(p) > 7 { + firstLane := offset / laneSize + lastLane := minInt(d.rate()/laneSize, firstLane+len(p)/laneSize) + + // This inner loop absorbs input bytes into the state in groups of 8, converted to uint64s. + for lane := firstLane; lane < lastLane; lane++ { + d.a[lane] ^= binary.LittleEndian.Uint64(p[:laneSize]) + p = p[laneSize:] + } + d.absorbed += (lastLane - firstLane) * laneSize + // For every rate() bytes absorbed, the state must be permuted via the F Function. + if (d.absorbed)%d.rate() == 0 { + d.keccakF() + } + + offset = 0 + } + + // If there are insufficient bytes to fill the final lane, an unaligned absorption. + // This should always start at a correct lane boundary though, or else it would be caught + // by the uneven opening lane case above. + if len(p) > 0 { + d.unalignedAbsorb(p) + } + + return toWrite, nil +} + +// pad computes the SHA3 padding scheme based on the number of bytes absorbed. +// The padding is a 1 bit, followed by an arbitrary number of 0s and then a final 1 bit, such that +// the input bits plus padding bits are a multiple of rate(). Adding the padding simply requires +// xoring an opening and closing bit into the appropriate lanes. +func (d *digest) pad() { + offset := d.absorbed % d.rate() + // The opening pad bit must be shifted into position based on the number of bytes absorbed + padOpenLane := offset / laneSize + d.a[padOpenLane] ^= 0x0000000000000001 << uint(8*(offset%laneSize)) + // The closing padding bit is always in the last position + padCloseLane := (d.rate() / laneSize) - 1 + d.a[padCloseLane] ^= 0x8000000000000000 +} + +// finalize prepares the hash to output data by padding and one final permutation of the state. +func (d *digest) finalize() { + d.pad() + d.keccakF() +} + +// squeeze outputs an arbitrary number of bytes from the hash state. +// Squeezing can require multiple calls to the F function (one per rate() bytes squeezed), +// although this is not the case for standard SHA3 parameters. This implementation only supports +// squeezing a single time, subsequent squeezes may lose alignment. Future implementations +// may wish to support multiple squeeze calls, for example to support use as a PRNG. +func (d *digest) squeeze(in []byte, toSqueeze int) []byte { + // Because we read in blocks of laneSize, we need enough room to read + // an integral number of lanes + needed := toSqueeze + (laneSize-toSqueeze%laneSize)%laneSize + if cap(in)-len(in) < needed { + newIn := make([]byte, len(in), len(in)+needed) + copy(newIn, in) + in = newIn + } + out := in[len(in) : len(in)+needed] + + for len(out) > 0 { + for i := 0; i < d.rate() && len(out) > 0; i += laneSize { + binary.LittleEndian.PutUint64(out[:], d.a[i/laneSize]) + out = out[laneSize:] + } + if len(out) > 0 { + d.keccakF() + } + } + return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data. +} + +// Sum applies padding to the hash state and then squeezes out the desired nubmer of output bytes. +func (d *digest) Sum(in []byte) []byte { + // Make a copy of the original hash so that caller can keep writing and summing. + dup := *d + dup.finalize() + return dup.squeeze(in, dup.outputSize) +} + +// The NewKeccakX constructors enable initializing a hash in any of the four recommend sizes +// from the Keccak specification, all of which set capacity=2*outputSize. Note that the final +// NIST standard for SHA3 may specify different input/output lengths. +// The output size is indicated in bits but converted into bytes internally. +func NewKeccak224() hash.Hash { return &digest{outputSize: 224 / 8, capacity: 2 * 224 / 8} } +func NewKeccak256() hash.Hash { return &digest{outputSize: 256 / 8, capacity: 2 * 256 / 8} } +func NewKeccak384() hash.Hash { return &digest{outputSize: 384 / 8, capacity: 2 * 384 / 8} } +func NewKeccak512() hash.Hash { return &digest{outputSize: 512 / 8, capacity: 2 * 512 / 8} } |