aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/secp256k1/libsecp256k1
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/secp256k1/libsecp256k1')
-rw-r--r--crypto/secp256k1/libsecp256k1/.gitignore41
-rw-r--r--crypto/secp256k1/libsecp256k1/.travis.yml62
-rw-r--r--crypto/secp256k1/libsecp256k1/COPYING19
-rw-r--r--crypto/secp256k1/libsecp256k1/Makefile.am110
-rw-r--r--crypto/secp256k1/libsecp256k1/README.md61
-rw-r--r--crypto/secp256k1/libsecp256k1/TODO3
-rwxr-xr-xcrypto/secp256k1/libsecp256k1/autogen.sh3
-rw-r--r--crypto/secp256k1/libsecp256k1/configure.ac376
-rw-r--r--crypto/secp256k1/libsecp256k1/include/secp256k1.h547
-rw-r--r--crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h30
-rw-r--r--crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h110
-rw-r--r--crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h173
-rw-r--r--crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in13
-rw-r--r--crypto/secp256k1/libsecp256k1/obj/.gitignore0
-rw-r--r--crypto/secp256k1/libsecp256k1/src/basic-config.h32
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench.h66
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_ecdh.c53
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_internal.c354
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_recover.c60
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c73
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_sign.c56
-rw-r--r--crypto/secp256k1/libsecp256k1/src/bench_verify.c67
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecdsa.h22
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h264
-rw-r--r--crypto/secp256k1/libsecp256k1/src/eckey.h28
-rw-r--r--crypto/secp256k1/libsecp256k1/src/eckey_impl.h202
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult.h31
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_const.h15
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h260
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_gen.h43
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h205
-rw-r--r--crypto/secp256k1/libsecp256k1/src/ecmult_impl.h389
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field.h119
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_10x26.h47
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h1138
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_5x52.h47
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h502
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h456
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h277
-rw-r--r--crypto/secp256k1/libsecp256k1/src/field_impl.h271
-rw-r--r--crypto/secp256k1/libsecp256k1/src/gen_context.c74
-rw-r--r--crypto/secp256k1/libsecp256k1/src/group.h141
-rw-r--r--crypto/secp256k1/libsecp256k1/src/group_impl.h632
-rw-r--r--crypto/secp256k1/libsecp256k1/src/hash.h41
-rw-r--r--crypto/secp256k1/libsecp256k1/src/hash_impl.h283
-rw-r--r--crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java60
-rw-r--r--crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c23
-rw-r--r--crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h21
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include9
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h54
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h75
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include9
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h156
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h249
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include11
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h164
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h20
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h207
-rw-r--r--crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h175
-rw-r--r--crypto/secp256k1/libsecp256k1/src/num.h68
-rw-r--r--crypto/secp256k1/libsecp256k1/src/num_gmp.h20
-rw-r--r--crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h260
-rw-r--r--crypto/secp256k1/libsecp256k1/src/num_impl.h24
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar.h104
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_4x64.h19
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h947
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_8x32.h19
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h721
-rw-r--r--crypto/secp256k1/libsecp256k1/src/scalar_impl.h337
-rw-r--r--crypto/secp256k1/libsecp256k1/src/secp256k1.c513
-rw-r--r--crypto/secp256k1/libsecp256k1/src/testrand.h28
-rw-r--r--crypto/secp256k1/libsecp256k1/src/testrand_impl.h60
-rw-r--r--crypto/secp256k1/libsecp256k1/src/tests.c2357
-rw-r--r--crypto/secp256k1/libsecp256k1/src/util.h110
74 files changed, 14616 insertions, 0 deletions
diff --git a/crypto/secp256k1/libsecp256k1/.gitignore b/crypto/secp256k1/libsecp256k1/.gitignore
new file mode 100644
index 000000000..e0b7b7a48
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/.gitignore
@@ -0,0 +1,41 @@
+bench_inv
+bench_ecdh
+bench_sign
+bench_verify
+bench_schnorr_verify
+bench_recover
+bench_internal
+tests
+gen_context
+*.exe
+*.so
+*.a
+!.gitignore
+
+Makefile
+configure
+.libs/
+Makefile.in
+aclocal.m4
+autom4te.cache/
+config.log
+config.status
+*.tar.gz
+*.la
+libtool
+.deps/
+.dirstamp
+build-aux/
+*.lo
+*.o
+*~
+src/libsecp256k1-config.h
+src/libsecp256k1-config.h.in
+src/ecmult_static_context.h
+m4/libtool.m4
+m4/ltoptions.m4
+m4/ltsugar.m4
+m4/ltversion.m4
+m4/lt~obsolete.m4
+src/stamp-h1
+libsecp256k1.pc
diff --git a/crypto/secp256k1/libsecp256k1/.travis.yml b/crypto/secp256k1/libsecp256k1/.travis.yml
new file mode 100644
index 000000000..fba0892dd
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/.travis.yml
@@ -0,0 +1,62 @@
+language: c
+sudo: false
+addons:
+ apt:
+ packages: libgmp-dev
+compiler:
+ - clang
+ - gcc
+env:
+ global:
+ - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=NO RECOVERY=NO
+ matrix:
+ - SCALAR=32bit RECOVERY=yes
+ - SCALAR=32bit FIELD=32bit ECDH=yes
+ - SCALAR=64bit
+ - FIELD=64bit RECOVERY=yes
+ - FIELD=64bit ENDOMORPHISM=yes
+ - FIELD=64bit ENDOMORPHISM=yes ECDH=yes
+ - FIELD=64bit ASM=x86_64
+ - FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
+ - FIELD=32bit SCHNORR=yes
+ - FIELD=32bit ENDOMORPHISM=yes
+ - BIGNUM=no
+ - BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes
+ - BIGNUM=no STATICPRECOMPUTATION=no
+ - BUILD=distcheck
+ - EXTRAFLAGS=CFLAGS=-DDETERMINISTIC
+matrix:
+ fast_finish: true
+ include:
+ - compiler: clang
+ env: HOST=i686-linux-gnu ENDOMORPHISM=yes
+ addons:
+ apt:
+ packages:
+ - gcc-multilib
+ - libgmp-dev:i386
+ - compiler: clang
+ env: HOST=i686-linux-gnu
+ addons:
+ apt:
+ packages:
+ - gcc-multilib
+ - compiler: gcc
+ env: HOST=i686-linux-gnu ENDOMORPHISM=yes
+ addons:
+ apt:
+ packages:
+ - gcc-multilib
+ - compiler: gcc
+ env: HOST=i686-linux-gnu
+ addons:
+ apt:
+ packages:
+ - gcc-multilib
+ - libgmp-dev:i386
+before_script: ./autogen.sh
+script:
+ - if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
+ - if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
+ - ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
+os: linux
diff --git a/crypto/secp256k1/libsecp256k1/COPYING b/crypto/secp256k1/libsecp256k1/COPYING
new file mode 100644
index 000000000..4522a5990
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/COPYING
@@ -0,0 +1,19 @@
+Copyright (c) 2013 Pieter Wuille
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
diff --git a/crypto/secp256k1/libsecp256k1/Makefile.am b/crypto/secp256k1/libsecp256k1/Makefile.am
new file mode 100644
index 000000000..57524fab0
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/Makefile.am
@@ -0,0 +1,110 @@
+ACLOCAL_AMFLAGS = -I build-aux/m4
+
+lib_LTLIBRARIES = libsecp256k1.la
+include_HEADERS = include/secp256k1.h
+noinst_HEADERS =
+noinst_HEADERS += src/scalar.h
+noinst_HEADERS += src/scalar_4x64.h
+noinst_HEADERS += src/scalar_8x32.h
+noinst_HEADERS += src/scalar_impl.h
+noinst_HEADERS += src/scalar_4x64_impl.h
+noinst_HEADERS += src/scalar_8x32_impl.h
+noinst_HEADERS += src/group.h
+noinst_HEADERS += src/group_impl.h
+noinst_HEADERS += src/num_gmp.h
+noinst_HEADERS += src/num_gmp_impl.h
+noinst_HEADERS += src/ecdsa.h
+noinst_HEADERS += src/ecdsa_impl.h
+noinst_HEADERS += src/eckey.h
+noinst_HEADERS += src/eckey_impl.h
+noinst_HEADERS += src/ecmult.h
+noinst_HEADERS += src/ecmult_impl.h
+noinst_HEADERS += src/ecmult_const.h
+noinst_HEADERS += src/ecmult_const_impl.h
+noinst_HEADERS += src/ecmult_gen.h
+noinst_HEADERS += src/ecmult_gen_impl.h
+noinst_HEADERS += src/num.h
+noinst_HEADERS += src/num_impl.h
+noinst_HEADERS += src/field_10x26.h
+noinst_HEADERS += src/field_10x26_impl.h
+noinst_HEADERS += src/field_5x52.h
+noinst_HEADERS += src/field_5x52_impl.h
+noinst_HEADERS += src/field_5x52_int128_impl.h
+noinst_HEADERS += src/field_5x52_asm_impl.h
+noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h
+noinst_HEADERS += src/util.h
+noinst_HEADERS += src/testrand.h
+noinst_HEADERS += src/testrand_impl.h
+noinst_HEADERS += src/hash.h
+noinst_HEADERS += src/hash_impl.h
+noinst_HEADERS += src/field.h
+noinst_HEADERS += src/field_impl.h
+noinst_HEADERS += src/bench.h
+
+pkgconfigdir = $(libdir)/pkgconfig
+pkgconfig_DATA = libsecp256k1.pc
+
+libsecp256k1_la_SOURCES = src/secp256k1.c
+libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
+libsecp256k1_la_LIBADD = $(SECP_LIBS)
+
+
+noinst_PROGRAMS =
+if USE_BENCHMARK
+noinst_PROGRAMS += bench_verify bench_sign bench_internal
+bench_verify_SOURCES = src/bench_verify.c
+bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
+bench_verify_LDFLAGS = -static
+bench_sign_SOURCES = src/bench_sign.c
+bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS)
+bench_sign_LDFLAGS = -static
+bench_internal_SOURCES = src/bench_internal.c
+bench_internal_LDADD = $(SECP_LIBS)
+bench_internal_LDFLAGS = -static
+bench_internal_CPPFLAGS = $(SECP_INCLUDES)
+endif
+
+if USE_TESTS
+noinst_PROGRAMS += tests
+tests_SOURCES = src/tests.c
+tests_CPPFLAGS = -DVERIFY -I$(top_srcdir)/src $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
+tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS)
+tests_LDFLAGS = -static
+TESTS = tests
+endif
+
+if USE_ECMULT_STATIC_PRECOMPUTATION
+CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)/
+CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function
+
+gen_context_OBJECTS = gen_context.o
+gen_context_BIN = gen_context$(BUILD_EXEEXT)
+gen_%.o: src/gen_%.c
+ $(CC_FOR_BUILD) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@
+
+$(gen_context_BIN): $(gen_context_OBJECTS)
+ $(CC_FOR_BUILD) $^ -o $@
+
+$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h
+$(tests_OBJECTS): src/ecmult_static_context.h
+$(bench_internal_OBJECTS): src/ecmult_static_context.h
+
+src/ecmult_static_context.h: $(gen_context_BIN)
+ ./$(gen_context_BIN)
+
+CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h
+endif
+
+EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h
+
+if ENABLE_MODULE_ECDH
+include src/modules/ecdh/Makefile.am.include
+endif
+
+if ENABLE_MODULE_SCHNORR
+include src/modules/schnorr/Makefile.am.include
+endif
+
+if ENABLE_MODULE_RECOVERY
+include src/modules/recovery/Makefile.am.include
+endif
diff --git a/crypto/secp256k1/libsecp256k1/README.md b/crypto/secp256k1/libsecp256k1/README.md
new file mode 100644
index 000000000..6095db422
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/README.md
@@ -0,0 +1,61 @@
+libsecp256k1
+============
+
+[![Build Status](https://travis-ci.org/bitcoin/secp256k1.svg?branch=master)](https://travis-ci.org/bitcoin/secp256k1)
+
+Optimized C library for EC operations on curve secp256k1.
+
+This library is a work in progress and is being used to research best practices. Use at your own risk.
+
+Features:
+* secp256k1 ECDSA signing/verification and key generation.
+* Adding/multiplying private/public keys.
+* Serialization/parsing of private keys, public keys, signatures.
+* Constant time, constant memory access signing and pubkey generation.
+* Derandomized DSA (via RFC6979 or with a caller provided function.)
+* Very efficient implementation.
+
+Implementation details
+----------------------
+
+* General
+ * No runtime heap allocation.
+ * Extensive testing infrastructure.
+ * Structured to facilitate review and analysis.
+ * Intended to be portable to any system with a C89 compiler and uint64_t support.
+ * Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")
+* Field operations
+ * Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
+ * Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
+ * Using 10 26-bit limbs.
+ * Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).
+* Scalar operations
+ * Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
+ * Using 4 64-bit limbs (relying on __int128 support in the compiler).
+ * Using 8 32-bit limbs.
+* Group operations
+ * Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
+ * Use addition between points in Jacobian and affine coordinates where possible.
+ * Use a unified addition/doubling formula where necessary to avoid data-dependent branches.
+ * Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.
+* Point multiplication for verification (a*P + b*G).
+ * Use wNAF notation for point multiplicands.
+ * Use a much larger window for multiples of G, using precomputed multiples.
+ * Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
+ * Optionally (off by default) use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
+* Point multiplication for signing
+ * Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
+ * Access the table with branch-free conditional moves so memory access is uniform.
+ * No data-dependent branches
+ * The precomputed tables add and eventually subtract points for which no known scalar (private key) is known, preventing even an attacker with control over the private key used to control the data internally.
+
+Build steps
+-----------
+
+libsecp256k1 is built using autotools:
+
+ $ ./autogen.sh
+ $ ./configure
+ $ make
+ $ ./tests
+ $ sudo make install # optional
diff --git a/crypto/secp256k1/libsecp256k1/TODO b/crypto/secp256k1/libsecp256k1/TODO
new file mode 100644
index 000000000..a300e1c5e
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/TODO
@@ -0,0 +1,3 @@
+* Unit tests for fieldelem/groupelem, including ones intended to
+ trigger fieldelem's boundary cases.
+* Complete constant-time operations for signing/keygen
diff --git a/crypto/secp256k1/libsecp256k1/autogen.sh b/crypto/secp256k1/libsecp256k1/autogen.sh
new file mode 100755
index 000000000..65286b935
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/autogen.sh
@@ -0,0 +1,3 @@
+#!/bin/sh
+set -e
+autoreconf -if --warnings=all
diff --git a/crypto/secp256k1/libsecp256k1/configure.ac b/crypto/secp256k1/libsecp256k1/configure.ac
new file mode 100644
index 000000000..786d8dcfb
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/configure.ac
@@ -0,0 +1,376 @@
+AC_PREREQ([2.60])
+AC_INIT([libsecp256k1],[0.1])
+AC_CONFIG_AUX_DIR([build-aux])
+AC_CONFIG_MACRO_DIR([build-aux/m4])
+AC_CANONICAL_HOST
+AH_TOP([#ifndef LIBSECP256K1_CONFIG_H])
+AH_TOP([#define LIBSECP256K1_CONFIG_H])
+AH_BOTTOM([#endif /*LIBSECP256K1_CONFIG_H*/])
+AM_INIT_AUTOMAKE([foreign subdir-objects])
+LT_INIT
+
+dnl make the compilation flags quiet unless V=1 is used
+m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
+
+PKG_PROG_PKG_CONFIG
+
+AC_PATH_TOOL(AR, ar)
+AC_PATH_TOOL(RANLIB, ranlib)
+AC_PATH_TOOL(STRIP, strip)
+AX_PROG_CC_FOR_BUILD
+
+if test "x$CFLAGS" = "x"; then
+ CFLAGS="-O3 -g"
+fi
+
+AM_PROG_CC_C_O
+
+AC_PROG_CC_C89
+if test x"$ac_cv_prog_cc_c89" = x"no"; then
+ AC_MSG_ERROR([c89 compiler support required])
+fi
+
+case $host_os in
+ *darwin*)
+ if test x$cross_compiling != xyes; then
+ AC_PATH_PROG([BREW],brew,)
+ if test x$BREW != x; then
+ dnl These Homebrew packages may be keg-only, meaning that they won't be found
+ dnl in expected paths because they may conflict with system files. Ask
+ dnl Homebrew where each one is located, then adjust paths accordingly.
+
+ openssl_prefix=`$BREW --prefix openssl 2>/dev/null`
+ gmp_prefix=`$BREW --prefix gmp 2>/dev/null`
+ if test x$openssl_prefix != x; then
+ PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH"
+ export PKG_CONFIG_PATH
+ fi
+ if test x$gmp_prefix != x; then
+ GMP_CPPFLAGS="-I$gmp_prefix/include"
+ GMP_LIBS="-L$gmp_prefix/lib"
+ fi
+ else
+ AC_PATH_PROG([PORT],port,)
+ dnl if homebrew isn't installed and macports is, add the macports default paths
+ dnl as a last resort.
+ if test x$PORT != x; then
+ CPPFLAGS="$CPPFLAGS -isystem /opt/local/include"
+ LDFLAGS="$LDFLAGS -L/opt/local/lib"
+ fi
+ fi
+ fi
+ ;;
+esac
+
+CFLAGS="$CFLAGS -W"
+
+warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wno-unused-function -Wno-long-long -Wno-overlength-strings"
+saved_CFLAGS="$CFLAGS"
+CFLAGS="$CFLAGS $warn_CFLAGS"
+AC_MSG_CHECKING([if ${CC} supports ${warn_CFLAGS}])
+AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
+ [ AC_MSG_RESULT([yes]) ],
+ [ AC_MSG_RESULT([no])
+ CFLAGS="$saved_CFLAGS"
+ ])
+
+saved_CFLAGS="$CFLAGS"
+CFLAGS="$CFLAGS -fvisibility=hidden"
+AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden])
+AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
+ [ AC_MSG_RESULT([yes]) ],
+ [ AC_MSG_RESULT([no])
+ CFLAGS="$saved_CFLAGS"
+ ])
+
+AC_ARG_ENABLE(benchmark,
+ AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is no)]),
+ [use_benchmark=$enableval],
+ [use_benchmark=no])
+
+AC_ARG_ENABLE(tests,
+ AS_HELP_STRING([--enable-tests],[compile tests (default is yes)]),
+ [use_tests=$enableval],
+ [use_tests=yes])
+
+AC_ARG_ENABLE(endomorphism,
+ AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
+ [use_endomorphism=$enableval],
+ [use_endomorphism=no])
+
+AC_ARG_ENABLE(ecmult_static_precomputation,
+ AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]),
+ [use_ecmult_static_precomputation=$enableval],
+ [use_ecmult_static_precomputation=yes])
+
+AC_ARG_ENABLE(module_ecdh,
+ AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (default is no)]),
+ [enable_module_ecdh=$enableval],
+ [enable_module_ecdh=no])
+
+AC_ARG_ENABLE(module_schnorr,
+ AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (default is no)]),
+ [enable_module_schnorr=$enableval],
+ [enable_module_schnorr=no])
+
+AC_ARG_ENABLE(module_recovery,
+ AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]),
+ [enable_module_recovery=$enableval],
+ [enable_module_recovery=no])
+
+AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto],
+[Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto])
+
+AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto],
+[Specify Bignum Implementation. Default is auto])],[req_bignum=$withval], [req_bignum=auto])
+
+AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto],
+[Specify scalar implementation. Default is auto])],[req_scalar=$withval], [req_scalar=auto])
+
+AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|no|auto]
+[Specify assembly optimizations to use. Default is auto])],[req_asm=$withval], [req_asm=auto])
+
+AC_CHECK_TYPES([__int128])
+
+AC_MSG_CHECKING([for __builtin_expect])
+AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])],
+ [ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]) ],
+ [ AC_MSG_RESULT([no])
+ ])
+
+if test x"$req_asm" = x"auto"; then
+ SECP_64BIT_ASM_CHECK
+ if test x"$has_64bit_asm" = x"yes"; then
+ set_asm=x86_64
+ fi
+ if test x"$set_asm" = x; then
+ set_asm=no
+ fi
+else
+ set_asm=$req_asm
+ case $set_asm in
+ x86_64)
+ SECP_64BIT_ASM_CHECK
+ if test x"$has_64bit_asm" != x"yes"; then
+ AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
+ fi
+ ;;
+ no)
+ ;;
+ *)
+ AC_MSG_ERROR([invalid assembly optimization selection])
+ ;;
+ esac
+fi
+
+if test x"$req_field" = x"auto"; then
+ if test x"set_asm" = x"x86_64"; then
+ set_field=64bit
+ fi
+ if test x"$set_field" = x; then
+ SECP_INT128_CHECK
+ if test x"$has_int128" = x"yes"; then
+ set_field=64bit
+ fi
+ fi
+ if test x"$set_field" = x; then
+ set_field=32bit
+ fi
+else
+ set_field=$req_field
+ case $set_field in
+ 64bit)
+ if test x"$set_asm" != x"x86_64"; then
+ SECP_INT128_CHECK
+ if test x"$has_int128" != x"yes"; then
+ AC_MSG_ERROR([64bit field explicitly requested but neither __int128 support or x86_64 assembly available])
+ fi
+ fi
+ ;;
+ 32bit)
+ ;;
+ *)
+ AC_MSG_ERROR([invalid field implementation selection])
+ ;;
+ esac
+fi
+
+if test x"$req_scalar" = x"auto"; then
+ SECP_INT128_CHECK
+ if test x"$has_int128" = x"yes"; then
+ set_scalar=64bit
+ fi
+ if test x"$set_scalar" = x; then
+ set_scalar=32bit
+ fi
+else
+ set_scalar=$req_scalar
+ case $set_scalar in
+ 64bit)
+ SECP_INT128_CHECK
+ if test x"$has_int128" != x"yes"; then
+ AC_MSG_ERROR([64bit scalar explicitly requested but __int128 support not available])
+ fi
+ ;;
+ 32bit)
+ ;;
+ *)
+ AC_MSG_ERROR([invalid scalar implementation selected])
+ ;;
+ esac
+fi
+
+if test x"$req_bignum" = x"auto"; then
+ SECP_GMP_CHECK
+ if test x"$has_gmp" = x"yes"; then
+ set_bignum=gmp
+ fi
+
+ if test x"$set_bignum" = x; then
+ set_bignum=no
+ fi
+else
+ set_bignum=$req_bignum
+ case $set_bignum in
+ gmp)
+ SECP_GMP_CHECK
+ if test x"$has_gmp" != x"yes"; then
+ AC_MSG_ERROR([gmp bignum explicitly requested but libgmp not available])
+ fi
+ ;;
+ no)
+ ;;
+ *)
+ AC_MSG_ERROR([invalid bignum implementation selection])
+ ;;
+ esac
+fi
+
+# select assembly optimization
+case $set_asm in
+x86_64)
+ AC_DEFINE(USE_ASM_X86_64, 1, [Define this symbol to enable x86_64 assembly optimizations])
+ ;;
+no)
+ ;;
+*)
+ AC_MSG_ERROR([invalid assembly optimizations])
+ ;;
+esac
+
+# select field implementation
+case $set_field in
+64bit)
+ AC_DEFINE(USE_FIELD_5X52, 1, [Define this symbol to use the FIELD_5X52 implementation])
+ ;;
+32bit)
+ AC_DEFINE(USE_FIELD_10X26, 1, [Define this symbol to use the FIELD_10X26 implementation])
+ ;;
+*)
+ AC_MSG_ERROR([invalid field implementation])
+ ;;
+esac
+
+# select bignum implementation
+case $set_bignum in
+gmp)
+ AC_DEFINE(HAVE_LIBGMP, 1, [Define this symbol if libgmp is installed])
+ AC_DEFINE(USE_NUM_GMP, 1, [Define this symbol to use the gmp implementation for num])
+ AC_DEFINE(USE_FIELD_INV_NUM, 1, [Define this symbol to use the num-based field inverse implementation])
+ AC_DEFINE(USE_SCALAR_INV_NUM, 1, [Define this symbol to use the num-based scalar inverse implementation])
+ ;;
+no)
+ AC_DEFINE(USE_NUM_NONE, 1, [Define this symbol to use no num implementation])
+ AC_DEFINE(USE_FIELD_INV_BUILTIN, 1, [Define this symbol to use the native field inverse implementation])
+ AC_DEFINE(USE_SCALAR_INV_BUILTIN, 1, [Define this symbol to use the native scalar inverse implementation])
+ ;;
+*)
+ AC_MSG_ERROR([invalid bignum implementation])
+ ;;
+esac
+
+#select scalar implementation
+case $set_scalar in
+64bit)
+ AC_DEFINE(USE_SCALAR_4X64, 1, [Define this symbol to use the 4x64 scalar implementation])
+ ;;
+32bit)
+ AC_DEFINE(USE_SCALAR_8X32, 1, [Define this symbol to use the 8x32 scalar implementation])
+ ;;
+*)
+ AC_MSG_ERROR([invalid scalar implementation])
+ ;;
+esac
+
+if test x"$use_tests" = x"yes"; then
+ SECP_OPENSSL_CHECK
+ if test x"$has_openssl_ec" = x"yes"; then
+ AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available])
+ SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS"
+ SECP_TEST_LIBS="$CRYPTO_LIBS"
+
+ case $host in
+ *mingw*)
+ SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32"
+ ;;
+ esac
+
+ fi
+fi
+
+if test x"$set_bignum" = x"gmp"; then
+ SECP_LIBS="$SECP_LIBS $GMP_LIBS"
+ SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS"
+fi
+
+if test x"$use_endomorphism" = x"yes"; then
+ AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization])
+fi
+
+if test x"$use_ecmult_static_precomputation" = x"yes"; then
+ AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table])
+fi
+
+if test x"$enable_module_ecdh" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module])
+fi
+
+if test x"$enable_module_schnorr" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_SCHNORR, 1, [Define this symbol to enable the Schnorr signature module])
+fi
+
+if test x"$enable_module_recovery" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
+fi
+
+AC_C_BIGENDIAN()
+
+AC_MSG_NOTICE([Using assembly optimizations: $set_asm])
+AC_MSG_NOTICE([Using field implementation: $set_field])
+AC_MSG_NOTICE([Using bignum implementation: $set_bignum])
+AC_MSG_NOTICE([Using scalar implementation: $set_scalar])
+AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism])
+AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
+
+AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
+AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery])
+
+AC_CONFIG_HEADERS([src/libsecp256k1-config.h])
+AC_CONFIG_FILES([Makefile libsecp256k1.pc])
+AC_SUBST(SECP_INCLUDES)
+AC_SUBST(SECP_LIBS)
+AC_SUBST(SECP_TEST_LIBS)
+AC_SUBST(SECP_TEST_INCLUDES)
+AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
+AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
+AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$use_ecmult_static_precomputation" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_SCHNORR], [test x"$enable_module_schnorr" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
+
+dnl make sure nothing new is exported so that we don't break the cache
+PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH"
+unset PKG_CONFIG_PATH
+PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP"
+
+AC_OUTPUT
diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1.h b/crypto/secp256k1/libsecp256k1/include/secp256k1.h
new file mode 100644
index 000000000..23378de1f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/include/secp256k1.h
@@ -0,0 +1,547 @@
+#ifndef _SECP256K1_
+# define _SECP256K1_
+
+# ifdef __cplusplus
+extern "C" {
+# endif
+
+#include <stddef.h>
+
+/* These rules specify the order of arguments in API calls:
+ *
+ * 1. Context pointers go first, followed by output arguments, combined
+ * output/input arguments, and finally input-only arguments.
+ * 2. Array lengths always immediately the follow the argument whose length
+ * they describe, even if this violates rule 1.
+ * 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
+ * later go first. This means: signatures, public nonces, private nonces,
+ * messages, public keys, secret keys, tweaks.
+ * 4. Arguments that are not data pointers go last, from more complex to less
+ * complex: function pointers, algorithm names, messages, void pointers,
+ * counts, flags, booleans.
+ * 5. Opaque data pointers follow the function pointer they are to be passed to.
+ */
+
+/** Opaque data structure that holds context information (precomputed tables etc.).
+ *
+ * The purpose of context structures is to cache large precomputed data tables
+ * that are expensive to construct, and also to maintain the randomization data
+ * for blinding.
+ *
+ * Do not create a new context object for each operation, as construction is
+ * far slower than all other API calls (~100 times slower than an ECDSA
+ * verification).
+ *
+ * A constructed context can safely be used from multiple threads
+ * simultaneously, but API call that take a non-const pointer to a context
+ * need exclusive access to it. In particular this is the case for
+ * secp256k1_context_destroy and secp256k1_context_randomize.
+ *
+ * Regarding randomization, either do it once at creation time (in which case
+ * you do not need any locking for the other calls), or use a read-write lock.
+ */
+typedef struct secp256k1_context_struct secp256k1_context;
+
+/** Opaque data structure that holds a parsed and valid public key.
+ *
+ * The exact representation of data inside is implementation defined and not
+ * guaranteed to be portable between different platforms or versions. It is
+ * however guaranteed to be 64 bytes in size, and can be safely copied/moved.
+ * If you need to convert to a format suitable for storage or transmission, use
+ * secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
+ *
+ * Furthermore, it is guaranteed that identical public keys (ignoring
+ * compression) will have identical representation, so they can be memcmp'ed.
+ */
+typedef struct {
+ unsigned char data[64];
+} secp256k1_pubkey;
+
+/** Opaque data structured that holds a parsed ECDSA signature.
+ *
+ * The exact representation of data inside is implementation defined and not
+ * guaranteed to be portable between different platforms or versions. It is
+ * however guaranteed to be 64 bytes in size, and can be safely copied/moved.
+ * If you need to convert to a format suitable for storage or transmission, use
+ * the secp256k1_ecdsa_signature_serialize_* and
+ * secp256k1_ecdsa_signature_serialize_* functions.
+ *
+ * Furthermore, it is guaranteed to identical signatures will have identical
+ * representation, so they can be memcmp'ed.
+ */
+typedef struct {
+ unsigned char data[64];
+} secp256k1_ecdsa_signature;
+
+/** A pointer to a function to deterministically generate a nonce.
+ *
+ * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
+ * Out: nonce32: pointer to a 32-byte array to be filled by the function.
+ * In: msg32: the 32-byte message hash being verified (will not be NULL)
+ * key32: pointer to a 32-byte secret key (will not be NULL)
+ * algo16: pointer to a 16-byte array describing the signature
+ * algorithm (will be NULL for ECDSA for compatibility).
+ * data: Arbitrary data pointer that is passed through.
+ * attempt: how many iterations we have tried to find a nonce.
+ * This will almost always be 0, but different attempt values
+ * are required to result in a different nonce.
+ *
+ * Except for test cases, this function should compute some cryptographic hash of
+ * the message, the algorithm, the key and the attempt.
+ */
+typedef int (*secp256k1_nonce_function)(
+ unsigned char *nonce32,
+ const unsigned char *msg32,
+ const unsigned char *key32,
+ const unsigned char *algo16,
+ void *data,
+ unsigned int attempt
+);
+
+# if !defined(SECP256K1_GNUC_PREREQ)
+# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
+# define SECP256K1_GNUC_PREREQ(_maj,_min) \
+ ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
+# else
+# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
+# endif
+# endif
+
+# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
+# if SECP256K1_GNUC_PREREQ(2,7)
+# define SECP256K1_INLINE __inline__
+# elif (defined(_MSC_VER))
+# define SECP256K1_INLINE __inline
+# else
+# define SECP256K1_INLINE
+# endif
+# else
+# define SECP256K1_INLINE inline
+# endif
+
+#ifndef SECP256K1_API
+# if defined(_WIN32)
+# ifdef SECP256K1_BUILD
+# define SECP256K1_API __declspec(dllexport)
+# else
+# define SECP256K1_API
+# endif
+# elif defined(__GNUC__) && defined(SECP256K1_BUILD)
+# define SECP256K1_API __attribute__ ((visibility ("default")))
+# else
+# define SECP256K1_API
+# endif
+#endif
+
+/**Warning attributes
+ * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
+ * some paranoid null checks. */
+# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
+# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
+# else
+# define SECP256K1_WARN_UNUSED_RESULT
+# endif
+# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
+# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
+# else
+# define SECP256K1_ARG_NONNULL(_x)
+# endif
+
+/** Flags to pass to secp256k1_context_create. */
+# define SECP256K1_CONTEXT_VERIFY (1 << 0)
+# define SECP256K1_CONTEXT_SIGN (1 << 1)
+
+/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */
+# define SECP256K1_EC_COMPRESSED (1 << 0)
+
+/** Create a secp256k1 context object.
+ *
+ * Returns: a newly created context object.
+ * In: flags: which parts of the context to initialize.
+ */
+SECP256K1_API secp256k1_context* secp256k1_context_create(
+ unsigned int flags
+) SECP256K1_WARN_UNUSED_RESULT;
+
+/** Copies a secp256k1 context object.
+ *
+ * Returns: a newly created context object.
+ * Args: ctx: an existing context to copy (cannot be NULL)
+ */
+SECP256K1_API secp256k1_context* secp256k1_context_clone(
+ const secp256k1_context* ctx
+) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
+
+/** Destroy a secp256k1 context object.
+ *
+ * The context pointer may not be used afterwards.
+ * Args: ctx: an existing context to destroy (cannot be NULL)
+ */
+SECP256K1_API void secp256k1_context_destroy(
+ secp256k1_context* ctx
+);
+
+/** Set a callback function to be called when an illegal argument is passed to
+ * an API call. It will only trigger for violations that are mentioned
+ * explicitly in the header.
+ *
+ * The philosophy is that these shouldn't be dealt with through a
+ * specific return value, as calling code should not have branches to deal with
+ * the case that this code itself is broken.
+ *
+ * On the other hand, during debug stage, one would want to be informed about
+ * such mistakes, and the default (crashing) may be inadvisable.
+ * When this callback is triggered, the API function called is guaranteed not
+ * to cause a crash, though its return value and output arguments are
+ * undefined.
+ *
+ * Args: ctx: an existing context object (cannot be NULL)
+ * In: fun: a pointer to a function to call when an illegal argument is
+ * passed to the API, taking a message and an opaque pointer
+ * (NULL restores a default handler that calls abort).
+ * data: the opaque pointer to pass to fun above.
+ */
+SECP256K1_API void secp256k1_context_set_illegal_callback(
+ secp256k1_context* ctx,
+ void (*fun)(const char* message, void* data),
+ const void* data
+) SECP256K1_ARG_NONNULL(1);
+
+/** Set a callback function to be called when an internal consistency check
+ * fails. The default is crashing.
+ *
+ * This can only trigger in case of a hardware failure, miscompilation,
+ * memory corruption, serious bug in the library, or other error would can
+ * otherwise result in undefined behaviour. It will not trigger due to mere
+ * incorrect usage of the API (see secp256k1_context_set_illegal_callback
+ * for that). After this callback returns, anything may happen, including
+ * crashing.
+ *
+ * Args: ctx: an existing context object (cannot be NULL)
+ * In: fun: a pointer to a function to call when an interal error occurs,
+ * taking a message and an opaque pointer (NULL restores a default
+ * handler that calls abort).
+ * data: the opaque pointer to pass to fun above.
+ */
+SECP256K1_API void secp256k1_context_set_error_callback(
+ secp256k1_context* ctx,
+ void (*fun)(const char* message, void* data),
+ const void* data
+) SECP256K1_ARG_NONNULL(1);
+
+/** Parse a variable-length public key into the pubkey object.
+ *
+ * Returns: 1 if the public key was fully valid.
+ * 0 if the public key could not be parsed or is invalid.
+ * Args: ctx: a secp256k1 context object.
+ * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
+ * parsed version of input. If not, its value is undefined.
+ * In: input: pointer to a serialized public key
+ * inputlen: length of the array pointed to by input
+ *
+ * This function supports parsing compressed (33 bytes, header byte 0x02 or
+ * 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
+ * byte 0x06 or 0x07) format public keys.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey* pubkey,
+ const unsigned char *input,
+ size_t inputlen
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Serialize a pubkey object into a serialized byte sequence.
+ *
+ * Returns: 1 always.
+ * Args: ctx: a secp256k1 context object.
+ * Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
+ * compressed==1) byte array to place the serialized key in.
+ * outputlen: a pointer to an integer which will contain the serialized
+ * size.
+ * In: pubkey: a pointer to a secp256k1_pubkey containing an initialized
+ * public key.
+ * flags: SECP256K1_EC_COMPRESSED if serialization should be in
+ * compressed format.
+ */
+SECP256K1_API int secp256k1_ec_pubkey_serialize(
+ const secp256k1_context* ctx,
+ unsigned char *output,
+ size_t *outputlen,
+ const secp256k1_pubkey* pubkey,
+ unsigned int flags
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Parse a DER ECDSA signature.
+ *
+ * Returns: 1 when the signature could be parsed, 0 otherwise.
+ * Args: ctx: a secp256k1 context object
+ * Out: sig: a pointer to a signature object
+ * In: input: a pointer to the signature to be parsed
+ * inputlen: the length of the array pointed to be input
+ *
+ * Note that this function also supports some violations of DER and even BER.
+ */
+SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_signature* sig,
+ const unsigned char *input,
+ size_t inputlen
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Serialize an ECDSA signature in DER format.
+ *
+ * Returns: 1 if enough space was available to serialize, 0 otherwise
+ * Args: ctx: a secp256k1 context object
+ * Out: output: a pointer to an array to store the DER serialization
+ * In/Out: outputlen: a pointer to a length integer. Initially, this integer
+ * should be set to the length of output. After the call
+ * it will be set to the length of the serialization (even
+ * if 0 was returned).
+ * In: sig: a pointer to an initialized signature object
+ */
+SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
+ const secp256k1_context* ctx,
+ unsigned char *output,
+ size_t *outputlen,
+ const secp256k1_ecdsa_signature* sig
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Verify an ECDSA signature.
+ *
+ * Returns: 1: correct signature
+ * 0: incorrect or unparseable signature
+ * Args: ctx: a secp256k1 context object, initialized for verification.
+ * In: sig: the signature being verified (cannot be NULL)
+ * msg32: the 32-byte message hash being verified (cannot be NULL)
+ * pubkey: pointer to an initialized public key to verify with (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
+ const secp256k1_context* ctx,
+ const secp256k1_ecdsa_signature *sig,
+ const unsigned char *msg32,
+ const secp256k1_pubkey *pubkey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
+ * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
+ * extra entropy.
+ */
+extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
+
+/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
+extern const secp256k1_nonce_function secp256k1_nonce_function_default;
+
+/** Create an ECDSA signature.
+ *
+ * Returns: 1: signature created
+ * 0: the nonce generation function failed, or the private key was invalid.
+ * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
+ * Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
+ * In: msg32: the 32-byte message hash being signed (cannot be NULL)
+ * seckey: pointer to a 32-byte secret key (cannot be NULL)
+ * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
+ * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
+ *
+ * The sig always has an s value in the lower half of the range (From 0x1
+ * to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
+ * inclusive), unlike many other implementations.
+ *
+ * With ECDSA a third-party can can forge a second distinct signature
+ * of the same message given a single initial signature without knowing
+ * the key by setting s to its additive inverse mod-order, 'flipping' the
+ * sign of the random point R which is not included in the signature.
+ * Since the forgery is of the same message this isn't universally
+ * problematic, but in systems where message malleability or uniqueness
+ * of signatures is important this can cause issues. This forgery can be
+ * blocked by all verifiers forcing signers to use a canonical form. The
+ * lower-S form reduces the size of signatures slightly on average when
+ * variable length encodings (such as DER) are used and is cheap to
+ * verify, making it a good choice. Security of always using lower-S is
+ * assured because anyone can trivially modify a signature after the
+ * fact to enforce this property. Adjusting it inside the signing
+ * function avoids the need to re-serialize or have curve specific
+ * constants outside of the library. By always using a canonical form
+ * even in applications where it isn't needed it becomes possible to
+ * impose a requirement later if a need is discovered.
+ * No other forms of ECDSA malleability are known and none seem likely,
+ * but there is no formal proof that ECDSA, even with this additional
+ * restriction, is free of other malleability. Commonly used serialization
+ * schemes will also accept various non-unique encodings, so care should
+ * be taken when this property is required for an application.
+ */
+SECP256K1_API int secp256k1_ecdsa_sign(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_signature *sig,
+ const unsigned char *msg32,
+ const unsigned char *seckey,
+ secp256k1_nonce_function noncefp,
+ const void *ndata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Verify an ECDSA secret key.
+ *
+ * Returns: 1: secret key is valid
+ * 0: secret key is invalid
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * In: seckey: pointer to a 32-byte secret key (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
+ const secp256k1_context* ctx,
+ const unsigned char *seckey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
+
+/** Compute the public key for a secret key.
+ *
+ * Returns: 1: secret was valid, public key stores
+ * 0: secret was invalid, try again
+ * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
+ * Out: pubkey: pointer to the created public key (cannot be NULL)
+ * In: seckey: pointer to a 32-byte private key (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *seckey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Export a private key in BER format.
+ *
+ * Returns: 1 if the private key was valid.
+ * Args: ctx: pointer to a context object, initialized for signing (cannot
+ * be NULL)
+ * Out: privkey: pointer to an array for storing the private key in BER.
+ * Should have space for 279 bytes, and cannot be NULL.
+ * privkeylen: Pointer to an int where the length of the private key in
+ * privkey will be stored.
+ * In: seckey: pointer to a 32-byte secret key to export.
+ * flags: SECP256K1_EC_COMPRESSED if the key should be exported in
+ * compressed format.
+ *
+ * This function is purely meant for compatibility with applications that
+ * require BER encoded keys. When working with secp256k1-specific code, the
+ * simple 32-byte private keys are sufficient.
+ *
+ * Note that this function does not guarantee correct DER output. It is
+ * guaranteed to be parsable by secp256k1_ec_privkey_import.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export(
+ const secp256k1_context* ctx,
+ unsigned char *privkey,
+ size_t *privkeylen,
+ const unsigned char *seckey,
+ unsigned int flags
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Import a private key in DER format.
+ * Returns: 1 if a private key was extracted.
+ * Args: ctx: pointer to a context object (cannot be NULL).
+ * Out: seckey: pointer to a 32-byte array for storing the private key.
+ * (cannot be NULL).
+ * In: privkey: pointer to a private key in DER format (cannot be NULL).
+ * privkeylen: length of the DER private key pointed to be privkey.
+ *
+ * This function will accept more than just strict DER, and even allow some BER
+ * violations. The public key stored inside the DER-encoded private key is not
+ * verified for correctness, nor are the curve parameters. Use this function
+ * only if you know in advance it is supposed to contain a secp256k1 private
+ * key.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import(
+ const secp256k1_context* ctx,
+ unsigned char *seckey,
+ const unsigned char *privkey,
+ size_t privkeylen
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Tweak a private key by adding tweak to it.
+ * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
+ * uniformly random 32-byte arrays, or if the resulting private key
+ * would be invalid (only when the tweak is the complement of the
+ * private key). 1 otherwise.
+ * Args: ctx: pointer to a context object (cannot be NULL).
+ * In/Out: seckey: pointer to a 32-byte private key.
+ * In: tweak: pointer to a 32-byte tweak.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
+ const secp256k1_context* ctx,
+ unsigned char *seckey,
+ const unsigned char *tweak
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Tweak a public key by adding tweak times the generator to it.
+ * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
+ * uniformly random 32-byte arrays, or if the resulting public key
+ * would be invalid (only when the tweak is the complement of the
+ * corresponding private key). 1 otherwise.
+ * Args: ctx: pointer to a context object initialized for validation
+ * (cannot be NULL).
+ * In/Out: pubkey: pointer to a public key object.
+ * In: tweak: pointer to a 32-byte tweak.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *tweak
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Tweak a private key by multiplying it by a tweak.
+ * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
+ * uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
+ * Args: ctx: pointer to a context object (cannot be NULL).
+ * In/Out: seckey: pointer to a 32-byte private key.
+ * In: tweak: pointer to a 32-byte tweak.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
+ const secp256k1_context* ctx,
+ unsigned char *seckey,
+ const unsigned char *tweak
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Tweak a public key by multiplying it by a tweak value.
+ * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
+ * uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
+ * Args: ctx: pointer to a context object initialized for validation
+ * (cannot be NULL).
+ * In/Out: pubkey: pointer to a public key obkect.
+ * In: tweak: pointer to a 32-byte tweak.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *tweak
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Updates the context randomization.
+ * Returns: 1: randomization successfully updated
+ * 0: error
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * In: seed32: pointer to a 32-byte random seed (NULL resets to initial state)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
+ secp256k1_context* ctx,
+ const unsigned char *seed32
+) SECP256K1_ARG_NONNULL(1);
+
+/** Add a number of public keys together.
+ * Returns: 1: the sum of the public keys is valid.
+ * 0: the sum of the public keys is not valid.
+ * Args: ctx: pointer to a context object
+ * Out: out: pointer to pubkey for placing the resulting public key
+ * (cannot be NULL)
+ * In: ins: pointer to array of pointers to public keys (cannot be NULL)
+ * n: the number of public keys to add together (must be at least 1)
+ * Use secp256k1_ec_pubkey_compress and secp256k1_ec_pubkey_decompress if the
+ * uncompressed format is needed.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *out,
+ const secp256k1_pubkey * const * ins,
+ int n
+) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+# ifdef __cplusplus
+}
+# endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h
new file mode 100644
index 000000000..db520f446
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h
@@ -0,0 +1,30 @@
+#ifndef _SECP256K1_ECDH_
+# define _SECP256K1_ECDH_
+
+# include "secp256k1.h"
+
+# ifdef __cplusplus
+extern "C" {
+# endif
+
+/** Compute an EC Diffie-Hellman secret in constant time
+ * Returns: 1: exponentiation was successful
+ * 0: scalar was invalid (zero or overflow)
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * Out: result: a 32-byte array which will be populated by an ECDH
+ * secret computed from the point and scalar
+ * In: point: pointer to a public point
+ * scalar: a 32-byte scalar with which to multiply the point
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
+ const secp256k1_context* ctx,
+ unsigned char *result,
+ const secp256k1_pubkey *point,
+ const unsigned char *scalar
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+# ifdef __cplusplus
+}
+# endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h
new file mode 100644
index 000000000..c9b8c0a30
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h
@@ -0,0 +1,110 @@
+#ifndef _SECP256K1_RECOVERY_
+# define _SECP256K1_RECOVERY_
+
+# include "secp256k1.h"
+
+# ifdef __cplusplus
+extern "C" {
+# endif
+
+/** Opaque data structured that holds a parsed ECDSA signature,
+ * supporting pubkey recovery.
+ *
+ * The exact representation of data inside is implementation defined and not
+ * guaranteed to be portable between different platforms or versions. It is
+ * however guaranteed to be 65 bytes in size, and can be safely copied/moved.
+ * If you need to convert to a format suitable for storage or transmission, use
+ * the secp256k1_ecdsa_signature_serialize_* and
+ * secp256k1_ecdsa_signature_parse_* functions.
+ *
+ * Furthermore, it is guaranteed that identical signatures (including their
+ * recoverability) will have identical representation, so they can be
+ * memcmp'ed.
+ */
+typedef struct {
+ unsigned char data[65];
+} secp256k1_ecdsa_recoverable_signature;
+
+/** Parse a compact ECDSA signature (64 bytes + recovery id).
+ *
+ * Returns: 1 when the signature could be parsed, 0 otherwise
+ * Args: ctx: a secp256k1 context object
+ * Out: sig: a pointer to a signature object
+ * In: input64: a pointer to a 64-byte compact signature
+ * recid: the recovery id (0, 1, 2 or 3)
+ */
+SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_recoverable_signature* sig,
+ const unsigned char *input64,
+ int recid
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Convert a recoverable signature into a normal signature.
+ *
+ * Returns: 1
+ * Out: sig: a pointer to a normal signature (cannot be NULL).
+ * In: sigin: a pointer to a recoverable signature (cannot be NULL).
+ */
+SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_signature* sig,
+ const secp256k1_ecdsa_recoverable_signature* sigin
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
+ *
+ * Returns: 1
+ * Args: ctx: a secp256k1 context object
+ * Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL)
+ * recid: a pointer to an integer to hold the recovery id (can be NULL).
+ * In: sig: a pointer to an initialized signature object (cannot be NULL)
+ */
+SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
+ const secp256k1_context* ctx,
+ unsigned char *output64,
+ int *recid,
+ const secp256k1_ecdsa_recoverable_signature* sig
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
+
+/** Create a recoverable ECDSA signature.
+ *
+ * Returns: 1: signature created
+ * 0: the nonce generation function failed, or the private key was invalid.
+ * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
+ * Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
+ * In: msg32: the 32-byte message hash being signed (cannot be NULL)
+ * seckey: pointer to a 32-byte secret key (cannot be NULL)
+ * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
+ * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
+ */
+SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
+ const secp256k1_context* ctx,
+ secp256k1_ecdsa_recoverable_signature *sig,
+ const unsigned char *msg32,
+ const unsigned char *seckey,
+ secp256k1_nonce_function noncefp,
+ const void *ndata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Recover an ECDSA public key from a signature.
+ *
+ * Returns: 1: public key successfully recovered (which guarantees a correct signature).
+ * 0: otherwise.
+ * Args: ctx: pointer to a context object, initialized for verification (cannot be NULL)
+ * Out: pubkey: pointer to the recoved public key (cannot be NULL)
+ * In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
+ * msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const secp256k1_ecdsa_recoverable_signature *sig,
+ const unsigned char *msg32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+# ifdef __cplusplus
+}
+# endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h b/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h
new file mode 100644
index 000000000..49354933d
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/include/secp256k1_schnorr.h
@@ -0,0 +1,173 @@
+#ifndef _SECP256K1_SCHNORR_
+# define _SECP256K1_SCHNORR_
+
+# include "secp256k1.h"
+
+# ifdef __cplusplus
+extern "C" {
+# endif
+
+/** Create a signature using a custom EC-Schnorr-SHA256 construction. It
+ * produces non-malleable 64-byte signatures which support public key recovery
+ * batch validation, and multiparty signing.
+ * Returns: 1: signature created
+ * 0: the nonce generation function failed, or the private key was
+ * invalid.
+ * Args: ctx: pointer to a context object, initialized for signing
+ * (cannot be NULL)
+ * Out: sig64: pointer to a 64-byte array where the signature will be
+ * placed (cannot be NULL)
+ * In: msg32: the 32-byte message hash being signed (cannot be NULL)
+ * seckey: pointer to a 32-byte secret key (cannot be NULL)
+ * noncefp:pointer to a nonce generation function. If NULL,
+ * secp256k1_nonce_function_default is used
+ * ndata: pointer to arbitrary data used by the nonce generation
+ * function (can be NULL)
+ */
+SECP256K1_API int secp256k1_schnorr_sign(
+ const secp256k1_context* ctx,
+ unsigned char *sig64,
+ const unsigned char *msg32,
+ const unsigned char *seckey,
+ secp256k1_nonce_function noncefp,
+ const void *ndata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Verify a signature created by secp256k1_schnorr_sign.
+ * Returns: 1: correct signature
+ * 0: incorrect signature
+ * Args: ctx: a secp256k1 context object, initialized for verification.
+ * In: sig64: the 64-byte signature being verified (cannot be NULL)
+ * msg32: the 32-byte message hash being verified (cannot be NULL)
+ * pubkey: the public key to verify with (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_verify(
+ const secp256k1_context* ctx,
+ const unsigned char *sig64,
+ const unsigned char *msg32,
+ const secp256k1_pubkey *pubkey
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Recover an EC public key from a Schnorr signature created using
+ * secp256k1_schnorr_sign.
+ * Returns: 1: public key successfully recovered (which guarantees a correct
+ * signature).
+ * 0: otherwise.
+ * Args: ctx: pointer to a context object, initialized for
+ * verification (cannot be NULL)
+ * Out: pubkey: pointer to a pubkey to set to the recovered public key
+ * (cannot be NULL).
+ * In: sig64: signature as 64 byte array (cannot be NULL)
+ * msg32: the 32-byte message hash assumed to be signed (cannot
+ * be NULL)
+ */
+SECP256K1_API int secp256k1_schnorr_recover(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *sig64,
+ const unsigned char *msg32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Generate a nonce pair deterministically for use with
+ * secp256k1_schnorr_partial_sign.
+ * Returns: 1: valid nonce pair was generated.
+ * 0: otherwise (nonce generation function failed)
+ * Args: ctx: pointer to a context object, initialized for signing
+ * (cannot be NULL)
+ * Out: pubnonce: public side of the nonce (cannot be NULL)
+ * privnonce32: private side of the nonce (32 byte) (cannot be NULL)
+ * In: msg32: the 32-byte message hash assumed to be signed (cannot
+ * be NULL)
+ * sec32: the 32-byte private key (cannot be NULL)
+ * noncefp: pointer to a nonce generation function. If NULL,
+ * secp256k1_nonce_function_default is used
+ * noncedata: pointer to arbitrary data used by the nonce generation
+ * function (can be NULL)
+ *
+ * Do not use the output as a private/public key pair for signing/validation.
+ */
+SECP256K1_API int secp256k1_schnorr_generate_nonce_pair(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubnonce,
+ unsigned char *privnonce32,
+ const unsigned char *msg32,
+ const unsigned char *sec32,
+ secp256k1_nonce_function noncefp,
+ const void* noncedata
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Produce a partial Schnorr signature, which can be combined using
+ * secp256k1_schnorr_partial_combine, to end up with a full signature that is
+ * verifiable using secp256k1_schnorr_verify.
+ * Returns: 1: signature created succesfully.
+ * 0: no valid signature exists with this combination of keys, nonces
+ * and message (chance around 1 in 2^128)
+ * -1: invalid private key, nonce, or public nonces.
+ * Args: ctx: pointer to context object, initialized for signing (cannot
+ * be NULL)
+ * Out: sig64: pointer to 64-byte array to put partial signature in
+ * In: msg32: pointer to 32-byte message to sign
+ * sec32: pointer to 32-byte private key
+ * pubnonce_others: pointer to pubkey containing the sum of the other's
+ * nonces (see secp256k1_ec_pubkey_combine)
+ * secnonce32: pointer to 32-byte array containing our nonce
+ *
+ * The intended procedure for creating a multiparty signature is:
+ * - Each signer S[i] with private key x[i] and public key Q[i] runs
+ * secp256k1_schnorr_generate_nonce_pair to produce a pair (k[i],R[i]) of
+ * private/public nonces.
+ * - All signers communicate their public nonces to each other (revealing your
+ * private nonce can lead to discovery of your private key, so it should be
+ * considered secret).
+ * - All signers combine all the public nonces they received (excluding their
+ * own) using secp256k1_ec_pubkey_combine to obtain an
+ * Rall[i] = sum(R[0..i-1,i+1..n]).
+ * - All signers produce a partial signature using
+ * secp256k1_schnorr_partial_sign, passing in their own private key x[i],
+ * their own private nonce k[i], and the sum of the others' public nonces
+ * Rall[i].
+ * - All signers communicate their partial signatures to each other.
+ * - Someone combines all partial signatures using
+ * secp256k1_schnorr_partial_combine, to obtain a full signature.
+ * - The resulting signature is validatable using secp256k1_schnorr_verify, with
+ * public key equal to the result of secp256k1_ec_pubkey_combine of the
+ * signers' public keys (sum(Q[0..n])).
+ *
+ * Note that secp256k1_schnorr_partial_combine and secp256k1_ec_pubkey_combine
+ * function take their arguments in any order, and it is possible to
+ * pre-combine several inputs already with one call, and add more inputs later
+ * by calling the function again (they are commutative and associative).
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign(
+ const secp256k1_context* ctx,
+ unsigned char *sig64,
+ const unsigned char *msg32,
+ const unsigned char *sec32,
+ const secp256k1_pubkey *pubnonce_others,
+ const unsigned char *secnonce32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
+
+/** Combine multiple Schnorr partial signatures.
+ * Returns: 1: the passed signatures were succesfully combined.
+ * 0: the resulting signature is not valid (chance of 1 in 2^256)
+ * -1: some inputs were invalid, or the signatures were not created
+ * using the same set of nonces
+ * Args: ctx: pointer to a context object
+ * Out: sig64: pointer to a 64-byte array to place the combined signature
+ * (cannot be NULL)
+ * In: sig64sin: pointer to an array of n pointers to 64-byte input
+ * signatures
+ * n: the number of signatures to combine (at least 1)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_combine(
+ const secp256k1_context* ctx,
+ unsigned char *sig64,
+ const unsigned char * const * sig64sin,
+ int n
+) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+# ifdef __cplusplus
+}
+# endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in b/crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in
new file mode 100644
index 000000000..1c72dd000
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/libsecp256k1.pc.in
@@ -0,0 +1,13 @@
+prefix=@prefix@
+exec_prefix=@exec_prefix@
+libdir=@libdir@
+includedir=@includedir@
+
+Name: libsecp256k1
+Description: Optimized C library for EC operations on curve secp256k1
+URL: https://github.com/bitcoin/secp256k1
+Version: @PACKAGE_VERSION@
+Cflags: -I${includedir}
+Libs.private: @SECP_LIBS@
+Libs: -L${libdir} -lsecp256k1
+
diff --git a/crypto/secp256k1/libsecp256k1/obj/.gitignore b/crypto/secp256k1/libsecp256k1/obj/.gitignore
new file mode 100644
index 000000000..e69de29bb
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/obj/.gitignore
diff --git a/crypto/secp256k1/libsecp256k1/src/basic-config.h b/crypto/secp256k1/libsecp256k1/src/basic-config.h
new file mode 100644
index 000000000..c4c16eb7c
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/basic-config.h
@@ -0,0 +1,32 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_BASIC_CONFIG_
+#define _SECP256K1_BASIC_CONFIG_
+
+#ifdef USE_BASIC_CONFIG
+
+#undef USE_ASM_X86_64
+#undef USE_ENDOMORPHISM
+#undef USE_FIELD_10X26
+#undef USE_FIELD_5X52
+#undef USE_FIELD_INV_BUILTIN
+#undef USE_FIELD_INV_NUM
+#undef USE_NUM_GMP
+#undef USE_NUM_NONE
+#undef USE_SCALAR_4X64
+#undef USE_SCALAR_8X32
+#undef USE_SCALAR_INV_BUILTIN
+#undef USE_SCALAR_INV_NUM
+
+#define USE_NUM_NONE 1
+#define USE_FIELD_INV_BUILTIN 1
+#define USE_SCALAR_INV_BUILTIN 1
+#define USE_FIELD_10X26 1
+#define USE_SCALAR_8X32 1
+
+#endif // USE_BASIC_CONFIG
+#endif // _SECP256K1_BASIC_CONFIG_
diff --git a/crypto/secp256k1/libsecp256k1/src/bench.h b/crypto/secp256k1/libsecp256k1/src/bench.h
new file mode 100644
index 000000000..3a71b4aaf
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench.h
@@ -0,0 +1,66 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_BENCH_H_
+#define _SECP256K1_BENCH_H_
+
+#include <stdio.h>
+#include <math.h>
+#include "sys/time.h"
+
+static double gettimedouble(void) {
+ struct timeval tv;
+ gettimeofday(&tv, NULL);
+ return tv.tv_usec * 0.000001 + tv.tv_sec;
+}
+
+void print_number(double x) {
+ double y = x;
+ int c = 0;
+ if (y < 0.0) {
+ y = -y;
+ }
+ while (y < 100.0) {
+ y *= 10.0;
+ c++;
+ }
+ printf("%.*f", c, x);
+}
+
+void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) {
+ int i;
+ double min = HUGE_VAL;
+ double sum = 0.0;
+ double max = 0.0;
+ for (i = 0; i < count; i++) {
+ double begin, total;
+ if (setup != NULL) {
+ setup(data);
+ }
+ begin = gettimedouble();
+ benchmark(data);
+ total = gettimedouble() - begin;
+ if (teardown != NULL) {
+ teardown(data);
+ }
+ if (total < min) {
+ min = total;
+ }
+ if (total > max) {
+ max = total;
+ }
+ sum += total;
+ }
+ printf("%s: min ", name);
+ print_number(min * 1000000.0 / iter);
+ printf("us / avg ");
+ print_number((sum / count) * 1000000.0 / iter);
+ printf("us / max ");
+ print_number(max * 1000000.0 / iter);
+ printf("us\n");
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c b/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c
new file mode 100644
index 000000000..5a7c6376e
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c
@@ -0,0 +1,53 @@
+/**********************************************************************
+ * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#include <string.h>
+
+#include "include/secp256k1.h"
+#include "include/secp256k1_ecdh.h"
+#include "util.h"
+#include "bench.h"
+
+typedef struct {
+ secp256k1_context *ctx;
+ secp256k1_pubkey point;
+ unsigned char scalar[32];
+} bench_ecdh_t;
+
+static void bench_ecdh_setup(void* arg) {
+ int i;
+ bench_ecdh_t *data = (bench_ecdh_t*)arg;
+ const unsigned char point[] = {
+ 0x03,
+ 0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06,
+ 0xc2, 0x39, 0x5f, 0x94, 0x34, 0x87, 0x45, 0xfd,
+ 0x75, 0x7c, 0xe3, 0x0e, 0x4e, 0x8c, 0x90, 0xfb,
+ 0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f
+ };
+
+ data->ctx = secp256k1_context_create(0);
+ for (i = 0; i < 32; i++) {
+ data->scalar[i] = i + 1;
+ }
+ CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1);
+}
+
+static void bench_ecdh(void* arg) {
+ int i;
+ unsigned char res[32];
+ bench_ecdh_t *data = (bench_ecdh_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar) == 1);
+ }
+}
+
+int main(void) {
+ bench_ecdh_t data;
+
+ run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000);
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/bench_internal.c b/crypto/secp256k1/libsecp256k1/src/bench_internal.c
new file mode 100644
index 000000000..7809f5f8c
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench_internal.c
@@ -0,0 +1,354 @@
+/**********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+#include <stdio.h>
+
+#include "include/secp256k1.h"
+
+#include "util.h"
+#include "hash_impl.h"
+#include "num_impl.h"
+#include "field_impl.h"
+#include "group_impl.h"
+#include "scalar_impl.h"
+#include "ecmult_const_impl.h"
+#include "ecmult_impl.h"
+#include "bench.h"
+#include "secp256k1.c"
+
+typedef struct {
+ secp256k1_scalar scalar_x, scalar_y;
+ secp256k1_fe fe_x, fe_y;
+ secp256k1_ge ge_x, ge_y;
+ secp256k1_gej gej_x, gej_y;
+ unsigned char data[64];
+ int wnaf[256];
+} bench_inv_t;
+
+void bench_setup(void* arg) {
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ static const unsigned char init_x[32] = {
+ 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
+ 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
+ 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
+ 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
+ };
+
+ static const unsigned char init_y[32] = {
+ 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
+ 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
+ 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
+ 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
+ };
+
+ secp256k1_scalar_set_b32(&data->scalar_x, init_x, NULL);
+ secp256k1_scalar_set_b32(&data->scalar_y, init_y, NULL);
+ secp256k1_fe_set_b32(&data->fe_x, init_x);
+ secp256k1_fe_set_b32(&data->fe_y, init_y);
+ CHECK(secp256k1_ge_set_xo_var(&data->ge_x, &data->fe_x, 0));
+ CHECK(secp256k1_ge_set_xo_var(&data->ge_y, &data->fe_y, 1));
+ secp256k1_gej_set_ge(&data->gej_x, &data->ge_x);
+ secp256k1_gej_set_ge(&data->gej_y, &data->ge_y);
+ memcpy(data->data, init_x, 32);
+ memcpy(data->data + 32, init_y, 32);
+}
+
+void bench_scalar_add(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 2000000; i++) {
+ secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ }
+}
+
+void bench_scalar_negate(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 2000000; i++) {
+ secp256k1_scalar_negate(&data->scalar_x, &data->scalar_x);
+ }
+}
+
+void bench_scalar_sqr(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 200000; i++) {
+ secp256k1_scalar_sqr(&data->scalar_x, &data->scalar_x);
+ }
+}
+
+void bench_scalar_mul(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 200000; i++) {
+ secp256k1_scalar_mul(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ }
+}
+
+#ifdef USE_ENDOMORPHISM
+void bench_scalar_split(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_scalar l, r;
+ secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x);
+ secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ }
+}
+#endif
+
+void bench_scalar_inverse(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 2000; i++) {
+ secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x);
+ secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ }
+}
+
+void bench_scalar_inverse_var(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 2000; i++) {
+ secp256k1_scalar_inverse_var(&data->scalar_x, &data->scalar_x);
+ secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ }
+}
+
+void bench_field_normalize(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 2000000; i++) {
+ secp256k1_fe_normalize(&data->fe_x);
+ }
+}
+
+void bench_field_normalize_weak(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 2000000; i++) {
+ secp256k1_fe_normalize_weak(&data->fe_x);
+ }
+}
+
+void bench_field_mul(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 200000; i++) {
+ secp256k1_fe_mul(&data->fe_x, &data->fe_x, &data->fe_y);
+ }
+}
+
+void bench_field_sqr(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 200000; i++) {
+ secp256k1_fe_sqr(&data->fe_x, &data->fe_x);
+ }
+}
+
+void bench_field_inverse(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_fe_inv(&data->fe_x, &data->fe_x);
+ secp256k1_fe_add(&data->fe_x, &data->fe_y);
+ }
+}
+
+void bench_field_inverse_var(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_fe_inv_var(&data->fe_x, &data->fe_x);
+ secp256k1_fe_add(&data->fe_x, &data->fe_y);
+ }
+}
+
+void bench_field_sqrt_var(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_fe_sqrt_var(&data->fe_x, &data->fe_x);
+ secp256k1_fe_add(&data->fe_x, &data->fe_y);
+ }
+}
+
+void bench_group_double_var(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 200000; i++) {
+ secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL);
+ }
+}
+
+void bench_group_add_var(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 200000; i++) {
+ secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL);
+ }
+}
+
+void bench_group_add_affine(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 200000; i++) {
+ secp256k1_gej_add_ge(&data->gej_x, &data->gej_x, &data->ge_y);
+ }
+}
+
+void bench_group_add_affine_var(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 200000; i++) {
+ secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL);
+ }
+}
+
+void bench_ecmult_wnaf(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A);
+ secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ }
+}
+
+void bench_wnaf_const(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A);
+ secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
+ }
+}
+
+
+void bench_sha256(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+ secp256k1_sha256_t sha;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_sha256_initialize(&sha);
+ secp256k1_sha256_write(&sha, data->data, 32);
+ secp256k1_sha256_finalize(&sha, data->data);
+ }
+}
+
+void bench_hmac_sha256(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+ secp256k1_hmac_sha256_t hmac;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
+ secp256k1_hmac_sha256_write(&hmac, data->data, 32);
+ secp256k1_hmac_sha256_finalize(&hmac, data->data);
+ }
+}
+
+void bench_rfc6979_hmac_sha256(void* arg) {
+ int i;
+ bench_inv_t *data = (bench_inv_t*)arg;
+ secp256k1_rfc6979_hmac_sha256_t rng;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
+ }
+}
+
+void bench_context_verify(void* arg) {
+ int i;
+ (void)arg;
+ for (i = 0; i < 20; i++) {
+ secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY));
+ }
+}
+
+void bench_context_sign(void* arg) {
+ int i;
+ (void)arg;
+ for (i = 0; i < 200; i++) {
+ secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN));
+ }
+}
+
+
+int have_flag(int argc, char** argv, char *flag) {
+ char** argm = argv + argc;
+ argv++;
+ if (argv == argm) {
+ return 1;
+ }
+ while (argv != NULL && argv != argm) {
+ if (strcmp(*argv, flag) == 0) {
+ return 1;
+ }
+ argv++;
+ }
+ return 0;
+}
+
+int main(int argc, char **argv) {
+ bench_inv_t data;
+ if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000);
+ if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, 2000000);
+ if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, 200000);
+ if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, 200000);
+#ifdef USE_ENDOMORPHISM
+ if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, 20000);
+#endif
+ if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000);
+ if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000);
+
+ if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, 2000000);
+ if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, 2000000);
+ if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, 200000);
+ if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, 200000);
+ if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000);
+ if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000);
+ if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt_var", bench_field_sqrt_var, bench_setup, NULL, &data, 10, 20000);
+
+ if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000);
+ if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000);
+ if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000);
+ if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000);
+
+ if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000);
+ if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000);
+
+ if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, 20000);
+ if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
+ if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
+
+ if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20);
+ if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200);
+
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/bench_recover.c b/crypto/secp256k1/libsecp256k1/src/bench_recover.c
new file mode 100644
index 000000000..6489378cc
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench_recover.c
@@ -0,0 +1,60 @@
+/**********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#include "include/secp256k1.h"
+#include "include/secp256k1_recovery.h"
+#include "util.h"
+#include "bench.h"
+
+typedef struct {
+ secp256k1_context *ctx;
+ unsigned char msg[32];
+ unsigned char sig[64];
+} bench_recover_t;
+
+void bench_recover(void* arg) {
+ int i;
+ bench_recover_t *data = (bench_recover_t*)arg;
+ secp256k1_pubkey pubkey;
+ unsigned char pubkeyc[33];
+
+ for (i = 0; i < 20000; i++) {
+ int j;
+ size_t pubkeylen = 33;
+ secp256k1_ecdsa_recoverable_signature sig;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(data->ctx, &sig, data->sig, i % 2));
+ CHECK(secp256k1_ecdsa_recover(data->ctx, &pubkey, &sig, data->msg));
+ CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
+ for (j = 0; j < 32; j++) {
+ data->sig[j + 32] = data->msg[j]; /* Move former message to S. */
+ data->msg[j] = data->sig[j]; /* Move former R to message. */
+ data->sig[j] = pubkeyc[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */
+ }
+ }
+}
+
+void bench_recover_setup(void* arg) {
+ int i;
+ bench_recover_t *data = (bench_recover_t*)arg;
+
+ for (i = 0; i < 32; i++) {
+ data->msg[i] = 1 + i;
+ }
+ for (i = 0; i < 64; i++) {
+ data->sig[i] = 65 + i;
+ }
+}
+
+int main(void) {
+ bench_recover_t data;
+
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
+
+ run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, 20000);
+
+ secp256k1_context_destroy(data.ctx);
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c b/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c
new file mode 100644
index 000000000..5f137dda2
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench_schnorr_verify.c
@@ -0,0 +1,73 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#include <stdio.h>
+#include <string.h>
+
+#include "include/secp256k1.h"
+#include "include/secp256k1_schnorr.h"
+#include "util.h"
+#include "bench.h"
+
+typedef struct {
+ unsigned char key[32];
+ unsigned char sig[64];
+ unsigned char pubkey[33];
+ size_t pubkeylen;
+} benchmark_schnorr_sig_t;
+
+typedef struct {
+ secp256k1_context *ctx;
+ unsigned char msg[32];
+ benchmark_schnorr_sig_t sigs[64];
+ int numsigs;
+} benchmark_schnorr_verify_t;
+
+static void benchmark_schnorr_init(void* arg) {
+ int i, k;
+ benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
+
+ for (i = 0; i < 32; i++) {
+ data->msg[i] = 1 + i;
+ }
+ for (k = 0; k < data->numsigs; k++) {
+ secp256k1_pubkey pubkey;
+ for (i = 0; i < 32; i++) {
+ data->sigs[k].key[i] = 33 + i + k;
+ }
+ secp256k1_schnorr_sign(data->ctx, data->sigs[k].sig, data->msg, data->sigs[k].key, NULL, NULL);
+ data->sigs[k].pubkeylen = 33;
+ CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->sigs[k].key));
+ CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->sigs[k].pubkey, &data->sigs[k].pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
+ }
+}
+
+static void benchmark_schnorr_verify(void* arg) {
+ int i;
+ benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
+
+ for (i = 0; i < 20000 / data->numsigs; i++) {
+ secp256k1_pubkey pubkey;
+ data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
+ CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->sigs[0].pubkey, data->sigs[0].pubkeylen));
+ CHECK(secp256k1_schnorr_verify(data->ctx, data->sigs[0].sig, data->msg, &pubkey) == ((i & 0xFF) == 0));
+ data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
+ }
+}
+
+
+
+int main(void) {
+ benchmark_schnorr_verify_t data;
+
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+
+ data.numsigs = 1;
+ run_benchmark("schnorr_verify", benchmark_schnorr_verify, benchmark_schnorr_init, NULL, &data, 10, 20000);
+
+ secp256k1_context_destroy(data.ctx);
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/bench_sign.c b/crypto/secp256k1/libsecp256k1/src/bench_sign.c
new file mode 100644
index 000000000..ed7224d75
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench_sign.c
@@ -0,0 +1,56 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#include "include/secp256k1.h"
+#include "util.h"
+#include "bench.h"
+
+typedef struct {
+ secp256k1_context* ctx;
+ unsigned char msg[32];
+ unsigned char key[32];
+} bench_sign_t;
+
+static void bench_sign_setup(void* arg) {
+ int i;
+ bench_sign_t *data = (bench_sign_t*)arg;
+
+ for (i = 0; i < 32; i++) {
+ data->msg[i] = i + 1;
+ }
+ for (i = 0; i < 32; i++) {
+ data->key[i] = i + 65;
+ }
+}
+
+static void bench_sign(void* arg) {
+ int i;
+ bench_sign_t *data = (bench_sign_t*)arg;
+
+ unsigned char sig[74];
+ for (i = 0; i < 20000; i++) {
+ size_t siglen = 74;
+ int j;
+ secp256k1_ecdsa_signature signature;
+ CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL));
+ CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature));
+ for (j = 0; j < 32; j++) {
+ data->msg[j] = sig[j];
+ data->key[j] = sig[j + 32];
+ }
+ }
+}
+
+int main(void) {
+ bench_sign_t data;
+
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+
+ run_benchmark("ecdsa_sign", bench_sign, bench_sign_setup, NULL, &data, 10, 20000);
+
+ secp256k1_context_destroy(data.ctx);
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/bench_verify.c b/crypto/secp256k1/libsecp256k1/src/bench_verify.c
new file mode 100644
index 000000000..0cafbdc4e
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/bench_verify.c
@@ -0,0 +1,67 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#include <stdio.h>
+#include <string.h>
+
+#include "include/secp256k1.h"
+#include "util.h"
+#include "bench.h"
+
+typedef struct {
+ secp256k1_context *ctx;
+ unsigned char msg[32];
+ unsigned char key[32];
+ unsigned char sig[72];
+ size_t siglen;
+ unsigned char pubkey[33];
+ size_t pubkeylen;
+} benchmark_verify_t;
+
+static void benchmark_verify(void* arg) {
+ int i;
+ benchmark_verify_t* data = (benchmark_verify_t*)arg;
+
+ for (i = 0; i < 20000; i++) {
+ secp256k1_pubkey pubkey;
+ secp256k1_ecdsa_signature sig;
+ data->sig[data->siglen - 1] ^= (i & 0xFF);
+ data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
+ data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
+ CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1);
+ CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0));
+ data->sig[data->siglen - 1] ^= (i & 0xFF);
+ data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
+ data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
+ }
+}
+
+int main(void) {
+ int i;
+ secp256k1_pubkey pubkey;
+ secp256k1_ecdsa_signature sig;
+ benchmark_verify_t data;
+
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+
+ for (i = 0; i < 32; i++) {
+ data.msg[i] = 1 + i;
+ }
+ for (i = 0; i < 32; i++) {
+ data.key[i] = 33 + i;
+ }
+ data.siglen = 72;
+ CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
+ CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
+ CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
+ CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
+
+ run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000);
+
+ secp256k1_context_destroy(data.ctx);
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/ecdsa.h b/crypto/secp256k1/libsecp256k1/src/ecdsa.h
new file mode 100644
index 000000000..4c0a4a89e
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecdsa.h
@@ -0,0 +1,22 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECDSA_
+#define _SECP256K1_ECDSA_
+
+#include <stddef.h>
+
+#include "scalar.h"
+#include "group.h"
+#include "ecmult.h"
+
+static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
+static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
+static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
+static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
+static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h b/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h
new file mode 100644
index 000000000..4a172b3c5
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h
@@ -0,0 +1,264 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+
+#ifndef _SECP256K1_ECDSA_IMPL_H_
+#define _SECP256K1_ECDSA_IMPL_H_
+
+#include "scalar.h"
+#include "field.h"
+#include "group.h"
+#include "ecmult.h"
+#include "ecmult_gen.h"
+#include "ecdsa.h"
+
+/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
+ * sage: for t in xrange(1023, -1, -1):
+ * .. p = 2**256 - 2**32 - t
+ * .. if p.is_prime():
+ * .. print '%x'%p
+ * .. break
+ * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
+ * sage: a = 0
+ * sage: b = 7
+ * sage: F = FiniteField (p)
+ * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
+ * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
+ */
+static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
+ 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
+);
+
+/** Difference between field and order, values 'p' and 'n' values defined in
+ * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
+ * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
+ * sage: a = 0
+ * sage: b = 7
+ * sage: F = FiniteField (p)
+ * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
+ * '14551231950b75fc4402da1722fc9baee'
+ */
+static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
+ 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
+);
+
+static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
+ unsigned char ra[32] = {0}, sa[32] = {0};
+ const unsigned char *rp;
+ const unsigned char *sp;
+ size_t lenr;
+ size_t lens;
+ int overflow;
+ if (sig[0] != 0x30) {
+ return 0;
+ }
+ lenr = sig[3];
+ if (5+lenr >= size) {
+ return 0;
+ }
+ lens = sig[lenr+5];
+ if (sig[1] != lenr+lens+4) {
+ return 0;
+ }
+ if (lenr+lens+6 > size) {
+ return 0;
+ }
+ if (sig[2] != 0x02) {
+ return 0;
+ }
+ if (lenr == 0) {
+ return 0;
+ }
+ if (sig[lenr+4] != 0x02) {
+ return 0;
+ }
+ if (lens == 0) {
+ return 0;
+ }
+ sp = sig + 6 + lenr;
+ while (lens > 0 && sp[0] == 0) {
+ lens--;
+ sp++;
+ }
+ if (lens > 32) {
+ return 0;
+ }
+ rp = sig + 4;
+ while (lenr > 0 && rp[0] == 0) {
+ lenr--;
+ rp++;
+ }
+ if (lenr > 32) {
+ return 0;
+ }
+ memcpy(ra + 32 - lenr, rp, lenr);
+ memcpy(sa + 32 - lens, sp, lens);
+ overflow = 0;
+ secp256k1_scalar_set_b32(rr, ra, &overflow);
+ if (overflow) {
+ return 0;
+ }
+ secp256k1_scalar_set_b32(rs, sa, &overflow);
+ if (overflow) {
+ return 0;
+ }
+ return 1;
+}
+
+static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
+ unsigned char r[33] = {0}, s[33] = {0};
+ unsigned char *rp = r, *sp = s;
+ size_t lenR = 33, lenS = 33;
+ secp256k1_scalar_get_b32(&r[1], ar);
+ secp256k1_scalar_get_b32(&s[1], as);
+ while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
+ while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
+ if (*size < 6+lenS+lenR) {
+ *size = 6 + lenS + lenR;
+ return 0;
+ }
+ *size = 6 + lenS + lenR;
+ sig[0] = 0x30;
+ sig[1] = 4 + lenS + lenR;
+ sig[2] = 0x02;
+ sig[3] = lenR;
+ memcpy(sig+4, rp, lenR);
+ sig[4+lenR] = 0x02;
+ sig[5+lenR] = lenS;
+ memcpy(sig+lenR+6, sp, lenS);
+ return 1;
+}
+
+static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
+ unsigned char c[32];
+ secp256k1_scalar sn, u1, u2;
+ secp256k1_fe xr;
+ secp256k1_gej pubkeyj;
+ secp256k1_gej pr;
+
+ if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
+ return 0;
+ }
+
+ secp256k1_scalar_inverse_var(&sn, sigs);
+ secp256k1_scalar_mul(&u1, &sn, message);
+ secp256k1_scalar_mul(&u2, &sn, sigr);
+ secp256k1_gej_set_ge(&pubkeyj, pubkey);
+ secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
+ if (secp256k1_gej_is_infinity(&pr)) {
+ return 0;
+ }
+ secp256k1_scalar_get_b32(c, sigr);
+ secp256k1_fe_set_b32(&xr, c);
+
+ /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
+ * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
+ * compute the remainder modulo n, and compare it to xr. However:
+ *
+ * xr == X(pr) mod n
+ * <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
+ * [Since 2 * n > p, h can only be 0 or 1]
+ * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
+ * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
+ * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
+ * [Multiplying both sides of the equations by pr.z^2 mod p]
+ * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
+ *
+ * Thus, we can avoid the inversion, but we have to check both cases separately.
+ * secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
+ */
+ if (secp256k1_gej_eq_x_var(&xr, &pr)) {
+ /* xr.x == xr * xr.z^2 mod p, so the signature is valid. */
+ return 1;
+ }
+ if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
+ /* xr + p >= n, so we can skip testing the second case. */
+ return 0;
+ }
+ secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
+ if (secp256k1_gej_eq_x_var(&xr, &pr)) {
+ /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
+ return 1;
+ }
+ return 0;
+}
+
+static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
+ unsigned char brx[32];
+ secp256k1_fe fx;
+ secp256k1_ge x;
+ secp256k1_gej xj;
+ secp256k1_scalar rn, u1, u2;
+ secp256k1_gej qj;
+
+ if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
+ return 0;
+ }
+
+ secp256k1_scalar_get_b32(brx, sigr);
+ VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */
+ if (recid & 2) {
+ if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
+ return 0;
+ }
+ secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
+ }
+ if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
+ return 0;
+ }
+ secp256k1_gej_set_ge(&xj, &x);
+ secp256k1_scalar_inverse_var(&rn, sigr);
+ secp256k1_scalar_mul(&u1, &rn, message);
+ secp256k1_scalar_negate(&u1, &u1);
+ secp256k1_scalar_mul(&u2, &rn, sigs);
+ secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
+ secp256k1_ge_set_gej_var(pubkey, &qj);
+ return !secp256k1_gej_is_infinity(&qj);
+}
+
+static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
+ unsigned char b[32];
+ secp256k1_gej rp;
+ secp256k1_ge r;
+ secp256k1_scalar n;
+ int overflow = 0;
+
+ secp256k1_ecmult_gen(ctx, &rp, nonce);
+ secp256k1_ge_set_gej(&r, &rp);
+ secp256k1_fe_normalize(&r.x);
+ secp256k1_fe_normalize(&r.y);
+ secp256k1_fe_get_b32(b, &r.x);
+ secp256k1_scalar_set_b32(sigr, b, &overflow);
+ if (secp256k1_scalar_is_zero(sigr)) {
+ /* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
+ secp256k1_gej_clear(&rp);
+ secp256k1_ge_clear(&r);
+ return 0;
+ }
+ if (recid) {
+ *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
+ }
+ secp256k1_scalar_mul(&n, sigr, seckey);
+ secp256k1_scalar_add(&n, &n, message);
+ secp256k1_scalar_inverse(sigs, nonce);
+ secp256k1_scalar_mul(sigs, sigs, &n);
+ secp256k1_scalar_clear(&n);
+ secp256k1_gej_clear(&rp);
+ secp256k1_ge_clear(&r);
+ if (secp256k1_scalar_is_zero(sigs)) {
+ return 0;
+ }
+ if (secp256k1_scalar_is_high(sigs)) {
+ secp256k1_scalar_negate(sigs, sigs);
+ if (recid) {
+ *recid ^= 1;
+ }
+ }
+ return 1;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/eckey.h b/crypto/secp256k1/libsecp256k1/src/eckey.h
new file mode 100644
index 000000000..71c4096df
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/eckey.h
@@ -0,0 +1,28 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECKEY_
+#define _SECP256K1_ECKEY_
+
+#include <stddef.h>
+
+#include "group.h"
+#include "scalar.h"
+#include "ecmult.h"
+#include "ecmult_gen.h"
+
+static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
+static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags);
+
+static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen);
+static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags);
+
+static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
+static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
+static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
+static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/eckey_impl.h b/crypto/secp256k1/libsecp256k1/src/eckey_impl.h
new file mode 100644
index 000000000..ae4424015
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/eckey_impl.h
@@ -0,0 +1,202 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECKEY_IMPL_H_
+#define _SECP256K1_ECKEY_IMPL_H_
+
+#include "eckey.h"
+
+#include "scalar.h"
+#include "field.h"
+#include "group.h"
+#include "ecmult_gen.h"
+
+static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
+ if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) {
+ secp256k1_fe x;
+ return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == 0x03);
+ } else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
+ secp256k1_fe x, y;
+ if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
+ return 0;
+ }
+ secp256k1_ge_set_xy(elem, &x, &y);
+ if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07)) {
+ return 0;
+ }
+ return secp256k1_ge_is_valid_var(elem);
+ } else {
+ return 0;
+ }
+}
+
+static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags) {
+ if (secp256k1_ge_is_infinity(elem)) {
+ return 0;
+ }
+ secp256k1_fe_normalize_var(&elem->x);
+ secp256k1_fe_normalize_var(&elem->y);
+ secp256k1_fe_get_b32(&pub[1], &elem->x);
+ if (flags & SECP256K1_EC_COMPRESSED) {
+ *size = 33;
+ pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00);
+ } else {
+ *size = 65;
+ pub[0] = 0x04;
+ secp256k1_fe_get_b32(&pub[33], &elem->y);
+ }
+ return 1;
+}
+
+static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen) {
+ unsigned char c[32] = {0};
+ const unsigned char *end = privkey + privkeylen;
+ int lenb = 0;
+ int len = 0;
+ int overflow = 0;
+ /* sequence header */
+ if (end < privkey+1 || *privkey != 0x30) {
+ return 0;
+ }
+ privkey++;
+ /* sequence length constructor */
+ if (end < privkey+1 || !(*privkey & 0x80)) {
+ return 0;
+ }
+ lenb = *privkey & ~0x80; privkey++;
+ if (lenb < 1 || lenb > 2) {
+ return 0;
+ }
+ if (end < privkey+lenb) {
+ return 0;
+ }
+ /* sequence length */
+ len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
+ privkey += lenb;
+ if (end < privkey+len) {
+ return 0;
+ }
+ /* sequence element 0: version number (=1) */
+ if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
+ return 0;
+ }
+ privkey += 3;
+ /* sequence element 1: octet string, up to 32 bytes */
+ if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
+ return 0;
+ }
+ memcpy(c + 32 - privkey[1], privkey + 2, privkey[1]);
+ secp256k1_scalar_set_b32(key, c, &overflow);
+ memset(c, 0, 32);
+ return !overflow;
+}
+
+static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags) {
+ secp256k1_gej rp;
+ secp256k1_ge r;
+ size_t pubkeylen = 0;
+ secp256k1_ecmult_gen(ctx, &rp, key);
+ secp256k1_ge_set_gej(&r, &rp);
+ if (flags & SECP256K1_EC_COMPRESSED) {
+ static const unsigned char begin[] = {
+ 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
+ };
+ static const unsigned char middle[] = {
+ 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
+ 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
+ 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
+ 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
+ 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
+ 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
+ };
+ unsigned char *ptr = privkey;
+ memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
+ secp256k1_scalar_get_b32(ptr, key); ptr += 32;
+ memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
+ if (!secp256k1_eckey_pubkey_serialize(&r, ptr, &pubkeylen, 1)) {
+ return 0;
+ }
+ ptr += pubkeylen;
+ *privkeylen = ptr - privkey;
+ } else {
+ static const unsigned char begin[] = {
+ 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
+ };
+ static const unsigned char middle[] = {
+ 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
+ 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
+ 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
+ 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
+ 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
+ 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
+ 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
+ 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
+ };
+ unsigned char *ptr = privkey;
+ memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
+ secp256k1_scalar_get_b32(ptr, key); ptr += 32;
+ memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
+ if (!secp256k1_eckey_pubkey_serialize(&r, ptr, &pubkeylen, 0)) {
+ return 0;
+ }
+ ptr += pubkeylen;
+ *privkeylen = ptr - privkey;
+ }
+ return 1;
+}
+
+static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
+ secp256k1_scalar_add(key, key, tweak);
+ if (secp256k1_scalar_is_zero(key)) {
+ return 0;
+ }
+ return 1;
+}
+
+static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
+ secp256k1_gej pt;
+ secp256k1_scalar one;
+ secp256k1_gej_set_ge(&pt, key);
+ secp256k1_scalar_set_int(&one, 1);
+ secp256k1_ecmult(ctx, &pt, &pt, &one, tweak);
+
+ if (secp256k1_gej_is_infinity(&pt)) {
+ return 0;
+ }
+ secp256k1_ge_set_gej(key, &pt);
+ return 1;
+}
+
+static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
+ if (secp256k1_scalar_is_zero(tweak)) {
+ return 0;
+ }
+
+ secp256k1_scalar_mul(key, key, tweak);
+ return 1;
+}
+
+static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
+ secp256k1_scalar zero;
+ secp256k1_gej pt;
+ if (secp256k1_scalar_is_zero(tweak)) {
+ return 0;
+ }
+
+ secp256k1_scalar_set_int(&zero, 0);
+ secp256k1_gej_set_ge(&pt, key);
+ secp256k1_ecmult(ctx, &pt, &pt, tweak, &zero);
+ secp256k1_ge_set_gej(key, &pt);
+ return 1;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult.h b/crypto/secp256k1/libsecp256k1/src/ecmult.h
new file mode 100644
index 000000000..20484134f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult.h
@@ -0,0 +1,31 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_
+#define _SECP256K1_ECMULT_
+
+#include "num.h"
+#include "group.h"
+
+typedef struct {
+ /* For accelerating the computation of a*P + b*G: */
+ secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
+#ifdef USE_ENDOMORPHISM
+ secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
+#endif
+} secp256k1_ecmult_context;
+
+static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx);
+static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb);
+static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
+ const secp256k1_ecmult_context *src, const secp256k1_callback *cb);
+static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx);
+static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx);
+
+/** Double multiply: R = na*A + ng*G */
+static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_const.h b/crypto/secp256k1/libsecp256k1/src/ecmult_const.h
new file mode 100644
index 000000000..2b0097655
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_const.h
@@ -0,0 +1,15 @@
+/**********************************************************************
+ * Copyright (c) 2015 Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_CONST_
+#define _SECP256K1_ECMULT_CONST_
+
+#include "scalar.h"
+#include "group.h"
+
+static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h
new file mode 100644
index 000000000..90ac94770
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h
@@ -0,0 +1,260 @@
+/**********************************************************************
+ * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_CONST_IMPL_
+#define _SECP256K1_ECMULT_CONST_IMPL_
+
+#include "scalar.h"
+#include "group.h"
+#include "ecmult_const.h"
+#include "ecmult_impl.h"
+
+#ifdef USE_ENDOMORPHISM
+ #define WNAF_BITS 128
+#else
+ #define WNAF_BITS 256
+#endif
+#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
+
+/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
+#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
+ int m; \
+ int abs_n = (n) * (((n) > 0) * 2 - 1); \
+ int idx_n = abs_n / 2; \
+ secp256k1_fe neg_y; \
+ VERIFY_CHECK(((n) & 1) == 1); \
+ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
+ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
+ VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
+ VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
+ for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
+ /* This loop is used to avoid secret data in array indices. See
+ * the comment in ecmult_gen_impl.h for rationale. */ \
+ secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
+ secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
+ } \
+ (r)->infinity = 0; \
+ secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
+ secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
+} while(0)
+
+
+/** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val)
+ * with the following guarantees:
+ * - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
+ * - each wnaf[i] is nonzero
+ * - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w
+ *
+ * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
+ * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
+ * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
+ *
+ * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
+ */
+static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
+ int global_sign;
+ int skew = 0;
+ int word = 0;
+ /* 1 2 3 */
+ int u_last;
+ int u;
+
+#ifdef USE_ENDOMORPHISM
+ int flip;
+ int bit;
+ secp256k1_scalar neg_s;
+ int not_neg_one;
+ /* If we are using the endomorphism, we cannot handle even numbers by negating
+ * them, since we are working with 128-bit numbers whose negations would be 256
+ * bits, eliminating the performance advantage. Instead we use a technique from
+ * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
+ * or 2 (for odd) to the number we are encoding, then compensating after the
+ * multiplication. */
+ /* Negative 128-bit numbers will be negated, since otherwise they are 256-bit */
+ flip = secp256k1_scalar_is_high(&s);
+ /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
+ bit = flip ^ (s.d[0] & 1);
+ /* We check for negative one, since adding 2 to it will cause an overflow */
+ secp256k1_scalar_negate(&neg_s, &s);
+ not_neg_one = !secp256k1_scalar_is_one(&neg_s);
+ secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
+ /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
+ * that we added two to it and flipped it. In fact for -1 these operations are
+ * identical. We only flipped, but since skewing is required (in the sense that
+ * the skew must be 1 or 2, never zero) and flipping is not, we need to change
+ * our flags to claim that we only skewed. */
+ global_sign = secp256k1_scalar_cond_negate(&s, flip);
+ global_sign *= not_neg_one * 2 - 1;
+ skew = 1 << bit;
+#else
+ /* Otherwise, we just negate to force oddness */
+ int is_even = secp256k1_scalar_is_even(&s);
+ global_sign = secp256k1_scalar_cond_negate(&s, is_even);
+#endif
+
+ /* 4 */
+ u_last = secp256k1_scalar_shr_int(&s, w);
+ while (word * w < WNAF_BITS) {
+ int sign;
+ int even;
+
+ /* 4.1 4.4 */
+ u = secp256k1_scalar_shr_int(&s, w);
+ /* 4.2 */
+ even = ((u & 1) == 0);
+ sign = 2 * (u_last > 0) - 1;
+ u += sign * even;
+ u_last -= sign * even * (1 << w);
+
+ /* 4.3, adapted for global sign change */
+ wnaf[word++] = u_last * global_sign;
+
+ u_last = u;
+ }
+ wnaf[word] = u * global_sign;
+
+ VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
+ VERIFY_CHECK(word == WNAF_SIZE(w));
+ return skew;
+}
+
+
+static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
+ secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
+ secp256k1_ge tmpa;
+ secp256k1_fe Z;
+
+#ifdef USE_ENDOMORPHISM
+ secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
+ int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
+ int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
+ int skew_1;
+ int skew_lam;
+ secp256k1_scalar q_1, q_lam;
+#else
+ int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)];
+#endif
+
+ int i;
+ secp256k1_scalar sc = *scalar;
+
+ /* build wnaf representation for q. */
+#ifdef USE_ENDOMORPHISM
+ /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
+ secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
+ /* no need for zero correction when using endomorphism since even
+ * numbers have one added to them anyway */
+ skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
+ skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
+#else
+ int is_zero = secp256k1_scalar_is_zero(scalar);
+ /* the wNAF ladder cannot handle zero, so bump this to one .. we will
+ * correct the result after the fact */
+ sc.d[0] += is_zero;
+ VERIFY_CHECK(!secp256k1_scalar_is_zero(&sc));
+
+ secp256k1_wnaf_const(wnaf, sc, WINDOW_A - 1);
+#endif
+
+ /* Calculate odd multiples of a.
+ * All multiples are brought to the same Z 'denominator', which is stored
+ * in Z. Due to secp256k1' isomorphism we can do all operations pretending
+ * that the Z coordinate was 1, use affine addition formulae, and correct
+ * the Z coordinate of the result once at the end.
+ */
+ secp256k1_gej_set_ge(r, a);
+ secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
+ for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
+ secp256k1_fe_normalize_weak(&pre_a[i].y);
+ }
+#ifdef USE_ENDOMORPHISM
+ for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
+ secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
+ }
+#endif
+
+ /* first loop iteration (separated out so we can directly set r, rather
+ * than having it start at infinity, get doubled several times, then have
+ * its new value added to it) */
+#ifdef USE_ENDOMORPHISM
+ i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
+ VERIFY_CHECK(i != 0);
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
+ secp256k1_gej_set_ge(r, &tmpa);
+
+ i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
+ VERIFY_CHECK(i != 0);
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
+ secp256k1_gej_add_ge(r, r, &tmpa);
+#else
+ i = wnaf[WNAF_SIZE(WINDOW_A - 1)];
+ VERIFY_CHECK(i != 0);
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
+ secp256k1_gej_set_ge(r, &tmpa);
+#endif
+ /* remaining loop iterations */
+ for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
+ int n;
+ int j;
+ for (j = 0; j < WINDOW_A - 1; ++j) {
+ secp256k1_gej_double_nonzero(r, r, NULL);
+ }
+#ifdef USE_ENDOMORPHISM
+ n = wnaf_1[i];
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
+ VERIFY_CHECK(n != 0);
+ secp256k1_gej_add_ge(r, r, &tmpa);
+
+ n = wnaf_lam[i];
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
+ VERIFY_CHECK(n != 0);
+ secp256k1_gej_add_ge(r, r, &tmpa);
+#else
+ n = wnaf[i];
+ VERIFY_CHECK(n != 0);
+ ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
+ secp256k1_gej_add_ge(r, r, &tmpa);
+#endif
+ }
+
+ secp256k1_fe_mul(&r->z, &r->z, &Z);
+
+#ifdef USE_ENDOMORPHISM
+ {
+ /* Correct for wNAF skew */
+ secp256k1_ge correction = *a;
+ secp256k1_ge_storage correction_1_stor;
+ secp256k1_ge_storage correction_lam_stor;
+ secp256k1_ge_storage a2_stor;
+ secp256k1_gej tmpj;
+ secp256k1_gej_set_ge(&tmpj, &correction);
+ secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
+ secp256k1_ge_set_gej(&correction, &tmpj);
+ secp256k1_ge_to_storage(&correction_1_stor, a);
+ secp256k1_ge_to_storage(&correction_lam_stor, a);
+ secp256k1_ge_to_storage(&a2_stor, &correction);
+
+ /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
+ secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
+ secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
+
+ /* Apply the correction */
+ secp256k1_ge_from_storage(&correction, &correction_1_stor);
+ secp256k1_ge_neg(&correction, &correction);
+ secp256k1_gej_add_ge(r, r, &correction);
+
+ secp256k1_ge_from_storage(&correction, &correction_lam_stor);
+ secp256k1_ge_neg(&correction, &correction);
+ secp256k1_ge_mul_lambda(&correction, &correction);
+ secp256k1_gej_add_ge(r, r, &correction);
+ }
+#else
+ /* correct for zero */
+ r->infinity |= is_zero;
+#endif
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h b/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h
new file mode 100644
index 000000000..eb2cc9ead
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h
@@ -0,0 +1,43 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_GEN_
+#define _SECP256K1_ECMULT_GEN_
+
+#include "scalar.h"
+#include "group.h"
+
+typedef struct {
+ /* For accelerating the computation of a*G:
+ * To harden against timing attacks, use the following mechanism:
+ * * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
+ * * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
+ * * U_i = U * 2^i (for i=0..62)
+ * * U_i = U * (1-2^63) (for i=63)
+ * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
+ * For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
+ * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
+ * None of the resulting prec group elements have a known scalar, and neither do any of
+ * the intermediate sums while computing a*G.
+ */
+ secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
+ secp256k1_scalar blind;
+ secp256k1_gej initial;
+} secp256k1_ecmult_gen_context;
+
+static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx);
+static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb);
+static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
+ const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb);
+static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
+static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx);
+
+/** Multiply with the generator: R = a*G */
+static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
+
+static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h
new file mode 100644
index 000000000..2ee27377f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h
@@ -0,0 +1,205 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
+#define _SECP256K1_ECMULT_GEN_IMPL_H_
+
+#include "scalar.h"
+#include "group.h"
+#include "ecmult_gen.h"
+#include "hash_impl.h"
+#ifdef USE_ECMULT_STATIC_PRECOMPUTATION
+#include "ecmult_static_context.h"
+#endif
+static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
+ ctx->prec = NULL;
+}
+
+static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
+#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
+ secp256k1_ge prec[1024];
+ secp256k1_gej gj;
+ secp256k1_gej nums_gej;
+ int i, j;
+#endif
+
+ if (ctx->prec != NULL) {
+ return;
+ }
+#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
+ ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
+
+ /* get the generator */
+ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
+
+ /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
+ {
+ static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
+ secp256k1_fe nums_x;
+ secp256k1_ge nums_ge;
+ VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
+ VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
+ secp256k1_gej_set_ge(&nums_gej, &nums_ge);
+ /* Add G to make the bits in x uniformly distributed. */
+ secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
+ }
+
+ /* compute prec. */
+ {
+ secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
+ secp256k1_gej gbase;
+ secp256k1_gej numsbase;
+ gbase = gj; /* 16^j * G */
+ numsbase = nums_gej; /* 2^j * nums. */
+ for (j = 0; j < 64; j++) {
+ /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
+ precj[j*16] = numsbase;
+ for (i = 1; i < 16; i++) {
+ secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
+ }
+ /* Multiply gbase by 16. */
+ for (i = 0; i < 4; i++) {
+ secp256k1_gej_double_var(&gbase, &gbase, NULL);
+ }
+ /* Multiply numbase by 2. */
+ secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
+ if (j == 62) {
+ /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
+ secp256k1_gej_neg(&numsbase, &numsbase);
+ secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
+ }
+ }
+ secp256k1_ge_set_all_gej_var(1024, prec, precj, cb);
+ }
+ for (j = 0; j < 64; j++) {
+ for (i = 0; i < 16; i++) {
+ secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
+ }
+ }
+#else
+ (void)cb;
+ ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
+#endif
+ secp256k1_ecmult_gen_blind(ctx, NULL);
+}
+
+static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
+ return ctx->prec != NULL;
+}
+
+static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
+ const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
+ if (src->prec == NULL) {
+ dst->prec = NULL;
+ } else {
+#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
+ dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
+ memcpy(dst->prec, src->prec, sizeof(*dst->prec));
+#else
+ (void)cb;
+ dst->prec = src->prec;
+#endif
+ dst->initial = src->initial;
+ dst->blind = src->blind;
+ }
+}
+
+static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
+#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
+ free(ctx->prec);
+#endif
+ secp256k1_scalar_clear(&ctx->blind);
+ secp256k1_gej_clear(&ctx->initial);
+ ctx->prec = NULL;
+}
+
+static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
+ secp256k1_ge add;
+ secp256k1_ge_storage adds;
+ secp256k1_scalar gnb;
+ int bits;
+ int i, j;
+ memset(&adds, 0, sizeof(adds));
+ *r = ctx->initial;
+ /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
+ secp256k1_scalar_add(&gnb, gn, &ctx->blind);
+ add.infinity = 0;
+ for (j = 0; j < 64; j++) {
+ bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
+ for (i = 0; i < 16; i++) {
+ /** This uses a conditional move to avoid any secret data in array indexes.
+ * _Any_ use of secret indexes has been demonstrated to result in timing
+ * sidechannels, even when the cache-line access patterns are uniform.
+ * See also:
+ * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
+ * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
+ * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
+ * by Dag Arne Osvik, Adi Shamir, and Eran Tromer
+ * (http://www.tau.ac.il/~tromer/papers/cache.pdf)
+ */
+ secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
+ }
+ secp256k1_ge_from_storage(&add, &adds);
+ secp256k1_gej_add_ge(r, r, &add);
+ }
+ bits = 0;
+ secp256k1_ge_clear(&add);
+ secp256k1_scalar_clear(&gnb);
+}
+
+/* Setup blinding values for secp256k1_ecmult_gen. */
+static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
+ secp256k1_scalar b;
+ secp256k1_gej gb;
+ secp256k1_fe s;
+ unsigned char nonce32[32];
+ secp256k1_rfc6979_hmac_sha256_t rng;
+ int retry;
+ unsigned char keydata[64] = {0};
+ if (seed32 == NULL) {
+ /* When seed is NULL, reset the initial point and blinding value. */
+ secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
+ secp256k1_gej_neg(&ctx->initial, &ctx->initial);
+ secp256k1_scalar_set_int(&ctx->blind, 1);
+ }
+ /* The prior blinding value (if not reset) is chained forward by including it in the hash. */
+ secp256k1_scalar_get_b32(nonce32, &ctx->blind);
+ /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
+ * and guards against weak or adversarial seeds. This is a simpler and safer interface than
+ * asking the caller for blinding values directly and expecting them to retry on failure.
+ */
+ memcpy(keydata, nonce32, 32);
+ if (seed32 != NULL) {
+ memcpy(keydata + 32, seed32, 32);
+ }
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
+ memset(keydata, 0, sizeof(keydata));
+ /* Retry for out of range results to achieve uniformity. */
+ do {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
+ retry = !secp256k1_fe_set_b32(&s, nonce32);
+ retry |= secp256k1_fe_is_zero(&s);
+ } while (retry);
+ /* Randomize the projection to defend against multiplier sidechannels. */
+ secp256k1_gej_rescale(&ctx->initial, &s);
+ secp256k1_fe_clear(&s);
+ do {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
+ secp256k1_scalar_set_b32(&b, nonce32, &retry);
+ /* A blinding value of 0 works, but would undermine the projection hardening. */
+ retry |= secp256k1_scalar_is_zero(&b);
+ } while (retry);
+ secp256k1_rfc6979_hmac_sha256_finalize(&rng);
+ memset(nonce32, 0, 32);
+ secp256k1_ecmult_gen(ctx, &gb, &b);
+ secp256k1_scalar_negate(&b, &b);
+ ctx->blind = b;
+ ctx->initial = gb;
+ secp256k1_scalar_clear(&b);
+ secp256k1_gej_clear(&gb);
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h b/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h
new file mode 100644
index 000000000..e6e5f4718
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h
@@ -0,0 +1,389 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_ECMULT_IMPL_H_
+#define _SECP256K1_ECMULT_IMPL_H_
+
+#include "group.h"
+#include "scalar.h"
+#include "ecmult.h"
+
+/* optimal for 128-bit and 256-bit exponents. */
+#define WINDOW_A 5
+
+/** larger numbers may result in slightly better performance, at the cost of
+ exponentially larger precomputed tables. */
+#ifdef USE_ENDOMORPHISM
+/** Two tables for window size 15: 1.375 MiB. */
+#define WINDOW_G 15
+#else
+/** One table for window size 16: 1.375 MiB. */
+#define WINDOW_G 16
+#endif
+
+/** The number of entries a table with precomputed multiples needs to have. */
+#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
+
+/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
+ * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
+ * contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
+ * Prej's Z values are undefined, except for the last value.
+ */
+static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
+ secp256k1_gej d;
+ secp256k1_ge a_ge, d_ge;
+ int i;
+
+ VERIFY_CHECK(!a->infinity);
+
+ secp256k1_gej_double_var(&d, a, NULL);
+
+ /*
+ * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
+ * of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
+ */
+ d_ge.x = d.x;
+ d_ge.y = d.y;
+ d_ge.infinity = 0;
+
+ secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
+ prej[0].x = a_ge.x;
+ prej[0].y = a_ge.y;
+ prej[0].z = a->z;
+ prej[0].infinity = 0;
+
+ zr[0] = d.z;
+ for (i = 1; i < n; i++) {
+ secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
+ }
+
+ /*
+ * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
+ * the final point's z coordinate is actually used though, so just update that.
+ */
+ secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
+}
+
+/** Fill a table 'pre' with precomputed odd multiples of a.
+ *
+ * There are two versions of this function:
+ * - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its
+ * resulting point set to a single constant Z denominator, stores the X and Y
+ * coordinates as ge_storage points in pre, and stores the global Z in rz.
+ * It only operates on tables sized for WINDOW_A wnaf multiples.
+ * - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its
+ * resulting point set to actually affine points, and stores those in pre.
+ * It operates on tables of any size, but uses heap-allocated temporaries.
+ *
+ * To compute a*P + b*G, we compute a table for P using the first function,
+ * and for G using the second (which requires an inverse, but it only needs to
+ * happen once).
+ */
+static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
+ secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
+ secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
+
+ /* Compute the odd multiples in Jacobian form. */
+ secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
+ /* Bring them to the same Z denominator. */
+ secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
+}
+
+static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
+ secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
+ secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
+ secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
+ int i;
+
+ /* Compute the odd multiples in Jacobian form. */
+ secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
+ /* Convert them in batch to affine coordinates. */
+ secp256k1_ge_set_table_gej_var(n, prea, prej, zr);
+ /* Convert them to compact storage form. */
+ for (i = 0; i < n; i++) {
+ secp256k1_ge_to_storage(&pre[i], &prea[i]);
+ }
+
+ free(prea);
+ free(prej);
+ free(zr);
+}
+
+/** The following two macro retrieves a particular odd multiple from a table
+ * of precomputed multiples. */
+#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
+ VERIFY_CHECK(((n) & 1) == 1); \
+ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
+ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
+ if ((n) > 0) { \
+ *(r) = (pre)[((n)-1)/2]; \
+ } else { \
+ secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
+ } \
+} while(0)
+
+#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
+ VERIFY_CHECK(((n) & 1) == 1); \
+ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
+ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
+ if ((n) > 0) { \
+ secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
+ } else { \
+ secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
+ secp256k1_ge_neg((r), (r)); \
+ } \
+} while(0)
+
+static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
+ ctx->pre_g = NULL;
+#ifdef USE_ENDOMORPHISM
+ ctx->pre_g_128 = NULL;
+#endif
+}
+
+static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
+ secp256k1_gej gj;
+
+ if (ctx->pre_g != NULL) {
+ return;
+ }
+
+ /* get the generator */
+ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
+
+ ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
+
+ /* precompute the tables with odd multiples */
+ secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
+
+#ifdef USE_ENDOMORPHISM
+ {
+ secp256k1_gej g_128j;
+ int i;
+
+ ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
+
+ /* calculate 2^128*generator */
+ g_128j = gj;
+ for (i = 0; i < 128; i++) {
+ secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
+ }
+ secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
+ }
+#endif
+}
+
+static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
+ const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
+ if (src->pre_g == NULL) {
+ dst->pre_g = NULL;
+ } else {
+ size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
+ dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
+ memcpy(dst->pre_g, src->pre_g, size);
+ }
+#ifdef USE_ENDOMORPHISM
+ if (src->pre_g_128 == NULL) {
+ dst->pre_g_128 = NULL;
+ } else {
+ size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
+ dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
+ memcpy(dst->pre_g_128, src->pre_g_128, size);
+ }
+#endif
+}
+
+static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
+ return ctx->pre_g != NULL;
+}
+
+static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
+ free(ctx->pre_g);
+#ifdef USE_ENDOMORPHISM
+ free(ctx->pre_g_128);
+#endif
+ secp256k1_ecmult_context_init(ctx);
+}
+
+/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
+ * with the following guarantees:
+ * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
+ * - two non-zero entries in wnaf are separated by at least w-1 zeroes.
+ * - the number of set values in wnaf is returned. This number is at most 256, and at most one more
+ * than the number of bits in the (absolute value) of the input.
+ */
+static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
+ secp256k1_scalar s = *a;
+ int last_set_bit = -1;
+ int bit = 0;
+ int sign = 1;
+ int carry = 0;
+
+ VERIFY_CHECK(wnaf != NULL);
+ VERIFY_CHECK(0 <= len && len <= 256);
+ VERIFY_CHECK(a != NULL);
+ VERIFY_CHECK(2 <= w && w <= 31);
+
+ memset(wnaf, 0, len * sizeof(wnaf[0]));
+
+ if (secp256k1_scalar_get_bits(&s, 255, 1)) {
+ secp256k1_scalar_negate(&s, &s);
+ sign = -1;
+ }
+
+ while (bit < len) {
+ int now;
+ int word;
+ if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
+ bit++;
+ continue;
+ }
+
+ now = w;
+ if (now > len - bit) {
+ now = len - bit;
+ }
+
+ word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
+
+ carry = (word >> (w-1)) & 1;
+ word -= carry << w;
+
+ wnaf[bit] = sign * word;
+ last_set_bit = bit;
+
+ bit += now;
+ }
+#ifdef VERIFY
+ CHECK(carry == 0);
+ while (bit < 256) {
+ CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
+ }
+#endif
+ return last_set_bit + 1;
+}
+
+static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
+ secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
+ secp256k1_ge tmpa;
+ secp256k1_fe Z;
+#ifdef USE_ENDOMORPHISM
+ secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
+ secp256k1_scalar na_1, na_lam;
+ /* Splitted G factors. */
+ secp256k1_scalar ng_1, ng_128;
+ int wnaf_na_1[130];
+ int wnaf_na_lam[130];
+ int bits_na_1;
+ int bits_na_lam;
+ int wnaf_ng_1[129];
+ int bits_ng_1;
+ int wnaf_ng_128[129];
+ int bits_ng_128;
+#else
+ int wnaf_na[256];
+ int bits_na;
+ int wnaf_ng[256];
+ int bits_ng;
+#endif
+ int i;
+ int bits;
+
+#ifdef USE_ENDOMORPHISM
+ /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
+ secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
+
+ /* build wnaf representation for na_1 and na_lam. */
+ bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A);
+ bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
+ VERIFY_CHECK(bits_na_1 <= 130);
+ VERIFY_CHECK(bits_na_lam <= 130);
+ bits = bits_na_1;
+ if (bits_na_lam > bits) {
+ bits = bits_na_lam;
+ }
+#else
+ /* build wnaf representation for na. */
+ bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A);
+ bits = bits_na;
+#endif
+
+ /* Calculate odd multiples of a.
+ * All multiples are brought to the same Z 'denominator', which is stored
+ * in Z. Due to secp256k1' isomorphism we can do all operations pretending
+ * that the Z coordinate was 1, use affine addition formulae, and correct
+ * the Z coordinate of the result once at the end.
+ * The exception is the precomputed G table points, which are actually
+ * affine. Compared to the base used for other points, they have a Z ratio
+ * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
+ * isomorphism to efficiently add with a known Z inverse.
+ */
+ secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
+
+#ifdef USE_ENDOMORPHISM
+ for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
+ secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
+ }
+
+ /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
+ secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
+
+ /* Build wnaf representation for ng_1 and ng_128 */
+ bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
+ bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
+ if (bits_ng_1 > bits) {
+ bits = bits_ng_1;
+ }
+ if (bits_ng_128 > bits) {
+ bits = bits_ng_128;
+ }
+#else
+ bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
+ if (bits_ng > bits) {
+ bits = bits_ng;
+ }
+#endif
+
+ secp256k1_gej_set_infinity(r);
+
+ for (i = bits - 1; i >= 0; i--) {
+ int n;
+ secp256k1_gej_double_var(r, r, NULL);
+#ifdef USE_ENDOMORPHISM
+ if (i < bits_na_1 && (n = wnaf_na_1[i])) {
+ ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
+ secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
+ }
+ if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
+ ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
+ secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
+ }
+ if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
+ ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
+ secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
+ }
+ if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
+ ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
+ secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
+ }
+#else
+ if (i < bits_na && (n = wnaf_na[i])) {
+ ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
+ secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
+ }
+ if (i < bits_ng && (n = wnaf_ng[i])) {
+ ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
+ secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
+ }
+#endif
+ }
+
+ if (!r->infinity) {
+ secp256k1_fe_mul(&r->z, &r->z, &Z);
+ }
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/field.h b/crypto/secp256k1/libsecp256k1/src/field.h
new file mode 100644
index 000000000..311329b92
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/field.h
@@ -0,0 +1,119 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_FIELD_
+#define _SECP256K1_FIELD_
+
+/** Field element module.
+ *
+ * Field elements can be represented in several ways, but code accessing
+ * it (and implementations) need to take certain properaties into account:
+ * - Each field element can be normalized or not.
+ * - Each field element has a magnitude, which represents how far away
+ * its representation is away from normalization. Normalized elements
+ * always have a magnitude of 1, but a magnitude of 1 doesn't imply
+ * normality.
+ */
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#if defined(USE_FIELD_10X26)
+#include "field_10x26.h"
+#elif defined(USE_FIELD_5X52)
+#include "field_5x52.h"
+#else
+#error "Please select field implementation"
+#endif
+
+/** Normalize a field element. */
+static void secp256k1_fe_normalize(secp256k1_fe *r);
+
+/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */
+static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
+
+/** Normalize a field element, without constant-time guarantee. */
+static void secp256k1_fe_normalize_var(secp256k1_fe *r);
+
+/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
+ * implementation may optionally normalize the input, but this should not be relied upon. */
+static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r);
+
+/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
+ * implementation may optionally normalize the input, but this should not be relied upon. */
+static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
+
+/** Set a field element equal to a small integer. Resulting field element is normalized. */
+static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
+
+/** Verify whether a field element is zero. Requires the input to be normalized. */
+static int secp256k1_fe_is_zero(const secp256k1_fe *a);
+
+/** Check the "oddness" of a field element. Requires the input to be normalized. */
+static int secp256k1_fe_is_odd(const secp256k1_fe *a);
+
+/** Compare two field elements. Requires magnitude-1 inputs. */
+static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
+
+/** Compare two field elements. Requires both inputs to be normalized */
+static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
+
+/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
+static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
+
+/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
+static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
+
+/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
+ * as an argument. The magnitude of the output is one higher. */
+static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
+
+/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
+ * small integer. */
+static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
+
+/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
+static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
+
+/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
+ * The output magnitude is 1 (but not guaranteed to be normalized). */
+static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
+
+/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
+ * The output magnitude is 1 (but not guaranteed to be normalized). */
+static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
+
+/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
+ * input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
+ * normalized). Return value indicates whether a square root was found. */
+static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);
+
+/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
+ * at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
+static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
+
+/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
+static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
+
+/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
+ * at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
+ * outputs must not overlap in memory. */
+static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a);
+
+/** Convert a field element to the storage type. */
+static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
+
+/** Convert a field element back from the storage type. */
+static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
+
+/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
+static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
+
+/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
+static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/field_10x26.h b/crypto/secp256k1/libsecp256k1/src/field_10x26.h
new file mode 100644
index 000000000..61ee1e096
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/field_10x26.h
@@ -0,0 +1,47 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_FIELD_REPR_
+#define _SECP256K1_FIELD_REPR_
+
+#include <stdint.h>
+
+typedef struct {
+ /* X = sum(i=0..9, elem[i]*2^26) mod n */
+ uint32_t n[10];
+#ifdef VERIFY
+ int magnitude;
+ int normalized;
+#endif
+} secp256k1_fe;
+
+/* Unpacks a constant into a overlapping multi-limbed FE element. */
+#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
+ (d0) & 0x3FFFFFFUL, \
+ (((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
+ (((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
+ (((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
+ (((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
+ (((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
+ (((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
+ (((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
+ (((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
+ (((uint32_t)d7) >> 10) \
+}
+
+#ifdef VERIFY
+#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
+#else
+#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
+#endif
+
+typedef struct {
+ uint32_t n[8];
+} secp256k1_fe_storage;
+
+#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
+#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h b/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h
new file mode 100644
index 000000000..212cc5396
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h
@@ -0,0 +1,1138 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
+#define _SECP256K1_FIELD_REPR_IMPL_H_
+
+#include <stdio.h>
+#include <string.h>
+#include "util.h"
+#include "num.h"
+#include "field.h"
+
+#ifdef VERIFY
+static void secp256k1_fe_verify(const secp256k1_fe *a) {
+ const uint32_t *d = a->n;
+ int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
+ r &= (d[0] <= 0x3FFFFFFUL * m);
+ r &= (d[1] <= 0x3FFFFFFUL * m);
+ r &= (d[2] <= 0x3FFFFFFUL * m);
+ r &= (d[3] <= 0x3FFFFFFUL * m);
+ r &= (d[4] <= 0x3FFFFFFUL * m);
+ r &= (d[5] <= 0x3FFFFFFUL * m);
+ r &= (d[6] <= 0x3FFFFFFUL * m);
+ r &= (d[7] <= 0x3FFFFFFUL * m);
+ r &= (d[8] <= 0x3FFFFFFUL * m);
+ r &= (d[9] <= 0x03FFFFFUL * m);
+ r &= (a->magnitude >= 0);
+ r &= (a->magnitude <= 32);
+ if (a->normalized) {
+ r &= (a->magnitude <= 1);
+ if (r && (d[9] == 0x03FFFFFUL)) {
+ uint32_t mid = d[8] & d[7] & d[6] & d[5] & d[4] & d[3] & d[2];
+ if (mid == 0x3FFFFFFUL) {
+ r &= ((d[1] + 0x40UL + ((d[0] + 0x3D1UL) >> 26)) <= 0x3FFFFFFUL);
+ }
+ }
+ }
+ VERIFY_CHECK(r == 1);
+}
+#else
+static void secp256k1_fe_verify(const secp256k1_fe *a) {
+ (void)a;
+}
+#endif
+
+static void secp256k1_fe_normalize(secp256k1_fe *r) {
+ uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
+ t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
+
+ /* Reduce t9 at the start so there will be at most a single carry from the first pass */
+ uint32_t m;
+ uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x3D1UL; t1 += (x << 6);
+ t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL;
+ t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL;
+ t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; m = t2;
+ t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; m &= t3;
+ t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; m &= t4;
+ t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; m &= t5;
+ t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; m &= t6;
+ t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; m &= t7;
+ t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; m &= t8;
+
+ /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t9 >> 23 == 0);
+
+ /* At most a single final reduction is needed; check if the value is >= the field characteristic */
+ x = (t9 >> 22) | ((t9 == 0x03FFFFFUL) & (m == 0x3FFFFFFUL)
+ & ((t1 + 0x40UL + ((t0 + 0x3D1UL) >> 26)) > 0x3FFFFFFUL));
+
+ /* Apply the final reduction (for constant-time behaviour, we do it always) */
+ t0 += x * 0x3D1UL; t1 += (x << 6);
+ t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL;
+ t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL;
+ t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL;
+ t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL;
+ t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL;
+ t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL;
+ t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL;
+ t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL;
+ t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL;
+
+ /* If t9 didn't carry to bit 22 already, then it should have after any final reduction */
+ VERIFY_CHECK(t9 >> 22 == x);
+
+ /* Mask off the possible multiple of 2^256 from the final reduction */
+ t9 &= 0x03FFFFFUL;
+
+ r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
+ r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
+
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
+ uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
+ t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
+
+ /* Reduce t9 at the start so there will be at most a single carry from the first pass */
+ uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x3D1UL; t1 += (x << 6);
+ t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL;
+ t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL;
+ t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL;
+ t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL;
+ t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL;
+ t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL;
+ t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL;
+ t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL;
+ t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL;
+
+ /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t9 >> 23 == 0);
+
+ r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
+ r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
+
+#ifdef VERIFY
+ r->magnitude = 1;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
+ uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
+ t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
+
+ /* Reduce t9 at the start so there will be at most a single carry from the first pass */
+ uint32_t m;
+ uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x3D1UL; t1 += (x << 6);
+ t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL;
+ t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL;
+ t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; m = t2;
+ t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; m &= t3;
+ t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; m &= t4;
+ t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; m &= t5;
+ t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; m &= t6;
+ t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; m &= t7;
+ t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; m &= t8;
+
+ /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t9 >> 23 == 0);
+
+ /* At most a single final reduction is needed; check if the value is >= the field characteristic */
+ x = (t9 >> 22) | ((t9 == 0x03FFFFFUL) & (m == 0x3FFFFFFUL)
+ & ((t1 + 0x40UL + ((t0 + 0x3D1UL) >> 26)) > 0x3FFFFFFUL));
+
+ if (x) {
+ t0 += 0x3D1UL; t1 += (x << 6);
+ t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL;
+ t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL;
+ t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL;
+ t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL;
+ t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL;
+ t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL;
+ t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL;
+ t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL;
+ t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL;
+
+ /* If t9 didn't carry to bit 22 already, then it should have after any final reduction */
+ VERIFY_CHECK(t9 >> 22 == x);
+
+ /* Mask off the possible multiple of 2^256 from the final reduction */
+ t9 &= 0x03FFFFFUL;
+ }
+
+ r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
+ r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
+
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
+ uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
+ t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
+
+ /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
+ uint32_t z0, z1;
+
+ /* Reduce t9 at the start so there will be at most a single carry from the first pass */
+ uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x3D1UL; t1 += (x << 6);
+ t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL; z0 = t0; z1 = t0 ^ 0x3D0UL;
+ t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; z0 |= t1; z1 &= t1 ^ 0x40UL;
+ t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; z0 |= t2; z1 &= t2;
+ t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; z0 |= t3; z1 &= t3;
+ t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; z0 |= t4; z1 &= t4;
+ t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; z0 |= t5; z1 &= t5;
+ t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; z0 |= t6; z1 &= t6;
+ t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; z0 |= t7; z1 &= t7;
+ t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; z0 |= t8; z1 &= t8;
+ z0 |= t9; z1 &= t9 ^ 0x3C00000UL;
+
+ /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t9 >> 23 == 0);
+
+ return (z0 == 0) | (z1 == 0x3FFFFFFUL);
+}
+
+static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
+ uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
+ uint32_t z0, z1;
+ uint32_t x;
+
+ t0 = r->n[0];
+ t9 = r->n[9];
+
+ /* Reduce t9 at the start so there will be at most a single carry from the first pass */
+ x = t9 >> 22;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x3D1UL;
+
+ /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
+ z0 = t0 & 0x3FFFFFFUL;
+ z1 = z0 ^ 0x3D0UL;
+
+ /* Fast return path should catch the majority of cases */
+ if ((z0 != 0UL) & (z1 != 0x3FFFFFFUL)) {
+ return 0;
+ }
+
+ t1 = r->n[1];
+ t2 = r->n[2];
+ t3 = r->n[3];
+ t4 = r->n[4];
+ t5 = r->n[5];
+ t6 = r->n[6];
+ t7 = r->n[7];
+ t8 = r->n[8];
+
+ t9 &= 0x03FFFFFUL;
+ t1 += (x << 6);
+
+ t1 += (t0 >> 26);
+ t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; z0 |= t1; z1 &= t1 ^ 0x40UL;
+ t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; z0 |= t2; z1 &= t2;
+ t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; z0 |= t3; z1 &= t3;
+ t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; z0 |= t4; z1 &= t4;
+ t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; z0 |= t5; z1 &= t5;
+ t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; z0 |= t6; z1 &= t6;
+ t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; z0 |= t7; z1 &= t7;
+ t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; z0 |= t8; z1 &= t8;
+ z0 |= t9; z1 &= t9 ^ 0x3C00000UL;
+
+ /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t9 >> 23 == 0);
+
+ return (z0 == 0) | (z1 == 0x3FFFFFFUL);
+}
+
+SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
+ r->n[0] = a;
+ r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
+ const uint32_t *t = a->n;
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+ secp256k1_fe_verify(a);
+#endif
+ return (t[0] | t[1] | t[2] | t[3] | t[4] | t[5] | t[6] | t[7] | t[8] | t[9]) == 0;
+}
+
+SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+ secp256k1_fe_verify(a);
+#endif
+ return a->n[0] & 1;
+}
+
+SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
+ int i;
+#ifdef VERIFY
+ a->magnitude = 0;
+ a->normalized = 1;
+#endif
+ for (i=0; i<10; i++) {
+ a->n[i] = 0;
+ }
+}
+
+static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
+ int i;
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+ VERIFY_CHECK(b->normalized);
+ secp256k1_fe_verify(a);
+ secp256k1_fe_verify(b);
+#endif
+ for (i = 9; i >= 0; i--) {
+ if (a->n[i] > b->n[i]) {
+ return 1;
+ }
+ if (a->n[i] < b->n[i]) {
+ return -1;
+ }
+ }
+ return 0;
+}
+
+static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
+ int i;
+ r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
+ r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
+ for (i=0; i<32; i++) {
+ int j;
+ for (j=0; j<4; j++) {
+ int limb = (8*i+2*j)/26;
+ int shift = (8*i+2*j)%26;
+ r->n[limb] |= (uint32_t)((a[31-i] >> (2*j)) & 0x3) << shift;
+ }
+ }
+ if (r->n[9] == 0x3FFFFFUL && (r->n[8] & r->n[7] & r->n[6] & r->n[5] & r->n[4] & r->n[3] & r->n[2]) == 0x3FFFFFFUL && (r->n[1] + 0x40UL + ((r->n[0] + 0x3D1UL) >> 26)) > 0x3FFFFFFUL) {
+ return 0;
+ }
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+ secp256k1_fe_verify(r);
+#endif
+ return 1;
+}
+
+/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
+static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
+ int i;
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+ secp256k1_fe_verify(a);
+#endif
+ for (i=0; i<32; i++) {
+ int j;
+ int c = 0;
+ for (j=0; j<4; j++) {
+ int limb = (8*i+2*j)/26;
+ int shift = (8*i+2*j)%26;
+ c |= ((a->n[limb] >> shift) & 0x3) << (2 * j);
+ }
+ r[31-i] = c;
+ }
+}
+
+SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->magnitude <= m);
+ secp256k1_fe_verify(a);
+#endif
+ r->n[0] = 0x3FFFC2FUL * 2 * (m + 1) - a->n[0];
+ r->n[1] = 0x3FFFFBFUL * 2 * (m + 1) - a->n[1];
+ r->n[2] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[2];
+ r->n[3] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[3];
+ r->n[4] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[4];
+ r->n[5] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[5];
+ r->n[6] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[6];
+ r->n[7] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[7];
+ r->n[8] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[8];
+ r->n[9] = 0x03FFFFFUL * 2 * (m + 1) - a->n[9];
+#ifdef VERIFY
+ r->magnitude = m + 1;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
+ r->n[0] *= a;
+ r->n[1] *= a;
+ r->n[2] *= a;
+ r->n[3] *= a;
+ r->n[4] *= a;
+ r->n[5] *= a;
+ r->n[6] *= a;
+ r->n[7] *= a;
+ r->n[8] *= a;
+ r->n[9] *= a;
+#ifdef VERIFY
+ r->magnitude *= a;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
+#ifdef VERIFY
+ secp256k1_fe_verify(a);
+#endif
+ r->n[0] += a->n[0];
+ r->n[1] += a->n[1];
+ r->n[2] += a->n[2];
+ r->n[3] += a->n[3];
+ r->n[4] += a->n[4];
+ r->n[5] += a->n[5];
+ r->n[6] += a->n[6];
+ r->n[7] += a->n[7];
+ r->n[8] += a->n[8];
+ r->n[9] += a->n[9];
+#ifdef VERIFY
+ r->magnitude += a->magnitude;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+#ifdef VERIFY
+#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
+#else
+#define VERIFY_BITS(x, n) do { } while(0)
+#endif
+
+SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t * SECP256K1_RESTRICT b) {
+ uint64_t c, d;
+ uint64_t u0, u1, u2, u3, u4, u5, u6, u7, u8;
+ uint32_t t9, t1, t0, t2, t3, t4, t5, t6, t7;
+ const uint32_t M = 0x3FFFFFFUL, R0 = 0x3D10UL, R1 = 0x400UL;
+
+ VERIFY_BITS(a[0], 30);
+ VERIFY_BITS(a[1], 30);
+ VERIFY_BITS(a[2], 30);
+ VERIFY_BITS(a[3], 30);
+ VERIFY_BITS(a[4], 30);
+ VERIFY_BITS(a[5], 30);
+ VERIFY_BITS(a[6], 30);
+ VERIFY_BITS(a[7], 30);
+ VERIFY_BITS(a[8], 30);
+ VERIFY_BITS(a[9], 26);
+ VERIFY_BITS(b[0], 30);
+ VERIFY_BITS(b[1], 30);
+ VERIFY_BITS(b[2], 30);
+ VERIFY_BITS(b[3], 30);
+ VERIFY_BITS(b[4], 30);
+ VERIFY_BITS(b[5], 30);
+ VERIFY_BITS(b[6], 30);
+ VERIFY_BITS(b[7], 30);
+ VERIFY_BITS(b[8], 30);
+ VERIFY_BITS(b[9], 26);
+
+ /** [... a b c] is a shorthand for ... + a<<52 + b<<26 + c<<0 mod n.
+ * px is a shorthand for sum(a[i]*b[x-i], i=0..x).
+ * Note that [x 0 0 0 0 0 0 0 0 0 0] = [x*R1 x*R0].
+ */
+
+ d = (uint64_t)a[0] * b[9]
+ + (uint64_t)a[1] * b[8]
+ + (uint64_t)a[2] * b[7]
+ + (uint64_t)a[3] * b[6]
+ + (uint64_t)a[4] * b[5]
+ + (uint64_t)a[5] * b[4]
+ + (uint64_t)a[6] * b[3]
+ + (uint64_t)a[7] * b[2]
+ + (uint64_t)a[8] * b[1]
+ + (uint64_t)a[9] * b[0];
+ /* VERIFY_BITS(d, 64); */
+ /* [d 0 0 0 0 0 0 0 0 0] = [p9 0 0 0 0 0 0 0 0 0] */
+ t9 = d & M; d >>= 26;
+ VERIFY_BITS(t9, 26);
+ VERIFY_BITS(d, 38);
+ /* [d t9 0 0 0 0 0 0 0 0 0] = [p9 0 0 0 0 0 0 0 0 0] */
+
+ c = (uint64_t)a[0] * b[0];
+ VERIFY_BITS(c, 60);
+ /* [d t9 0 0 0 0 0 0 0 0 c] = [p9 0 0 0 0 0 0 0 0 p0] */
+ d += (uint64_t)a[1] * b[9]
+ + (uint64_t)a[2] * b[8]
+ + (uint64_t)a[3] * b[7]
+ + (uint64_t)a[4] * b[6]
+ + (uint64_t)a[5] * b[5]
+ + (uint64_t)a[6] * b[4]
+ + (uint64_t)a[7] * b[3]
+ + (uint64_t)a[8] * b[2]
+ + (uint64_t)a[9] * b[1];
+ VERIFY_BITS(d, 63);
+ /* [d t9 0 0 0 0 0 0 0 0 c] = [p10 p9 0 0 0 0 0 0 0 0 p0] */
+ u0 = d & M; d >>= 26; c += u0 * R0;
+ VERIFY_BITS(u0, 26);
+ VERIFY_BITS(d, 37);
+ VERIFY_BITS(c, 61);
+ /* [d u0 t9 0 0 0 0 0 0 0 0 c-u0*R0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */
+ t0 = c & M; c >>= 26; c += u0 * R1;
+ VERIFY_BITS(t0, 26);
+ VERIFY_BITS(c, 37);
+ /* [d u0 t9 0 0 0 0 0 0 0 c-u0*R1 t0-u0*R0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */
+ /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */
+
+ c += (uint64_t)a[0] * b[1]
+ + (uint64_t)a[1] * b[0];
+ VERIFY_BITS(c, 62);
+ /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p10 p9 0 0 0 0 0 0 0 p1 p0] */
+ d += (uint64_t)a[2] * b[9]
+ + (uint64_t)a[3] * b[8]
+ + (uint64_t)a[4] * b[7]
+ + (uint64_t)a[5] * b[6]
+ + (uint64_t)a[6] * b[5]
+ + (uint64_t)a[7] * b[4]
+ + (uint64_t)a[8] * b[3]
+ + (uint64_t)a[9] * b[2];
+ VERIFY_BITS(d, 63);
+ /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */
+ u1 = d & M; d >>= 26; c += u1 * R0;
+ VERIFY_BITS(u1, 26);
+ VERIFY_BITS(d, 37);
+ VERIFY_BITS(c, 63);
+ /* [d u1 0 t9 0 0 0 0 0 0 0 c-u1*R0 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */
+ t1 = c & M; c >>= 26; c += u1 * R1;
+ VERIFY_BITS(t1, 26);
+ VERIFY_BITS(c, 38);
+ /* [d u1 0 t9 0 0 0 0 0 0 c-u1*R1 t1-u1*R0 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */
+ /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */
+
+ c += (uint64_t)a[0] * b[2]
+ + (uint64_t)a[1] * b[1]
+ + (uint64_t)a[2] * b[0];
+ VERIFY_BITS(c, 62);
+ /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+ d += (uint64_t)a[3] * b[9]
+ + (uint64_t)a[4] * b[8]
+ + (uint64_t)a[5] * b[7]
+ + (uint64_t)a[6] * b[6]
+ + (uint64_t)a[7] * b[5]
+ + (uint64_t)a[8] * b[4]
+ + (uint64_t)a[9] * b[3];
+ VERIFY_BITS(d, 63);
+ /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+ u2 = d & M; d >>= 26; c += u2 * R0;
+ VERIFY_BITS(u2, 26);
+ VERIFY_BITS(d, 37);
+ VERIFY_BITS(c, 63);
+ /* [d u2 0 0 t9 0 0 0 0 0 0 c-u2*R0 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+ t2 = c & M; c >>= 26; c += u2 * R1;
+ VERIFY_BITS(t2, 26);
+ VERIFY_BITS(c, 38);
+ /* [d u2 0 0 t9 0 0 0 0 0 c-u2*R1 t2-u2*R0 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+ /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+
+ c += (uint64_t)a[0] * b[3]
+ + (uint64_t)a[1] * b[2]
+ + (uint64_t)a[2] * b[1]
+ + (uint64_t)a[3] * b[0];
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+ d += (uint64_t)a[4] * b[9]
+ + (uint64_t)a[5] * b[8]
+ + (uint64_t)a[6] * b[7]
+ + (uint64_t)a[7] * b[6]
+ + (uint64_t)a[8] * b[5]
+ + (uint64_t)a[9] * b[4];
+ VERIFY_BITS(d, 63);
+ /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+ u3 = d & M; d >>= 26; c += u3 * R0;
+ VERIFY_BITS(u3, 26);
+ VERIFY_BITS(d, 37);
+ /* VERIFY_BITS(c, 64); */
+ /* [d u3 0 0 0 t9 0 0 0 0 0 c-u3*R0 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+ t3 = c & M; c >>= 26; c += u3 * R1;
+ VERIFY_BITS(t3, 26);
+ VERIFY_BITS(c, 39);
+ /* [d u3 0 0 0 t9 0 0 0 0 c-u3*R1 t3-u3*R0 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+
+ c += (uint64_t)a[0] * b[4]
+ + (uint64_t)a[1] * b[3]
+ + (uint64_t)a[2] * b[2]
+ + (uint64_t)a[3] * b[1]
+ + (uint64_t)a[4] * b[0];
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+ d += (uint64_t)a[5] * b[9]
+ + (uint64_t)a[6] * b[8]
+ + (uint64_t)a[7] * b[7]
+ + (uint64_t)a[8] * b[6]
+ + (uint64_t)a[9] * b[5];
+ VERIFY_BITS(d, 62);
+ /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+ u4 = d & M; d >>= 26; c += u4 * R0;
+ VERIFY_BITS(u4, 26);
+ VERIFY_BITS(d, 36);
+ /* VERIFY_BITS(c, 64); */
+ /* [d u4 0 0 0 0 t9 0 0 0 0 c-u4*R0 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+ t4 = c & M; c >>= 26; c += u4 * R1;
+ VERIFY_BITS(t4, 26);
+ VERIFY_BITS(c, 39);
+ /* [d u4 0 0 0 0 t9 0 0 0 c-u4*R1 t4-u4*R0 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+
+ c += (uint64_t)a[0] * b[5]
+ + (uint64_t)a[1] * b[4]
+ + (uint64_t)a[2] * b[3]
+ + (uint64_t)a[3] * b[2]
+ + (uint64_t)a[4] * b[1]
+ + (uint64_t)a[5] * b[0];
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+ d += (uint64_t)a[6] * b[9]
+ + (uint64_t)a[7] * b[8]
+ + (uint64_t)a[8] * b[7]
+ + (uint64_t)a[9] * b[6];
+ VERIFY_BITS(d, 62);
+ /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+ u5 = d & M; d >>= 26; c += u5 * R0;
+ VERIFY_BITS(u5, 26);
+ VERIFY_BITS(d, 36);
+ /* VERIFY_BITS(c, 64); */
+ /* [d u5 0 0 0 0 0 t9 0 0 0 c-u5*R0 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+ t5 = c & M; c >>= 26; c += u5 * R1;
+ VERIFY_BITS(t5, 26);
+ VERIFY_BITS(c, 39);
+ /* [d u5 0 0 0 0 0 t9 0 0 c-u5*R1 t5-u5*R0 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+
+ c += (uint64_t)a[0] * b[6]
+ + (uint64_t)a[1] * b[5]
+ + (uint64_t)a[2] * b[4]
+ + (uint64_t)a[3] * b[3]
+ + (uint64_t)a[4] * b[2]
+ + (uint64_t)a[5] * b[1]
+ + (uint64_t)a[6] * b[0];
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+ d += (uint64_t)a[7] * b[9]
+ + (uint64_t)a[8] * b[8]
+ + (uint64_t)a[9] * b[7];
+ VERIFY_BITS(d, 61);
+ /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+ u6 = d & M; d >>= 26; c += u6 * R0;
+ VERIFY_BITS(u6, 26);
+ VERIFY_BITS(d, 35);
+ /* VERIFY_BITS(c, 64); */
+ /* [d u6 0 0 0 0 0 0 t9 0 0 c-u6*R0 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+ t6 = c & M; c >>= 26; c += u6 * R1;
+ VERIFY_BITS(t6, 26);
+ VERIFY_BITS(c, 39);
+ /* [d u6 0 0 0 0 0 0 t9 0 c-u6*R1 t6-u6*R0 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+
+ c += (uint64_t)a[0] * b[7]
+ + (uint64_t)a[1] * b[6]
+ + (uint64_t)a[2] * b[5]
+ + (uint64_t)a[3] * b[4]
+ + (uint64_t)a[4] * b[3]
+ + (uint64_t)a[5] * b[2]
+ + (uint64_t)a[6] * b[1]
+ + (uint64_t)a[7] * b[0];
+ /* VERIFY_BITS(c, 64); */
+ VERIFY_CHECK(c <= 0x8000007C00000007ULL);
+ /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+ d += (uint64_t)a[8] * b[9]
+ + (uint64_t)a[9] * b[8];
+ VERIFY_BITS(d, 58);
+ /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+ u7 = d & M; d >>= 26; c += u7 * R0;
+ VERIFY_BITS(u7, 26);
+ VERIFY_BITS(d, 32);
+ /* VERIFY_BITS(c, 64); */
+ VERIFY_CHECK(c <= 0x800001703FFFC2F7ULL);
+ /* [d u7 0 0 0 0 0 0 0 t9 0 c-u7*R0 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+ t7 = c & M; c >>= 26; c += u7 * R1;
+ VERIFY_BITS(t7, 26);
+ VERIFY_BITS(c, 38);
+ /* [d u7 0 0 0 0 0 0 0 t9 c-u7*R1 t7-u7*R0 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ c += (uint64_t)a[0] * b[8]
+ + (uint64_t)a[1] * b[7]
+ + (uint64_t)a[2] * b[6]
+ + (uint64_t)a[3] * b[5]
+ + (uint64_t)a[4] * b[4]
+ + (uint64_t)a[5] * b[3]
+ + (uint64_t)a[6] * b[2]
+ + (uint64_t)a[7] * b[1]
+ + (uint64_t)a[8] * b[0];
+ /* VERIFY_BITS(c, 64); */
+ VERIFY_CHECK(c <= 0x9000007B80000008ULL);
+ /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ d += (uint64_t)a[9] * b[9];
+ VERIFY_BITS(d, 57);
+ /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ u8 = d & M; d >>= 26; c += u8 * R0;
+ VERIFY_BITS(u8, 26);
+ VERIFY_BITS(d, 31);
+ /* VERIFY_BITS(c, 64); */
+ VERIFY_CHECK(c <= 0x9000016FBFFFC2F8ULL);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 t4 t3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ r[3] = t3;
+ VERIFY_BITS(r[3], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 t4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[4] = t4;
+ VERIFY_BITS(r[4], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[5] = t5;
+ VERIFY_BITS(r[5], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[6] = t6;
+ VERIFY_BITS(r[6], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[7] = t7;
+ VERIFY_BITS(r[7], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ r[8] = c & M; c >>= 26; c += u8 * R1;
+ VERIFY_BITS(r[8], 26);
+ VERIFY_BITS(c, 39);
+ /* [d u8 0 0 0 0 0 0 0 0 t9+c-u8*R1 r8-u8*R0 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 0 0 0 t9+c r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ c += d * R0 + t9;
+ VERIFY_BITS(c, 45);
+ /* [d 0 0 0 0 0 0 0 0 0 c-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[9] = c & (M >> 4); c >>= 22; c += d * (R1 << 4);
+ VERIFY_BITS(r[9], 22);
+ VERIFY_BITS(c, 46);
+ /* [d 0 0 0 0 0 0 0 0 r9+((c-d*R1<<4)<<22)-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 0 -d*R1 r9+(c<<22)-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ d = c * (R0 >> 4) + t0;
+ VERIFY_BITS(d, 56);
+ /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1 d-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[0] = d & M; d >>= 26;
+ VERIFY_BITS(r[0], 26);
+ VERIFY_BITS(d, 30);
+ /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1+d r0-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ d += c * (R1 >> 4) + t1;
+ VERIFY_BITS(d, 53);
+ VERIFY_CHECK(d <= 0x10000003FFFFBFULL);
+ /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 d-c*R1>>4 r0-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [r9 r8 r7 r6 r5 r4 r3 t2 d r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[1] = d & M; d >>= 26;
+ VERIFY_BITS(r[1], 26);
+ VERIFY_BITS(d, 27);
+ VERIFY_CHECK(d <= 0x4000000ULL);
+ /* [r9 r8 r7 r6 r5 r4 r3 t2+d r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ d += t2;
+ VERIFY_BITS(d, 27);
+ /* [r9 r8 r7 r6 r5 r4 r3 d r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[2] = d;
+ VERIFY_BITS(r[2], 27);
+ /* [r9 r8 r7 r6 r5 r4 r3 r2 r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+}
+
+SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a) {
+ uint64_t c, d;
+ uint64_t u0, u1, u2, u3, u4, u5, u6, u7, u8;
+ uint32_t t9, t0, t1, t2, t3, t4, t5, t6, t7;
+ const uint32_t M = 0x3FFFFFFUL, R0 = 0x3D10UL, R1 = 0x400UL;
+
+ VERIFY_BITS(a[0], 30);
+ VERIFY_BITS(a[1], 30);
+ VERIFY_BITS(a[2], 30);
+ VERIFY_BITS(a[3], 30);
+ VERIFY_BITS(a[4], 30);
+ VERIFY_BITS(a[5], 30);
+ VERIFY_BITS(a[6], 30);
+ VERIFY_BITS(a[7], 30);
+ VERIFY_BITS(a[8], 30);
+ VERIFY_BITS(a[9], 26);
+
+ /** [... a b c] is a shorthand for ... + a<<52 + b<<26 + c<<0 mod n.
+ * px is a shorthand for sum(a[i]*a[x-i], i=0..x).
+ * Note that [x 0 0 0 0 0 0 0 0 0 0] = [x*R1 x*R0].
+ */
+
+ d = (uint64_t)(a[0]*2) * a[9]
+ + (uint64_t)(a[1]*2) * a[8]
+ + (uint64_t)(a[2]*2) * a[7]
+ + (uint64_t)(a[3]*2) * a[6]
+ + (uint64_t)(a[4]*2) * a[5];
+ /* VERIFY_BITS(d, 64); */
+ /* [d 0 0 0 0 0 0 0 0 0] = [p9 0 0 0 0 0 0 0 0 0] */
+ t9 = d & M; d >>= 26;
+ VERIFY_BITS(t9, 26);
+ VERIFY_BITS(d, 38);
+ /* [d t9 0 0 0 0 0 0 0 0 0] = [p9 0 0 0 0 0 0 0 0 0] */
+
+ c = (uint64_t)a[0] * a[0];
+ VERIFY_BITS(c, 60);
+ /* [d t9 0 0 0 0 0 0 0 0 c] = [p9 0 0 0 0 0 0 0 0 p0] */
+ d += (uint64_t)(a[1]*2) * a[9]
+ + (uint64_t)(a[2]*2) * a[8]
+ + (uint64_t)(a[3]*2) * a[7]
+ + (uint64_t)(a[4]*2) * a[6]
+ + (uint64_t)a[5] * a[5];
+ VERIFY_BITS(d, 63);
+ /* [d t9 0 0 0 0 0 0 0 0 c] = [p10 p9 0 0 0 0 0 0 0 0 p0] */
+ u0 = d & M; d >>= 26; c += u0 * R0;
+ VERIFY_BITS(u0, 26);
+ VERIFY_BITS(d, 37);
+ VERIFY_BITS(c, 61);
+ /* [d u0 t9 0 0 0 0 0 0 0 0 c-u0*R0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */
+ t0 = c & M; c >>= 26; c += u0 * R1;
+ VERIFY_BITS(t0, 26);
+ VERIFY_BITS(c, 37);
+ /* [d u0 t9 0 0 0 0 0 0 0 c-u0*R1 t0-u0*R0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */
+ /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */
+
+ c += (uint64_t)(a[0]*2) * a[1];
+ VERIFY_BITS(c, 62);
+ /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p10 p9 0 0 0 0 0 0 0 p1 p0] */
+ d += (uint64_t)(a[2]*2) * a[9]
+ + (uint64_t)(a[3]*2) * a[8]
+ + (uint64_t)(a[4]*2) * a[7]
+ + (uint64_t)(a[5]*2) * a[6];
+ VERIFY_BITS(d, 63);
+ /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */
+ u1 = d & M; d >>= 26; c += u1 * R0;
+ VERIFY_BITS(u1, 26);
+ VERIFY_BITS(d, 37);
+ VERIFY_BITS(c, 63);
+ /* [d u1 0 t9 0 0 0 0 0 0 0 c-u1*R0 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */
+ t1 = c & M; c >>= 26; c += u1 * R1;
+ VERIFY_BITS(t1, 26);
+ VERIFY_BITS(c, 38);
+ /* [d u1 0 t9 0 0 0 0 0 0 c-u1*R1 t1-u1*R0 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */
+ /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */
+
+ c += (uint64_t)(a[0]*2) * a[2]
+ + (uint64_t)a[1] * a[1];
+ VERIFY_BITS(c, 62);
+ /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+ d += (uint64_t)(a[3]*2) * a[9]
+ + (uint64_t)(a[4]*2) * a[8]
+ + (uint64_t)(a[5]*2) * a[7]
+ + (uint64_t)a[6] * a[6];
+ VERIFY_BITS(d, 63);
+ /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+ u2 = d & M; d >>= 26; c += u2 * R0;
+ VERIFY_BITS(u2, 26);
+ VERIFY_BITS(d, 37);
+ VERIFY_BITS(c, 63);
+ /* [d u2 0 0 t9 0 0 0 0 0 0 c-u2*R0 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+ t2 = c & M; c >>= 26; c += u2 * R1;
+ VERIFY_BITS(t2, 26);
+ VERIFY_BITS(c, 38);
+ /* [d u2 0 0 t9 0 0 0 0 0 c-u2*R1 t2-u2*R0 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+ /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */
+
+ c += (uint64_t)(a[0]*2) * a[3]
+ + (uint64_t)(a[1]*2) * a[2];
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+ d += (uint64_t)(a[4]*2) * a[9]
+ + (uint64_t)(a[5]*2) * a[8]
+ + (uint64_t)(a[6]*2) * a[7];
+ VERIFY_BITS(d, 63);
+ /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+ u3 = d & M; d >>= 26; c += u3 * R0;
+ VERIFY_BITS(u3, 26);
+ VERIFY_BITS(d, 37);
+ /* VERIFY_BITS(c, 64); */
+ /* [d u3 0 0 0 t9 0 0 0 0 0 c-u3*R0 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+ t3 = c & M; c >>= 26; c += u3 * R1;
+ VERIFY_BITS(t3, 26);
+ VERIFY_BITS(c, 39);
+ /* [d u3 0 0 0 t9 0 0 0 0 c-u3*R1 t3-u3*R0 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */
+
+ c += (uint64_t)(a[0]*2) * a[4]
+ + (uint64_t)(a[1]*2) * a[3]
+ + (uint64_t)a[2] * a[2];
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+ d += (uint64_t)(a[5]*2) * a[9]
+ + (uint64_t)(a[6]*2) * a[8]
+ + (uint64_t)a[7] * a[7];
+ VERIFY_BITS(d, 62);
+ /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+ u4 = d & M; d >>= 26; c += u4 * R0;
+ VERIFY_BITS(u4, 26);
+ VERIFY_BITS(d, 36);
+ /* VERIFY_BITS(c, 64); */
+ /* [d u4 0 0 0 0 t9 0 0 0 0 c-u4*R0 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+ t4 = c & M; c >>= 26; c += u4 * R1;
+ VERIFY_BITS(t4, 26);
+ VERIFY_BITS(c, 39);
+ /* [d u4 0 0 0 0 t9 0 0 0 c-u4*R1 t4-u4*R0 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */
+
+ c += (uint64_t)(a[0]*2) * a[5]
+ + (uint64_t)(a[1]*2) * a[4]
+ + (uint64_t)(a[2]*2) * a[3];
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+ d += (uint64_t)(a[6]*2) * a[9]
+ + (uint64_t)(a[7]*2) * a[8];
+ VERIFY_BITS(d, 62);
+ /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+ u5 = d & M; d >>= 26; c += u5 * R0;
+ VERIFY_BITS(u5, 26);
+ VERIFY_BITS(d, 36);
+ /* VERIFY_BITS(c, 64); */
+ /* [d u5 0 0 0 0 0 t9 0 0 0 c-u5*R0 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+ t5 = c & M; c >>= 26; c += u5 * R1;
+ VERIFY_BITS(t5, 26);
+ VERIFY_BITS(c, 39);
+ /* [d u5 0 0 0 0 0 t9 0 0 c-u5*R1 t5-u5*R0 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */
+
+ c += (uint64_t)(a[0]*2) * a[6]
+ + (uint64_t)(a[1]*2) * a[5]
+ + (uint64_t)(a[2]*2) * a[4]
+ + (uint64_t)a[3] * a[3];
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+ d += (uint64_t)(a[7]*2) * a[9]
+ + (uint64_t)a[8] * a[8];
+ VERIFY_BITS(d, 61);
+ /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+ u6 = d & M; d >>= 26; c += u6 * R0;
+ VERIFY_BITS(u6, 26);
+ VERIFY_BITS(d, 35);
+ /* VERIFY_BITS(c, 64); */
+ /* [d u6 0 0 0 0 0 0 t9 0 0 c-u6*R0 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+ t6 = c & M; c >>= 26; c += u6 * R1;
+ VERIFY_BITS(t6, 26);
+ VERIFY_BITS(c, 39);
+ /* [d u6 0 0 0 0 0 0 t9 0 c-u6*R1 t6-u6*R0 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */
+
+ c += (uint64_t)(a[0]*2) * a[7]
+ + (uint64_t)(a[1]*2) * a[6]
+ + (uint64_t)(a[2]*2) * a[5]
+ + (uint64_t)(a[3]*2) * a[4];
+ /* VERIFY_BITS(c, 64); */
+ VERIFY_CHECK(c <= 0x8000007C00000007ULL);
+ /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+ d += (uint64_t)(a[8]*2) * a[9];
+ VERIFY_BITS(d, 58);
+ /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+ u7 = d & M; d >>= 26; c += u7 * R0;
+ VERIFY_BITS(u7, 26);
+ VERIFY_BITS(d, 32);
+ /* VERIFY_BITS(c, 64); */
+ VERIFY_CHECK(c <= 0x800001703FFFC2F7ULL);
+ /* [d u7 0 0 0 0 0 0 0 t9 0 c-u7*R0 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+ t7 = c & M; c >>= 26; c += u7 * R1;
+ VERIFY_BITS(t7, 26);
+ VERIFY_BITS(c, 38);
+ /* [d u7 0 0 0 0 0 0 0 t9 c-u7*R1 t7-u7*R0 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ c += (uint64_t)(a[0]*2) * a[8]
+ + (uint64_t)(a[1]*2) * a[7]
+ + (uint64_t)(a[2]*2) * a[6]
+ + (uint64_t)(a[3]*2) * a[5]
+ + (uint64_t)a[4] * a[4];
+ /* VERIFY_BITS(c, 64); */
+ VERIFY_CHECK(c <= 0x9000007B80000008ULL);
+ /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ d += (uint64_t)a[9] * a[9];
+ VERIFY_BITS(d, 57);
+ /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ u8 = d & M; d >>= 26; c += u8 * R0;
+ VERIFY_BITS(u8, 26);
+ VERIFY_BITS(d, 31);
+ /* VERIFY_BITS(c, 64); */
+ VERIFY_CHECK(c <= 0x9000016FBFFFC2F8ULL);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 t4 t3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ r[3] = t3;
+ VERIFY_BITS(r[3], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 t4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[4] = t4;
+ VERIFY_BITS(r[4], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[5] = t5;
+ VERIFY_BITS(r[5], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[6] = t6;
+ VERIFY_BITS(r[6], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[7] = t7;
+ VERIFY_BITS(r[7], 26);
+ /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ r[8] = c & M; c >>= 26; c += u8 * R1;
+ VERIFY_BITS(r[8], 26);
+ VERIFY_BITS(c, 39);
+ /* [d u8 0 0 0 0 0 0 0 0 t9+c-u8*R1 r8-u8*R0 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 0 0 0 t9+c r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ c += d * R0 + t9;
+ VERIFY_BITS(c, 45);
+ /* [d 0 0 0 0 0 0 0 0 0 c-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[9] = c & (M >> 4); c >>= 22; c += d * (R1 << 4);
+ VERIFY_BITS(r[9], 22);
+ VERIFY_BITS(c, 46);
+ /* [d 0 0 0 0 0 0 0 0 r9+((c-d*R1<<4)<<22)-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [d 0 0 0 0 0 0 0 -d*R1 r9+(c<<22)-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ d = c * (R0 >> 4) + t0;
+ VERIFY_BITS(d, 56);
+ /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1 d-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[0] = d & M; d >>= 26;
+ VERIFY_BITS(r[0], 26);
+ VERIFY_BITS(d, 30);
+ /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1+d r0-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ d += c * (R1 >> 4) + t1;
+ VERIFY_BITS(d, 53);
+ VERIFY_CHECK(d <= 0x10000003FFFFBFULL);
+ /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 d-c*R1>>4 r0-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ /* [r9 r8 r7 r6 r5 r4 r3 t2 d r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[1] = d & M; d >>= 26;
+ VERIFY_BITS(r[1], 26);
+ VERIFY_BITS(d, 27);
+ VERIFY_CHECK(d <= 0x4000000ULL);
+ /* [r9 r8 r7 r6 r5 r4 r3 t2+d r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ d += t2;
+ VERIFY_BITS(d, 27);
+ /* [r9 r8 r7 r6 r5 r4 r3 d r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[2] = d;
+ VERIFY_BITS(r[2], 27);
+ /* [r9 r8 r7 r6 r5 r4 r3 r2 r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+}
+
+
+static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->magnitude <= 8);
+ VERIFY_CHECK(b->magnitude <= 8);
+ secp256k1_fe_verify(a);
+ secp256k1_fe_verify(b);
+ VERIFY_CHECK(r != b);
+#endif
+ secp256k1_fe_mul_inner(r->n, a->n, b->n);
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->magnitude <= 8);
+ secp256k1_fe_verify(a);
+#endif
+ secp256k1_fe_sqr_inner(r->n, a->n);
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
+ uint32_t mask0, mask1;
+ mask0 = flag + ~((uint32_t)0);
+ mask1 = ~mask0;
+ r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
+ r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
+ r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
+ r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
+ r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
+ r->n[5] = (r->n[5] & mask0) | (a->n[5] & mask1);
+ r->n[6] = (r->n[6] & mask0) | (a->n[6] & mask1);
+ r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1);
+ r->n[8] = (r->n[8] & mask0) | (a->n[8] & mask1);
+ r->n[9] = (r->n[9] & mask0) | (a->n[9] & mask1);
+#ifdef VERIFY
+ if (a->magnitude > r->magnitude) {
+ r->magnitude = a->magnitude;
+ }
+ r->normalized &= a->normalized;
+#endif
+}
+
+static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
+ uint32_t mask0, mask1;
+ mask0 = flag + ~((uint32_t)0);
+ mask1 = ~mask0;
+ r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
+ r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
+ r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
+ r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
+ r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
+ r->n[5] = (r->n[5] & mask0) | (a->n[5] & mask1);
+ r->n[6] = (r->n[6] & mask0) | (a->n[6] & mask1);
+ r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1);
+}
+
+static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+#endif
+ r->n[0] = a->n[0] | a->n[1] << 26;
+ r->n[1] = a->n[1] >> 6 | a->n[2] << 20;
+ r->n[2] = a->n[2] >> 12 | a->n[3] << 14;
+ r->n[3] = a->n[3] >> 18 | a->n[4] << 8;
+ r->n[4] = a->n[4] >> 24 | a->n[5] << 2 | a->n[6] << 28;
+ r->n[5] = a->n[6] >> 4 | a->n[7] << 22;
+ r->n[6] = a->n[7] >> 10 | a->n[8] << 16;
+ r->n[7] = a->n[8] >> 16 | a->n[9] << 10;
+}
+
+static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
+ r->n[0] = a->n[0] & 0x3FFFFFFUL;
+ r->n[1] = a->n[0] >> 26 | ((a->n[1] << 6) & 0x3FFFFFFUL);
+ r->n[2] = a->n[1] >> 20 | ((a->n[2] << 12) & 0x3FFFFFFUL);
+ r->n[3] = a->n[2] >> 14 | ((a->n[3] << 18) & 0x3FFFFFFUL);
+ r->n[4] = a->n[3] >> 8 | ((a->n[4] << 24) & 0x3FFFFFFUL);
+ r->n[5] = (a->n[4] >> 2) & 0x3FFFFFFUL;
+ r->n[6] = a->n[4] >> 28 | ((a->n[5] << 4) & 0x3FFFFFFUL);
+ r->n[7] = a->n[5] >> 22 | ((a->n[6] << 10) & 0x3FFFFFFUL);
+ r->n[8] = a->n[6] >> 16 | ((a->n[7] << 16) & 0x3FFFFFFUL);
+ r->n[9] = a->n[7] >> 10;
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+#endif
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/field_5x52.h b/crypto/secp256k1/libsecp256k1/src/field_5x52.h
new file mode 100644
index 000000000..8e69a560d
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/field_5x52.h
@@ -0,0 +1,47 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_FIELD_REPR_
+#define _SECP256K1_FIELD_REPR_
+
+#include <stdint.h>
+
+typedef struct {
+ /* X = sum(i=0..4, elem[i]*2^52) mod n */
+ uint64_t n[5];
+#ifdef VERIFY
+ int magnitude;
+ int normalized;
+#endif
+} secp256k1_fe;
+
+/* Unpacks a constant into a overlapping multi-limbed FE element. */
+#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
+ (d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \
+ ((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \
+ ((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \
+ ((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \
+ ((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \
+}
+
+#ifdef VERIFY
+#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
+#else
+#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
+#endif
+
+typedef struct {
+ uint64_t n[4];
+} secp256k1_fe_storage;
+
+#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \
+ (d0) | (((uint64_t)(d1)) << 32), \
+ (d2) | (((uint64_t)(d3)) << 32), \
+ (d4) | (((uint64_t)(d5)) << 32), \
+ (d6) | (((uint64_t)(d7)) << 32) \
+}}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h
new file mode 100644
index 000000000..98cc004bf
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h
@@ -0,0 +1,502 @@
+/**********************************************************************
+ * Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+/**
+ * Changelog:
+ * - March 2013, Diederik Huys: original version
+ * - November 2014, Pieter Wuille: updated to use Peter Dettman's parallel multiplication algorithm
+ * - December 2014, Pieter Wuille: converted from YASM to GCC inline assembly
+ */
+
+#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
+#define _SECP256K1_FIELD_INNER5X52_IMPL_H_
+
+SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
+/**
+ * Registers: rdx:rax = multiplication accumulator
+ * r9:r8 = c
+ * r15:rcx = d
+ * r10-r14 = a0-a4
+ * rbx = b
+ * rdi = r
+ * rsi = a / t?
+ */
+ uint64_t tmp1, tmp2, tmp3;
+__asm__ __volatile__(
+ "movq 0(%%rsi),%%r10\n"
+ "movq 8(%%rsi),%%r11\n"
+ "movq 16(%%rsi),%%r12\n"
+ "movq 24(%%rsi),%%r13\n"
+ "movq 32(%%rsi),%%r14\n"
+
+ /* d += a3 * b0 */
+ "movq 0(%%rbx),%%rax\n"
+ "mulq %%r13\n"
+ "movq %%rax,%%rcx\n"
+ "movq %%rdx,%%r15\n"
+ /* d += a2 * b1 */
+ "movq 8(%%rbx),%%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a1 * b2 */
+ "movq 16(%%rbx),%%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d = a0 * b3 */
+ "movq 24(%%rbx),%%rax\n"
+ "mulq %%r10\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* c = a4 * b4 */
+ "movq 32(%%rbx),%%rax\n"
+ "mulq %%r14\n"
+ "movq %%rax,%%r8\n"
+ "movq %%rdx,%%r9\n"
+ /* d += (c & M) * R */
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* c >>= 52 (%%r8 only) */
+ "shrdq $52,%%r9,%%r8\n"
+ /* t3 (tmp1) = d & M */
+ "movq %%rcx,%%rsi\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rsi\n"
+ "movq %%rsi,%q1\n"
+ /* d >>= 52 */
+ "shrdq $52,%%r15,%%rcx\n"
+ "xorq %%r15,%%r15\n"
+ /* d += a4 * b0 */
+ "movq 0(%%rbx),%%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a3 * b1 */
+ "movq 8(%%rbx),%%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a2 * b2 */
+ "movq 16(%%rbx),%%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a1 * b3 */
+ "movq 24(%%rbx),%%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a0 * b4 */
+ "movq 32(%%rbx),%%rax\n"
+ "mulq %%r10\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += c * R */
+ "movq %%r8,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* t4 = d & M (%%rsi) */
+ "movq %%rcx,%%rsi\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rsi\n"
+ /* d >>= 52 */
+ "shrdq $52,%%r15,%%rcx\n"
+ "xorq %%r15,%%r15\n"
+ /* tx = t4 >> 48 (tmp3) */
+ "movq %%rsi,%%rax\n"
+ "shrq $48,%%rax\n"
+ "movq %%rax,%q3\n"
+ /* t4 &= (M >> 4) (tmp2) */
+ "movq $0xffffffffffff,%%rax\n"
+ "andq %%rax,%%rsi\n"
+ "movq %%rsi,%q2\n"
+ /* c = a0 * b0 */
+ "movq 0(%%rbx),%%rax\n"
+ "mulq %%r10\n"
+ "movq %%rax,%%r8\n"
+ "movq %%rdx,%%r9\n"
+ /* d += a4 * b1 */
+ "movq 8(%%rbx),%%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a3 * b2 */
+ "movq 16(%%rbx),%%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a2 * b3 */
+ "movq 24(%%rbx),%%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a1 * b4 */
+ "movq 32(%%rbx),%%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* u0 = d & M (%%rsi) */
+ "movq %%rcx,%%rsi\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rsi\n"
+ /* d >>= 52 */
+ "shrdq $52,%%r15,%%rcx\n"
+ "xorq %%r15,%%r15\n"
+ /* u0 = (u0 << 4) | tx (%%rsi) */
+ "shlq $4,%%rsi\n"
+ "movq %q3,%%rax\n"
+ "orq %%rax,%%rsi\n"
+ /* c += u0 * (R >> 4) */
+ "movq $0x1000003d1,%%rax\n"
+ "mulq %%rsi\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* r[0] = c & M */
+ "movq %%r8,%%rax\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rax\n"
+ "movq %%rax,0(%%rdi)\n"
+ /* c >>= 52 */
+ "shrdq $52,%%r9,%%r8\n"
+ "xorq %%r9,%%r9\n"
+ /* c += a1 * b0 */
+ "movq 0(%%rbx),%%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* c += a0 * b1 */
+ "movq 8(%%rbx),%%rax\n"
+ "mulq %%r10\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* d += a4 * b2 */
+ "movq 16(%%rbx),%%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a3 * b3 */
+ "movq 24(%%rbx),%%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a2 * b4 */
+ "movq 32(%%rbx),%%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* c += (d & M) * R */
+ "movq %%rcx,%%rax\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* d >>= 52 */
+ "shrdq $52,%%r15,%%rcx\n"
+ "xorq %%r15,%%r15\n"
+ /* r[1] = c & M */
+ "movq %%r8,%%rax\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rax\n"
+ "movq %%rax,8(%%rdi)\n"
+ /* c >>= 52 */
+ "shrdq $52,%%r9,%%r8\n"
+ "xorq %%r9,%%r9\n"
+ /* c += a2 * b0 */
+ "movq 0(%%rbx),%%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* c += a1 * b1 */
+ "movq 8(%%rbx),%%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* c += a0 * b2 (last use of %%r10 = a0) */
+ "movq 16(%%rbx),%%rax\n"
+ "mulq %%r10\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* fetch t3 (%%r10, overwrites a0), t4 (%%rsi) */
+ "movq %q2,%%rsi\n"
+ "movq %q1,%%r10\n"
+ /* d += a4 * b3 */
+ "movq 24(%%rbx),%%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* d += a3 * b4 */
+ "movq 32(%%rbx),%%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax,%%rcx\n"
+ "adcq %%rdx,%%r15\n"
+ /* c += (d & M) * R */
+ "movq %%rcx,%%rax\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* d >>= 52 (%%rcx only) */
+ "shrdq $52,%%r15,%%rcx\n"
+ /* r[2] = c & M */
+ "movq %%r8,%%rax\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rax\n"
+ "movq %%rax,16(%%rdi)\n"
+ /* c >>= 52 */
+ "shrdq $52,%%r9,%%r8\n"
+ "xorq %%r9,%%r9\n"
+ /* c += t3 */
+ "addq %%r10,%%r8\n"
+ /* c += d * R */
+ "movq %%rcx,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* r[3] = c & M */
+ "movq %%r8,%%rax\n"
+ "movq $0xfffffffffffff,%%rdx\n"
+ "andq %%rdx,%%rax\n"
+ "movq %%rax,24(%%rdi)\n"
+ /* c >>= 52 (%%r8 only) */
+ "shrdq $52,%%r9,%%r8\n"
+ /* c += t4 (%%r8 only) */
+ "addq %%rsi,%%r8\n"
+ /* r[4] = c */
+ "movq %%r8,32(%%rdi)\n"
+: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
+: "b"(b), "D"(r)
+: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
+);
+}
+
+SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
+/**
+ * Registers: rdx:rax = multiplication accumulator
+ * r9:r8 = c
+ * rcx:rbx = d
+ * r10-r14 = a0-a4
+ * r15 = M (0xfffffffffffff)
+ * rdi = r
+ * rsi = a / t?
+ */
+ uint64_t tmp1, tmp2, tmp3;
+__asm__ __volatile__(
+ "movq 0(%%rsi),%%r10\n"
+ "movq 8(%%rsi),%%r11\n"
+ "movq 16(%%rsi),%%r12\n"
+ "movq 24(%%rsi),%%r13\n"
+ "movq 32(%%rsi),%%r14\n"
+ "movq $0xfffffffffffff,%%r15\n"
+
+ /* d = (a0*2) * a3 */
+ "leaq (%%r10,%%r10,1),%%rax\n"
+ "mulq %%r13\n"
+ "movq %%rax,%%rbx\n"
+ "movq %%rdx,%%rcx\n"
+ /* d += (a1*2) * a2 */
+ "leaq (%%r11,%%r11,1),%%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* c = a4 * a4 */
+ "movq %%r14,%%rax\n"
+ "mulq %%r14\n"
+ "movq %%rax,%%r8\n"
+ "movq %%rdx,%%r9\n"
+ /* d += (c & M) * R */
+ "andq %%r15,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* c >>= 52 (%%r8 only) */
+ "shrdq $52,%%r9,%%r8\n"
+ /* t3 (tmp1) = d & M */
+ "movq %%rbx,%%rsi\n"
+ "andq %%r15,%%rsi\n"
+ "movq %%rsi,%q1\n"
+ /* d >>= 52 */
+ "shrdq $52,%%rcx,%%rbx\n"
+ "xorq %%rcx,%%rcx\n"
+ /* a4 *= 2 */
+ "addq %%r14,%%r14\n"
+ /* d += a0 * a4 */
+ "movq %%r10,%%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* d+= (a1*2) * a3 */
+ "leaq (%%r11,%%r11,1),%%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* d += a2 * a2 */
+ "movq %%r12,%%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* d += c * R */
+ "movq %%r8,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* t4 = d & M (%%rsi) */
+ "movq %%rbx,%%rsi\n"
+ "andq %%r15,%%rsi\n"
+ /* d >>= 52 */
+ "shrdq $52,%%rcx,%%rbx\n"
+ "xorq %%rcx,%%rcx\n"
+ /* tx = t4 >> 48 (tmp3) */
+ "movq %%rsi,%%rax\n"
+ "shrq $48,%%rax\n"
+ "movq %%rax,%q3\n"
+ /* t4 &= (M >> 4) (tmp2) */
+ "movq $0xffffffffffff,%%rax\n"
+ "andq %%rax,%%rsi\n"
+ "movq %%rsi,%q2\n"
+ /* c = a0 * a0 */
+ "movq %%r10,%%rax\n"
+ "mulq %%r10\n"
+ "movq %%rax,%%r8\n"
+ "movq %%rdx,%%r9\n"
+ /* d += a1 * a4 */
+ "movq %%r11,%%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* d += (a2*2) * a3 */
+ "leaq (%%r12,%%r12,1),%%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* u0 = d & M (%%rsi) */
+ "movq %%rbx,%%rsi\n"
+ "andq %%r15,%%rsi\n"
+ /* d >>= 52 */
+ "shrdq $52,%%rcx,%%rbx\n"
+ "xorq %%rcx,%%rcx\n"
+ /* u0 = (u0 << 4) | tx (%%rsi) */
+ "shlq $4,%%rsi\n"
+ "movq %q3,%%rax\n"
+ "orq %%rax,%%rsi\n"
+ /* c += u0 * (R >> 4) */
+ "movq $0x1000003d1,%%rax\n"
+ "mulq %%rsi\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* r[0] = c & M */
+ "movq %%r8,%%rax\n"
+ "andq %%r15,%%rax\n"
+ "movq %%rax,0(%%rdi)\n"
+ /* c >>= 52 */
+ "shrdq $52,%%r9,%%r8\n"
+ "xorq %%r9,%%r9\n"
+ /* a0 *= 2 */
+ "addq %%r10,%%r10\n"
+ /* c += a0 * a1 */
+ "movq %%r10,%%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* d += a2 * a4 */
+ "movq %%r12,%%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* d += a3 * a3 */
+ "movq %%r13,%%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* c += (d & M) * R */
+ "movq %%rbx,%%rax\n"
+ "andq %%r15,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* d >>= 52 */
+ "shrdq $52,%%rcx,%%rbx\n"
+ "xorq %%rcx,%%rcx\n"
+ /* r[1] = c & M */
+ "movq %%r8,%%rax\n"
+ "andq %%r15,%%rax\n"
+ "movq %%rax,8(%%rdi)\n"
+ /* c >>= 52 */
+ "shrdq $52,%%r9,%%r8\n"
+ "xorq %%r9,%%r9\n"
+ /* c += a0 * a2 (last use of %%r10) */
+ "movq %%r10,%%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* fetch t3 (%%r10, overwrites a0),t4 (%%rsi) */
+ "movq %q2,%%rsi\n"
+ "movq %q1,%%r10\n"
+ /* c += a1 * a1 */
+ "movq %%r11,%%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* d += a3 * a4 */
+ "movq %%r13,%%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax,%%rbx\n"
+ "adcq %%rdx,%%rcx\n"
+ /* c += (d & M) * R */
+ "movq %%rbx,%%rax\n"
+ "andq %%r15,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* d >>= 52 (%%rbx only) */
+ "shrdq $52,%%rcx,%%rbx\n"
+ /* r[2] = c & M */
+ "movq %%r8,%%rax\n"
+ "andq %%r15,%%rax\n"
+ "movq %%rax,16(%%rdi)\n"
+ /* c >>= 52 */
+ "shrdq $52,%%r9,%%r8\n"
+ "xorq %%r9,%%r9\n"
+ /* c += t3 */
+ "addq %%r10,%%r8\n"
+ /* c += d * R */
+ "movq %%rbx,%%rax\n"
+ "movq $0x1000003d10,%%rdx\n"
+ "mulq %%rdx\n"
+ "addq %%rax,%%r8\n"
+ "adcq %%rdx,%%r9\n"
+ /* r[3] = c & M */
+ "movq %%r8,%%rax\n"
+ "andq %%r15,%%rax\n"
+ "movq %%rax,24(%%rdi)\n"
+ /* c >>= 52 (%%r8 only) */
+ "shrdq $52,%%r9,%%r8\n"
+ /* c += t4 (%%r8 only) */
+ "addq %%rsi,%%r8\n"
+ /* r[4] = c */
+ "movq %%r8,32(%%rdi)\n"
+: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
+: "D"(r)
+: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
+);
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h
new file mode 100644
index 000000000..b31e24ab8
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h
@@ -0,0 +1,456 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
+#define _SECP256K1_FIELD_REPR_IMPL_H_
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#include <string.h>
+#include "util.h"
+#include "num.h"
+#include "field.h"
+
+#if defined(USE_ASM_X86_64)
+#include "field_5x52_asm_impl.h"
+#else
+#include "field_5x52_int128_impl.h"
+#endif
+
+/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
+ * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
+ * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
+ * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
+ * accept any input with magnitude at most M, and have different rules for propagating magnitude to their
+ * output.
+ */
+
+#ifdef VERIFY
+static void secp256k1_fe_verify(const secp256k1_fe *a) {
+ const uint64_t *d = a->n;
+ int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
+ /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
+ r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
+ r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
+ r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
+ r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
+ r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
+ r &= (a->magnitude >= 0);
+ r &= (a->magnitude <= 2048);
+ if (a->normalized) {
+ r &= (a->magnitude <= 1);
+ if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
+ r &= (d[0] < 0xFFFFEFFFFFC2FULL);
+ }
+ }
+ VERIFY_CHECK(r == 1);
+}
+#else
+static void secp256k1_fe_verify(const secp256k1_fe *a) {
+ (void)a;
+}
+#endif
+
+static void secp256k1_fe_normalize(secp256k1_fe *r) {
+ uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
+
+ /* Reduce t4 at the start so there will be at most a single carry from the first pass */
+ uint64_t m;
+ uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x1000003D1ULL;
+ t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
+ t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
+ t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
+ t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
+
+ /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t4 >> 49 == 0);
+
+ /* At most a single final reduction is needed; check if the value is >= the field characteristic */
+ x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
+ & (t0 >= 0xFFFFEFFFFFC2FULL));
+
+ /* Apply the final reduction (for constant-time behaviour, we do it always) */
+ t0 += x * 0x1000003D1ULL;
+ t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
+ t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
+ t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
+ t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
+
+ /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
+ VERIFY_CHECK(t4 >> 48 == x);
+
+ /* Mask off the possible multiple of 2^256 from the final reduction */
+ t4 &= 0x0FFFFFFFFFFFFULL;
+
+ r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
+
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
+ uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
+
+ /* Reduce t4 at the start so there will be at most a single carry from the first pass */
+ uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x1000003D1ULL;
+ t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
+ t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
+ t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
+ t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
+
+ /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t4 >> 49 == 0);
+
+ r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
+
+#ifdef VERIFY
+ r->magnitude = 1;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
+ uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
+
+ /* Reduce t4 at the start so there will be at most a single carry from the first pass */
+ uint64_t m;
+ uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x1000003D1ULL;
+ t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
+ t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
+ t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
+ t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
+
+ /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t4 >> 49 == 0);
+
+ /* At most a single final reduction is needed; check if the value is >= the field characteristic */
+ x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
+ & (t0 >= 0xFFFFEFFFFFC2FULL));
+
+ if (x) {
+ t0 += 0x1000003D1ULL;
+ t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
+ t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
+ t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
+ t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
+
+ /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
+ VERIFY_CHECK(t4 >> 48 == x);
+
+ /* Mask off the possible multiple of 2^256 from the final reduction */
+ t4 &= 0x0FFFFFFFFFFFFULL;
+ }
+
+ r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
+
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
+ uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
+
+ /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
+ uint64_t z0, z1;
+
+ /* Reduce t4 at the start so there will be at most a single carry from the first pass */
+ uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x1000003D1ULL;
+ t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
+ t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
+ t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
+ t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
+ z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
+
+ /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t4 >> 49 == 0);
+
+ return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
+}
+
+static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
+ uint64_t t0, t1, t2, t3, t4;
+ uint64_t z0, z1;
+ uint64_t x;
+
+ t0 = r->n[0];
+ t4 = r->n[4];
+
+ /* Reduce t4 at the start so there will be at most a single carry from the first pass */
+ x = t4 >> 48;
+
+ /* The first pass ensures the magnitude is 1, ... */
+ t0 += x * 0x1000003D1ULL;
+
+ /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
+ z0 = t0 & 0xFFFFFFFFFFFFFULL;
+ z1 = z0 ^ 0x1000003D0ULL;
+
+ /* Fast return path should catch the majority of cases */
+ if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
+ return 0;
+ }
+
+ t1 = r->n[1];
+ t2 = r->n[2];
+ t3 = r->n[3];
+
+ t4 &= 0x0FFFFFFFFFFFFULL;
+
+ t1 += (t0 >> 52);
+ t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
+ t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
+ t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
+ z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
+
+ /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
+ VERIFY_CHECK(t4 >> 49 == 0);
+
+ return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
+}
+
+SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
+ r->n[0] = a;
+ r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
+ const uint64_t *t = a->n;
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+ secp256k1_fe_verify(a);
+#endif
+ return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
+}
+
+SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+ secp256k1_fe_verify(a);
+#endif
+ return a->n[0] & 1;
+}
+
+SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
+ int i;
+#ifdef VERIFY
+ a->magnitude = 0;
+ a->normalized = 1;
+#endif
+ for (i=0; i<5; i++) {
+ a->n[i] = 0;
+ }
+}
+
+static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
+ int i;
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+ VERIFY_CHECK(b->normalized);
+ secp256k1_fe_verify(a);
+ secp256k1_fe_verify(b);
+#endif
+ for (i = 4; i >= 0; i--) {
+ if (a->n[i] > b->n[i]) {
+ return 1;
+ }
+ if (a->n[i] < b->n[i]) {
+ return -1;
+ }
+ }
+ return 0;
+}
+
+static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
+ int i;
+ r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
+ for (i=0; i<32; i++) {
+ int j;
+ for (j=0; j<2; j++) {
+ int limb = (8*i+4*j)/52;
+ int shift = (8*i+4*j)%52;
+ r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
+ }
+ }
+ if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
+ return 0;
+ }
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+ secp256k1_fe_verify(r);
+#endif
+ return 1;
+}
+
+/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
+static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
+ int i;
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+ secp256k1_fe_verify(a);
+#endif
+ for (i=0; i<32; i++) {
+ int j;
+ int c = 0;
+ for (j=0; j<2; j++) {
+ int limb = (8*i+4*j)/52;
+ int shift = (8*i+4*j)%52;
+ c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
+ }
+ r[31-i] = c;
+ }
+}
+
+SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->magnitude <= m);
+ secp256k1_fe_verify(a);
+#endif
+ r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
+ r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
+ r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
+ r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
+ r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
+#ifdef VERIFY
+ r->magnitude = m + 1;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
+ r->n[0] *= a;
+ r->n[1] *= a;
+ r->n[2] *= a;
+ r->n[3] *= a;
+ r->n[4] *= a;
+#ifdef VERIFY
+ r->magnitude *= a;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
+#ifdef VERIFY
+ secp256k1_fe_verify(a);
+#endif
+ r->n[0] += a->n[0];
+ r->n[1] += a->n[1];
+ r->n[2] += a->n[2];
+ r->n[3] += a->n[3];
+ r->n[4] += a->n[4];
+#ifdef VERIFY
+ r->magnitude += a->magnitude;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->magnitude <= 8);
+ VERIFY_CHECK(b->magnitude <= 8);
+ secp256k1_fe_verify(a);
+ secp256k1_fe_verify(b);
+ VERIFY_CHECK(r != b);
+#endif
+ secp256k1_fe_mul_inner(r->n, a->n, b->n);
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->magnitude <= 8);
+ secp256k1_fe_verify(a);
+#endif
+ secp256k1_fe_sqr_inner(r->n, a->n);
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 0;
+ secp256k1_fe_verify(r);
+#endif
+}
+
+static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
+ uint64_t mask0, mask1;
+ mask0 = flag + ~((uint64_t)0);
+ mask1 = ~mask0;
+ r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
+ r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
+ r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
+ r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
+ r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
+#ifdef VERIFY
+ if (a->magnitude > r->magnitude) {
+ r->magnitude = a->magnitude;
+ }
+ r->normalized &= a->normalized;
+#endif
+}
+
+static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
+ uint64_t mask0, mask1;
+ mask0 = flag + ~((uint64_t)0);
+ mask1 = ~mask0;
+ r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
+ r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
+ r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
+ r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
+}
+
+static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
+#ifdef VERIFY
+ VERIFY_CHECK(a->normalized);
+#endif
+ r->n[0] = a->n[0] | a->n[1] << 52;
+ r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
+ r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
+ r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
+}
+
+static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
+ r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
+ r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
+ r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
+ r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
+ r->n[4] = a->n[3] >> 16;
+#ifdef VERIFY
+ r->magnitude = 1;
+ r->normalized = 1;
+#endif
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h b/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h
new file mode 100644
index 000000000..9280bb5ea
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h
@@ -0,0 +1,277 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
+#define _SECP256K1_FIELD_INNER5X52_IMPL_H_
+
+#include <stdint.h>
+
+#ifdef VERIFY
+#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
+#else
+#define VERIFY_BITS(x, n) do { } while(0)
+#endif
+
+SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
+ uint128_t c, d;
+ uint64_t t3, t4, tx, u0;
+ uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
+ const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
+
+ VERIFY_BITS(a[0], 56);
+ VERIFY_BITS(a[1], 56);
+ VERIFY_BITS(a[2], 56);
+ VERIFY_BITS(a[3], 56);
+ VERIFY_BITS(a[4], 52);
+ VERIFY_BITS(b[0], 56);
+ VERIFY_BITS(b[1], 56);
+ VERIFY_BITS(b[2], 56);
+ VERIFY_BITS(b[3], 56);
+ VERIFY_BITS(b[4], 52);
+ VERIFY_CHECK(r != b);
+
+ /* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
+ * px is a shorthand for sum(a[i]*b[x-i], i=0..x).
+ * Note that [x 0 0 0 0 0] = [x*R].
+ */
+
+ d = (uint128_t)a0 * b[3]
+ + (uint128_t)a1 * b[2]
+ + (uint128_t)a2 * b[1]
+ + (uint128_t)a3 * b[0];
+ VERIFY_BITS(d, 114);
+ /* [d 0 0 0] = [p3 0 0 0] */
+ c = (uint128_t)a4 * b[4];
+ VERIFY_BITS(c, 112);
+ /* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
+ d += (c & M) * R; c >>= 52;
+ VERIFY_BITS(d, 115);
+ VERIFY_BITS(c, 60);
+ /* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
+ t3 = d & M; d >>= 52;
+ VERIFY_BITS(t3, 52);
+ VERIFY_BITS(d, 63);
+ /* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
+
+ d += (uint128_t)a0 * b[4]
+ + (uint128_t)a1 * b[3]
+ + (uint128_t)a2 * b[2]
+ + (uint128_t)a3 * b[1]
+ + (uint128_t)a4 * b[0];
+ VERIFY_BITS(d, 115);
+ /* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
+ d += c * R;
+ VERIFY_BITS(d, 116);
+ /* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
+ t4 = d & M; d >>= 52;
+ VERIFY_BITS(t4, 52);
+ VERIFY_BITS(d, 64);
+ /* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
+ tx = (t4 >> 48); t4 &= (M >> 4);
+ VERIFY_BITS(tx, 4);
+ VERIFY_BITS(t4, 48);
+ /* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
+
+ c = (uint128_t)a0 * b[0];
+ VERIFY_BITS(c, 112);
+ /* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
+ d += (uint128_t)a1 * b[4]
+ + (uint128_t)a2 * b[3]
+ + (uint128_t)a3 * b[2]
+ + (uint128_t)a4 * b[1];
+ VERIFY_BITS(d, 115);
+ /* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ u0 = d & M; d >>= 52;
+ VERIFY_BITS(u0, 52);
+ VERIFY_BITS(d, 63);
+ /* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ /* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ u0 = (u0 << 4) | tx;
+ VERIFY_BITS(u0, 56);
+ /* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ c += (uint128_t)u0 * (R >> 4);
+ VERIFY_BITS(c, 115);
+ /* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ r[0] = c & M; c >>= 52;
+ VERIFY_BITS(r[0], 52);
+ VERIFY_BITS(c, 61);
+ /* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
+
+ c += (uint128_t)a0 * b[1]
+ + (uint128_t)a1 * b[0];
+ VERIFY_BITS(c, 114);
+ /* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
+ d += (uint128_t)a2 * b[4]
+ + (uint128_t)a3 * b[3]
+ + (uint128_t)a4 * b[2];
+ VERIFY_BITS(d, 114);
+ /* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
+ c += (d & M) * R; d >>= 52;
+ VERIFY_BITS(c, 115);
+ VERIFY_BITS(d, 62);
+ /* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
+ r[1] = c & M; c >>= 52;
+ VERIFY_BITS(r[1], 52);
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
+
+ c += (uint128_t)a0 * b[2]
+ + (uint128_t)a1 * b[1]
+ + (uint128_t)a2 * b[0];
+ VERIFY_BITS(c, 114);
+ /* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
+ d += (uint128_t)a3 * b[4]
+ + (uint128_t)a4 * b[3];
+ VERIFY_BITS(d, 114);
+ /* [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ c += (d & M) * R; d >>= 52;
+ VERIFY_BITS(c, 115);
+ VERIFY_BITS(d, 62);
+ /* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ /* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[2] = c & M; c >>= 52;
+ VERIFY_BITS(r[2], 52);
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ c += d * R + t3;;
+ VERIFY_BITS(c, 100);
+ /* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[3] = c & M; c >>= 52;
+ VERIFY_BITS(r[3], 52);
+ VERIFY_BITS(c, 48);
+ /* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ c += t4;
+ VERIFY_BITS(c, 49);
+ /* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[4] = c;
+ VERIFY_BITS(r[4], 49);
+ /* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+}
+
+SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
+ uint128_t c, d;
+ uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
+ int64_t t3, t4, tx, u0;
+ const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
+
+ VERIFY_BITS(a[0], 56);
+ VERIFY_BITS(a[1], 56);
+ VERIFY_BITS(a[2], 56);
+ VERIFY_BITS(a[3], 56);
+ VERIFY_BITS(a[4], 52);
+
+ /** [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
+ * px is a shorthand for sum(a[i]*a[x-i], i=0..x).
+ * Note that [x 0 0 0 0 0] = [x*R].
+ */
+
+ d = (uint128_t)(a0*2) * a3
+ + (uint128_t)(a1*2) * a2;
+ VERIFY_BITS(d, 114);
+ /* [d 0 0 0] = [p3 0 0 0] */
+ c = (uint128_t)a4 * a4;
+ VERIFY_BITS(c, 112);
+ /* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
+ d += (c & M) * R; c >>= 52;
+ VERIFY_BITS(d, 115);
+ VERIFY_BITS(c, 60);
+ /* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
+ t3 = d & M; d >>= 52;
+ VERIFY_BITS(t3, 52);
+ VERIFY_BITS(d, 63);
+ /* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
+
+ a4 *= 2;
+ d += (uint128_t)a0 * a4
+ + (uint128_t)(a1*2) * a3
+ + (uint128_t)a2 * a2;
+ VERIFY_BITS(d, 115);
+ /* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
+ d += c * R;
+ VERIFY_BITS(d, 116);
+ /* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
+ t4 = d & M; d >>= 52;
+ VERIFY_BITS(t4, 52);
+ VERIFY_BITS(d, 64);
+ /* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
+ tx = (t4 >> 48); t4 &= (M >> 4);
+ VERIFY_BITS(tx, 4);
+ VERIFY_BITS(t4, 48);
+ /* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
+
+ c = (uint128_t)a0 * a0;
+ VERIFY_BITS(c, 112);
+ /* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
+ d += (uint128_t)a1 * a4
+ + (uint128_t)(a2*2) * a3;
+ VERIFY_BITS(d, 114);
+ /* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ u0 = d & M; d >>= 52;
+ VERIFY_BITS(u0, 52);
+ VERIFY_BITS(d, 62);
+ /* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ /* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ u0 = (u0 << 4) | tx;
+ VERIFY_BITS(u0, 56);
+ /* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ c += (uint128_t)u0 * (R >> 4);
+ VERIFY_BITS(c, 113);
+ /* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
+ r[0] = c & M; c >>= 52;
+ VERIFY_BITS(r[0], 52);
+ VERIFY_BITS(c, 61);
+ /* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
+
+ a0 *= 2;
+ c += (uint128_t)a0 * a1;
+ VERIFY_BITS(c, 114);
+ /* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
+ d += (uint128_t)a2 * a4
+ + (uint128_t)a3 * a3;
+ VERIFY_BITS(d, 114);
+ /* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
+ c += (d & M) * R; d >>= 52;
+ VERIFY_BITS(c, 115);
+ VERIFY_BITS(d, 62);
+ /* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
+ r[1] = c & M; c >>= 52;
+ VERIFY_BITS(r[1], 52);
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
+
+ c += (uint128_t)a0 * a2
+ + (uint128_t)a1 * a1;
+ VERIFY_BITS(c, 114);
+ /* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
+ d += (uint128_t)a3 * a4;
+ VERIFY_BITS(d, 114);
+ /* [d 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ c += (d & M) * R; d >>= 52;
+ VERIFY_BITS(c, 115);
+ VERIFY_BITS(d, 62);
+ /* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[2] = c & M; c >>= 52;
+ VERIFY_BITS(r[2], 52);
+ VERIFY_BITS(c, 63);
+ /* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+
+ c += d * R + t3;;
+ VERIFY_BITS(c, 100);
+ /* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[3] = c & M; c >>= 52;
+ VERIFY_BITS(r[3], 52);
+ VERIFY_BITS(c, 48);
+ /* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ c += t4;
+ VERIFY_BITS(c, 49);
+ /* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+ r[4] = c;
+ VERIFY_BITS(r[4], 49);
+ /* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/field_impl.h b/crypto/secp256k1/libsecp256k1/src/field_impl.h
new file mode 100644
index 000000000..551a6243e
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/field_impl.h
@@ -0,0 +1,271 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_FIELD_IMPL_H_
+#define _SECP256K1_FIELD_IMPL_H_
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#include "util.h"
+
+#if defined(USE_FIELD_10X26)
+#include "field_10x26_impl.h"
+#elif defined(USE_FIELD_5X52)
+#include "field_5x52_impl.h"
+#else
+#error "Please select field implementation"
+#endif
+
+SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
+ secp256k1_fe na;
+ secp256k1_fe_negate(&na, a, 1);
+ secp256k1_fe_add(&na, b);
+ return secp256k1_fe_normalizes_to_zero_var(&na);
+}
+
+static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
+ secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
+ int j;
+
+ /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
+ * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
+ * 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
+ */
+
+ secp256k1_fe_sqr(&x2, a);
+ secp256k1_fe_mul(&x2, &x2, a);
+
+ secp256k1_fe_sqr(&x3, &x2);
+ secp256k1_fe_mul(&x3, &x3, a);
+
+ x6 = x3;
+ for (j=0; j<3; j++) {
+ secp256k1_fe_sqr(&x6, &x6);
+ }
+ secp256k1_fe_mul(&x6, &x6, &x3);
+
+ x9 = x6;
+ for (j=0; j<3; j++) {
+ secp256k1_fe_sqr(&x9, &x9);
+ }
+ secp256k1_fe_mul(&x9, &x9, &x3);
+
+ x11 = x9;
+ for (j=0; j<2; j++) {
+ secp256k1_fe_sqr(&x11, &x11);
+ }
+ secp256k1_fe_mul(&x11, &x11, &x2);
+
+ x22 = x11;
+ for (j=0; j<11; j++) {
+ secp256k1_fe_sqr(&x22, &x22);
+ }
+ secp256k1_fe_mul(&x22, &x22, &x11);
+
+ x44 = x22;
+ for (j=0; j<22; j++) {
+ secp256k1_fe_sqr(&x44, &x44);
+ }
+ secp256k1_fe_mul(&x44, &x44, &x22);
+
+ x88 = x44;
+ for (j=0; j<44; j++) {
+ secp256k1_fe_sqr(&x88, &x88);
+ }
+ secp256k1_fe_mul(&x88, &x88, &x44);
+
+ x176 = x88;
+ for (j=0; j<88; j++) {
+ secp256k1_fe_sqr(&x176, &x176);
+ }
+ secp256k1_fe_mul(&x176, &x176, &x88);
+
+ x220 = x176;
+ for (j=0; j<44; j++) {
+ secp256k1_fe_sqr(&x220, &x220);
+ }
+ secp256k1_fe_mul(&x220, &x220, &x44);
+
+ x223 = x220;
+ for (j=0; j<3; j++) {
+ secp256k1_fe_sqr(&x223, &x223);
+ }
+ secp256k1_fe_mul(&x223, &x223, &x3);
+
+ /* The final result is then assembled using a sliding window over the blocks. */
+
+ t1 = x223;
+ for (j=0; j<23; j++) {
+ secp256k1_fe_sqr(&t1, &t1);
+ }
+ secp256k1_fe_mul(&t1, &t1, &x22);
+ for (j=0; j<6; j++) {
+ secp256k1_fe_sqr(&t1, &t1);
+ }
+ secp256k1_fe_mul(&t1, &t1, &x2);
+ secp256k1_fe_sqr(&t1, &t1);
+ secp256k1_fe_sqr(r, &t1);
+
+ /* Check that a square root was actually calculated */
+
+ secp256k1_fe_sqr(&t1, r);
+ return secp256k1_fe_equal_var(&t1, a);
+}
+
+static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
+ secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
+ int j;
+
+ /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
+ * { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
+ * [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
+ */
+
+ secp256k1_fe_sqr(&x2, a);
+ secp256k1_fe_mul(&x2, &x2, a);
+
+ secp256k1_fe_sqr(&x3, &x2);
+ secp256k1_fe_mul(&x3, &x3, a);
+
+ x6 = x3;
+ for (j=0; j<3; j++) {
+ secp256k1_fe_sqr(&x6, &x6);
+ }
+ secp256k1_fe_mul(&x6, &x6, &x3);
+
+ x9 = x6;
+ for (j=0; j<3; j++) {
+ secp256k1_fe_sqr(&x9, &x9);
+ }
+ secp256k1_fe_mul(&x9, &x9, &x3);
+
+ x11 = x9;
+ for (j=0; j<2; j++) {
+ secp256k1_fe_sqr(&x11, &x11);
+ }
+ secp256k1_fe_mul(&x11, &x11, &x2);
+
+ x22 = x11;
+ for (j=0; j<11; j++) {
+ secp256k1_fe_sqr(&x22, &x22);
+ }
+ secp256k1_fe_mul(&x22, &x22, &x11);
+
+ x44 = x22;
+ for (j=0; j<22; j++) {
+ secp256k1_fe_sqr(&x44, &x44);
+ }
+ secp256k1_fe_mul(&x44, &x44, &x22);
+
+ x88 = x44;
+ for (j=0; j<44; j++) {
+ secp256k1_fe_sqr(&x88, &x88);
+ }
+ secp256k1_fe_mul(&x88, &x88, &x44);
+
+ x176 = x88;
+ for (j=0; j<88; j++) {
+ secp256k1_fe_sqr(&x176, &x176);
+ }
+ secp256k1_fe_mul(&x176, &x176, &x88);
+
+ x220 = x176;
+ for (j=0; j<44; j++) {
+ secp256k1_fe_sqr(&x220, &x220);
+ }
+ secp256k1_fe_mul(&x220, &x220, &x44);
+
+ x223 = x220;
+ for (j=0; j<3; j++) {
+ secp256k1_fe_sqr(&x223, &x223);
+ }
+ secp256k1_fe_mul(&x223, &x223, &x3);
+
+ /* The final result is then assembled using a sliding window over the blocks. */
+
+ t1 = x223;
+ for (j=0; j<23; j++) {
+ secp256k1_fe_sqr(&t1, &t1);
+ }
+ secp256k1_fe_mul(&t1, &t1, &x22);
+ for (j=0; j<5; j++) {
+ secp256k1_fe_sqr(&t1, &t1);
+ }
+ secp256k1_fe_mul(&t1, &t1, a);
+ for (j=0; j<3; j++) {
+ secp256k1_fe_sqr(&t1, &t1);
+ }
+ secp256k1_fe_mul(&t1, &t1, &x2);
+ for (j=0; j<2; j++) {
+ secp256k1_fe_sqr(&t1, &t1);
+ }
+ secp256k1_fe_mul(r, a, &t1);
+}
+
+static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
+#if defined(USE_FIELD_INV_BUILTIN)
+ secp256k1_fe_inv(r, a);
+#elif defined(USE_FIELD_INV_NUM)
+ secp256k1_num n, m;
+ static const secp256k1_fe negone = SECP256K1_FE_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
+ );
+ /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
+ static const unsigned char prime[32] = {
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
+ };
+ unsigned char b[32];
+ secp256k1_fe c = *a;
+ secp256k1_fe_normalize_var(&c);
+ secp256k1_fe_get_b32(b, &c);
+ secp256k1_num_set_bin(&n, b, 32);
+ secp256k1_num_set_bin(&m, prime, 32);
+ secp256k1_num_mod_inverse(&n, &n, &m);
+ secp256k1_num_get_bin(b, 32, &n);
+ VERIFY_CHECK(secp256k1_fe_set_b32(r, b));
+ /* Verify the result is the (unique) valid inverse using non-GMP code. */
+ secp256k1_fe_mul(&c, &c, r);
+ secp256k1_fe_add(&c, &negone);
+ CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
+#else
+#error "Please select field inverse implementation"
+#endif
+}
+
+static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a) {
+ secp256k1_fe u;
+ size_t i;
+ if (len < 1) {
+ return;
+ }
+
+ VERIFY_CHECK((r + len <= a) || (a + len <= r));
+
+ r[0] = a[0];
+
+ i = 0;
+ while (++i < len) {
+ secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
+ }
+
+ secp256k1_fe_inv_var(&u, &r[--i]);
+
+ while (i > 0) {
+ size_t j = i--;
+ secp256k1_fe_mul(&r[j], &r[i], &u);
+ secp256k1_fe_mul(&u, &u, &a[j]);
+ }
+
+ r[0] = u;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/gen_context.c b/crypto/secp256k1/libsecp256k1/src/gen_context.c
new file mode 100644
index 000000000..1835fd491
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/gen_context.c
@@ -0,0 +1,74 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014, 2015 Thomas Daede, Cory Fields *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#define USE_BASIC_CONFIG 1
+
+#include "basic-config.h"
+#include "include/secp256k1.h"
+#include "field_impl.h"
+#include "scalar_impl.h"
+#include "group_impl.h"
+#include "ecmult_gen_impl.h"
+
+static void default_error_callback_fn(const char* str, void* data) {
+ (void)data;
+ fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
+ abort();
+}
+
+static const secp256k1_callback default_error_callback = {
+ default_error_callback_fn,
+ NULL
+};
+
+int main(int argc, char **argv) {
+ secp256k1_ecmult_gen_context ctx;
+ int inner;
+ int outer;
+ FILE* fp;
+
+ (void)argc;
+ (void)argv;
+
+ fp = fopen("src/ecmult_static_context.h","w");
+ if (fp == NULL) {
+ fprintf(stderr, "Could not open src/ecmult_static_context.h for writing!\n");
+ return -1;
+ }
+
+ fprintf(fp, "#ifndef _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
+ fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
+ fprintf(fp, "#include \"group.h\"\n");
+ fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n");
+ fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n");
+
+ secp256k1_ecmult_gen_context_init(&ctx);
+ secp256k1_ecmult_gen_context_build(&ctx, &default_error_callback);
+ for(outer = 0; outer != 64; outer++) {
+ fprintf(fp,"{\n");
+ for(inner = 0; inner != 16; inner++) {
+ fprintf(fp," SC(%uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu)", SECP256K1_GE_STORAGE_CONST_GET((*ctx.prec)[outer][inner]));
+ if (inner != 15) {
+ fprintf(fp,",\n");
+ } else {
+ fprintf(fp,"\n");
+ }
+ }
+ if (outer != 63) {
+ fprintf(fp,"},\n");
+ } else {
+ fprintf(fp,"}\n");
+ }
+ }
+ fprintf(fp,"};\n");
+ secp256k1_ecmult_gen_context_clear(&ctx);
+
+ fprintf(fp, "#undef SC\n");
+ fprintf(fp, "#endif\n");
+ fclose(fp);
+
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/group.h b/crypto/secp256k1/libsecp256k1/src/group.h
new file mode 100644
index 000000000..89b079d5c
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/group.h
@@ -0,0 +1,141 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_GROUP_
+#define _SECP256K1_GROUP_
+
+#include "num.h"
+#include "field.h"
+
+/** A group element of the secp256k1 curve, in affine coordinates. */
+typedef struct {
+ secp256k1_fe x;
+ secp256k1_fe y;
+ int infinity; /* whether this represents the point at infinity */
+} secp256k1_ge;
+
+#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
+#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
+
+/** A group element of the secp256k1 curve, in jacobian coordinates. */
+typedef struct {
+ secp256k1_fe x; /* actual X: x/z^2 */
+ secp256k1_fe y; /* actual Y: y/z^3 */
+ secp256k1_fe z;
+ int infinity; /* whether this represents the point at infinity */
+} secp256k1_gej;
+
+#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
+#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
+
+typedef struct {
+ secp256k1_fe_storage x;
+ secp256k1_fe_storage y;
+} secp256k1_ge_storage;
+
+#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
+
+#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
+
+/** Set a group element equal to the point at infinity */
+static void secp256k1_ge_set_infinity(secp256k1_ge *r);
+
+/** Set a group element equal to the point with given X and Y coordinates */
+static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
+
+/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
+ * for Y. Return value indicates whether the result is valid. */
+static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
+
+/** Check whether a group element is the point at infinity. */
+static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
+
+/** Check whether a group element is valid (i.e., on the curve). */
+static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
+
+static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
+
+/** Set a group element equal to another which is given in jacobian coordinates */
+static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
+
+/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
+static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb);
+
+/** Set a batch of group elements equal to the inputs given in jacobian
+ * coordinates (with known z-ratios). zr must contain the known z-ratios such
+ * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
+static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr);
+
+/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
+ * the same global z "denominator". zr must contain the known z-ratios such
+ * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
+ * coordinates of the result are stored in r, the common z coordinate is
+ * stored in globalz. */
+static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
+
+/** Set a group element (jacobian) equal to the point at infinity. */
+static void secp256k1_gej_set_infinity(secp256k1_gej *r);
+
+/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
+static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y);
+
+/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
+static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
+
+/** Compare the X coordinate of a group element (jacobian). */
+static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
+
+/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
+static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
+
+/** Check whether a group element is the point at infinity. */
+static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
+
+/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
+ * a may not be zero. Constant time. */
+static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
+
+/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
+static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
+
+/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
+static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
+
+/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
+static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
+
+/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
+ than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
+ guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
+static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
+
+/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
+static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
+
+#ifdef USE_ENDOMORPHISM
+/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
+static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
+#endif
+
+/** Clear a secp256k1_gej to prevent leaking sensitive information. */
+static void secp256k1_gej_clear(secp256k1_gej *r);
+
+/** Clear a secp256k1_ge to prevent leaking sensitive information. */
+static void secp256k1_ge_clear(secp256k1_ge *r);
+
+/** Convert a group element to the storage type. */
+static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
+
+/** Convert a group element back from the storage type. */
+static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
+
+/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
+static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
+
+/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
+static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/group_impl.h b/crypto/secp256k1/libsecp256k1/src/group_impl.h
new file mode 100644
index 000000000..fe0a35929
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/group_impl.h
@@ -0,0 +1,632 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_GROUP_IMPL_H_
+#define _SECP256K1_GROUP_IMPL_H_
+
+#include <string.h>
+
+#include "num.h"
+#include "field.h"
+#include "group.h"
+
+/** Generator for secp256k1, value 'g' defined in
+ * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
+ */
+static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
+ 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
+ 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
+ 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
+ 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
+);
+
+static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
+ secp256k1_fe zi2;
+ secp256k1_fe zi3;
+ secp256k1_fe_sqr(&zi2, zi);
+ secp256k1_fe_mul(&zi3, &zi2, zi);
+ secp256k1_fe_mul(&r->x, &a->x, &zi2);
+ secp256k1_fe_mul(&r->y, &a->y, &zi3);
+ r->infinity = a->infinity;
+}
+
+static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
+ r->infinity = 1;
+}
+
+static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
+ r->infinity = 0;
+ r->x = *x;
+ r->y = *y;
+}
+
+static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
+ return a->infinity;
+}
+
+static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
+ *r = *a;
+ secp256k1_fe_normalize_weak(&r->y);
+ secp256k1_fe_negate(&r->y, &r->y, 1);
+}
+
+static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
+ secp256k1_fe z2, z3;
+ r->infinity = a->infinity;
+ secp256k1_fe_inv(&a->z, &a->z);
+ secp256k1_fe_sqr(&z2, &a->z);
+ secp256k1_fe_mul(&z3, &a->z, &z2);
+ secp256k1_fe_mul(&a->x, &a->x, &z2);
+ secp256k1_fe_mul(&a->y, &a->y, &z3);
+ secp256k1_fe_set_int(&a->z, 1);
+ r->x = a->x;
+ r->y = a->y;
+}
+
+static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
+ secp256k1_fe z2, z3;
+ r->infinity = a->infinity;
+ if (a->infinity) {
+ return;
+ }
+ secp256k1_fe_inv_var(&a->z, &a->z);
+ secp256k1_fe_sqr(&z2, &a->z);
+ secp256k1_fe_mul(&z3, &a->z, &z2);
+ secp256k1_fe_mul(&a->x, &a->x, &z2);
+ secp256k1_fe_mul(&a->y, &a->y, &z3);
+ secp256k1_fe_set_int(&a->z, 1);
+ r->x = a->x;
+ r->y = a->y;
+}
+
+static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) {
+ secp256k1_fe *az;
+ secp256k1_fe *azi;
+ size_t i;
+ size_t count = 0;
+ az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
+ for (i = 0; i < len; i++) {
+ if (!a[i].infinity) {
+ az[count++] = a[i].z;
+ }
+ }
+
+ azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
+ secp256k1_fe_inv_all_var(count, azi, az);
+ free(az);
+
+ count = 0;
+ for (i = 0; i < len; i++) {
+ r[i].infinity = a[i].infinity;
+ if (!a[i].infinity) {
+ secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
+ }
+ }
+ free(azi);
+}
+
+static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) {
+ size_t i = len - 1;
+ secp256k1_fe zi;
+
+ if (len > 0) {
+ /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
+ secp256k1_fe_inv(&zi, &a[i].z);
+ secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
+
+ /* Work out way backwards, using the z-ratios to scale the x/y values. */
+ while (i > 0) {
+ secp256k1_fe_mul(&zi, &zi, &zr[i]);
+ i--;
+ secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
+ }
+ }
+}
+
+static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
+ size_t i = len - 1;
+ secp256k1_fe zs;
+
+ if (len > 0) {
+ /* The z of the final point gives us the "global Z" for the table. */
+ r[i].x = a[i].x;
+ r[i].y = a[i].y;
+ *globalz = a[i].z;
+ r[i].infinity = 0;
+ zs = zr[i];
+
+ /* Work our way backwards, using the z-ratios to scale the x/y values. */
+ while (i > 0) {
+ if (i != len - 1) {
+ secp256k1_fe_mul(&zs, &zs, &zr[i]);
+ }
+ i--;
+ secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
+ }
+ }
+}
+
+static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
+ r->infinity = 1;
+ secp256k1_fe_set_int(&r->x, 0);
+ secp256k1_fe_set_int(&r->y, 0);
+ secp256k1_fe_set_int(&r->z, 0);
+}
+
+static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y) {
+ r->infinity = 0;
+ r->x = *x;
+ r->y = *y;
+ secp256k1_fe_set_int(&r->z, 1);
+}
+
+static void secp256k1_gej_clear(secp256k1_gej *r) {
+ r->infinity = 0;
+ secp256k1_fe_clear(&r->x);
+ secp256k1_fe_clear(&r->y);
+ secp256k1_fe_clear(&r->z);
+}
+
+static void secp256k1_ge_clear(secp256k1_ge *r) {
+ r->infinity = 0;
+ secp256k1_fe_clear(&r->x);
+ secp256k1_fe_clear(&r->y);
+}
+
+static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
+ secp256k1_fe x2, x3, c;
+ r->x = *x;
+ secp256k1_fe_sqr(&x2, x);
+ secp256k1_fe_mul(&x3, x, &x2);
+ r->infinity = 0;
+ secp256k1_fe_set_int(&c, 7);
+ secp256k1_fe_add(&c, &x3);
+ if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
+ return 0;
+ }
+ secp256k1_fe_normalize_var(&r->y);
+ if (secp256k1_fe_is_odd(&r->y) != odd) {
+ secp256k1_fe_negate(&r->y, &r->y, 1);
+ }
+ return 1;
+}
+
+static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
+ r->infinity = a->infinity;
+ r->x = a->x;
+ r->y = a->y;
+ secp256k1_fe_set_int(&r->z, 1);
+}
+
+static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
+ secp256k1_fe r, r2;
+ VERIFY_CHECK(!a->infinity);
+ secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
+ r2 = a->x; secp256k1_fe_normalize_weak(&r2);
+ return secp256k1_fe_equal_var(&r, &r2);
+}
+
+static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
+ r->infinity = a->infinity;
+ r->x = a->x;
+ r->y = a->y;
+ r->z = a->z;
+ secp256k1_fe_normalize_weak(&r->y);
+ secp256k1_fe_negate(&r->y, &r->y, 1);
+}
+
+static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
+ return a->infinity;
+}
+
+static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
+ secp256k1_fe y2, x3, z2, z6;
+ if (a->infinity) {
+ return 0;
+ }
+ /** y^2 = x^3 + 7
+ * (Y/Z^3)^2 = (X/Z^2)^3 + 7
+ * Y^2 / Z^6 = X^3 / Z^6 + 7
+ * Y^2 = X^3 + 7*Z^6
+ */
+ secp256k1_fe_sqr(&y2, &a->y);
+ secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
+ secp256k1_fe_sqr(&z2, &a->z);
+ secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
+ secp256k1_fe_mul_int(&z6, 7);
+ secp256k1_fe_add(&x3, &z6);
+ secp256k1_fe_normalize_weak(&x3);
+ return secp256k1_fe_equal_var(&y2, &x3);
+}
+
+static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
+ secp256k1_fe y2, x3, c;
+ if (a->infinity) {
+ return 0;
+ }
+ /* y^2 = x^3 + 7 */
+ secp256k1_fe_sqr(&y2, &a->y);
+ secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
+ secp256k1_fe_set_int(&c, 7);
+ secp256k1_fe_add(&x3, &c);
+ secp256k1_fe_normalize_weak(&x3);
+ return secp256k1_fe_equal_var(&y2, &x3);
+}
+
+static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
+ /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
+ secp256k1_fe t1,t2,t3,t4;
+ /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
+ * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
+ * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
+ */
+ r->infinity = a->infinity;
+ if (r->infinity) {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 1);
+ }
+ return;
+ }
+
+ if (rzr != NULL) {
+ *rzr = a->y;
+ secp256k1_fe_normalize_weak(rzr);
+ secp256k1_fe_mul_int(rzr, 2);
+ }
+
+ secp256k1_fe_mul(&r->z, &a->z, &a->y);
+ secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
+ secp256k1_fe_sqr(&t1, &a->x);
+ secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
+ secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
+ secp256k1_fe_sqr(&t3, &a->y);
+ secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
+ secp256k1_fe_sqr(&t4, &t3);
+ secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
+ secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
+ r->x = t3;
+ secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
+ secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
+ secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
+ secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
+ secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
+ secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
+ secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
+ secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
+ secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
+}
+
+static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
+ VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
+ secp256k1_gej_double_var(r, a, rzr);
+}
+
+static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
+ /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
+ secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
+
+ if (a->infinity) {
+ VERIFY_CHECK(rzr == NULL);
+ *r = *b;
+ return;
+ }
+
+ if (b->infinity) {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 1);
+ }
+ *r = *a;
+ return;
+ }
+
+ r->infinity = 0;
+ secp256k1_fe_sqr(&z22, &b->z);
+ secp256k1_fe_sqr(&z12, &a->z);
+ secp256k1_fe_mul(&u1, &a->x, &z22);
+ secp256k1_fe_mul(&u2, &b->x, &z12);
+ secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
+ secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
+ secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
+ secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
+ if (secp256k1_fe_normalizes_to_zero_var(&h)) {
+ if (secp256k1_fe_normalizes_to_zero_var(&i)) {
+ secp256k1_gej_double_var(r, a, rzr);
+ } else {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 0);
+ }
+ r->infinity = 1;
+ }
+ return;
+ }
+ secp256k1_fe_sqr(&i2, &i);
+ secp256k1_fe_sqr(&h2, &h);
+ secp256k1_fe_mul(&h3, &h, &h2);
+ secp256k1_fe_mul(&h, &h, &b->z);
+ if (rzr != NULL) {
+ *rzr = h;
+ }
+ secp256k1_fe_mul(&r->z, &a->z, &h);
+ secp256k1_fe_mul(&t, &u1, &h2);
+ r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
+ secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
+ secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
+ secp256k1_fe_add(&r->y, &h3);
+}
+
+static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
+ /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
+ secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
+ if (a->infinity) {
+ VERIFY_CHECK(rzr == NULL);
+ secp256k1_gej_set_ge(r, b);
+ return;
+ }
+ if (b->infinity) {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 1);
+ }
+ *r = *a;
+ return;
+ }
+ r->infinity = 0;
+
+ secp256k1_fe_sqr(&z12, &a->z);
+ u1 = a->x; secp256k1_fe_normalize_weak(&u1);
+ secp256k1_fe_mul(&u2, &b->x, &z12);
+ s1 = a->y; secp256k1_fe_normalize_weak(&s1);
+ secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
+ secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
+ secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
+ if (secp256k1_fe_normalizes_to_zero_var(&h)) {
+ if (secp256k1_fe_normalizes_to_zero_var(&i)) {
+ secp256k1_gej_double_var(r, a, rzr);
+ } else {
+ if (rzr != NULL) {
+ secp256k1_fe_set_int(rzr, 0);
+ }
+ r->infinity = 1;
+ }
+ return;
+ }
+ secp256k1_fe_sqr(&i2, &i);
+ secp256k1_fe_sqr(&h2, &h);
+ secp256k1_fe_mul(&h3, &h, &h2);
+ if (rzr != NULL) {
+ *rzr = h;
+ }
+ secp256k1_fe_mul(&r->z, &a->z, &h);
+ secp256k1_fe_mul(&t, &u1, &h2);
+ r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
+ secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
+ secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
+ secp256k1_fe_add(&r->y, &h3);
+}
+
+static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
+ /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
+ secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
+
+ if (b->infinity) {
+ *r = *a;
+ return;
+ }
+ if (a->infinity) {
+ secp256k1_fe bzinv2, bzinv3;
+ r->infinity = b->infinity;
+ secp256k1_fe_sqr(&bzinv2, bzinv);
+ secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
+ secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
+ secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
+ secp256k1_fe_set_int(&r->z, 1);
+ return;
+ }
+ r->infinity = 0;
+
+ /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
+ * secp256k1's isomorphism we can multiply the Z coordinates on both sides
+ * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
+ * This means that (rx,ry,rz) can be calculated as
+ * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
+ * The variable az below holds the modified Z coordinate for a, which is used
+ * for the computation of rx and ry, but not for rz.
+ */
+ secp256k1_fe_mul(&az, &a->z, bzinv);
+
+ secp256k1_fe_sqr(&z12, &az);
+ u1 = a->x; secp256k1_fe_normalize_weak(&u1);
+ secp256k1_fe_mul(&u2, &b->x, &z12);
+ s1 = a->y; secp256k1_fe_normalize_weak(&s1);
+ secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
+ secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
+ secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
+ if (secp256k1_fe_normalizes_to_zero_var(&h)) {
+ if (secp256k1_fe_normalizes_to_zero_var(&i)) {
+ secp256k1_gej_double_var(r, a, NULL);
+ } else {
+ r->infinity = 1;
+ }
+ return;
+ }
+ secp256k1_fe_sqr(&i2, &i);
+ secp256k1_fe_sqr(&h2, &h);
+ secp256k1_fe_mul(&h3, &h, &h2);
+ r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
+ secp256k1_fe_mul(&t, &u1, &h2);
+ r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
+ secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
+ secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
+ secp256k1_fe_add(&r->y, &h3);
+}
+
+
+static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
+ /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
+ static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
+ secp256k1_fe m_alt, rr_alt;
+ int infinity, degenerate;
+ VERIFY_CHECK(!b->infinity);
+ VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
+
+ /** In:
+ * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
+ * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
+ * we find as solution for a unified addition/doubling formula:
+ * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
+ * x3 = lambda^2 - (x1 + x2)
+ * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
+ *
+ * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
+ * U1 = X1*Z2^2, U2 = X2*Z1^2
+ * S1 = Y1*Z2^3, S2 = Y2*Z1^3
+ * Z = Z1*Z2
+ * T = U1+U2
+ * M = S1+S2
+ * Q = T*M^2
+ * R = T^2-U1*U2
+ * X3 = 4*(R^2-Q)
+ * Y3 = 4*(R*(3*Q-2*R^2)-M^4)
+ * Z3 = 2*M*Z
+ * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
+ *
+ * This formula has the benefit of being the same for both addition
+ * of distinct points and doubling. However, it breaks down in the
+ * case that either point is infinity, or that y1 = -y2. We handle
+ * these cases in the following ways:
+ *
+ * - If b is infinity we simply bail by means of a VERIFY_CHECK.
+ *
+ * - If a is infinity, we detect this, and at the end of the
+ * computation replace the result (which will be meaningless,
+ * but we compute to be constant-time) with b.x : b.y : 1.
+ *
+ * - If a = -b, we have y1 = -y2, which is a degenerate case.
+ * But here the answer is infinity, so we simply set the
+ * infinity flag of the result, overriding the computed values
+ * without even needing to cmov.
+ *
+ * - If y1 = -y2 but x1 != x2, which does occur thanks to certain
+ * properties of our curve (specifically, 1 has nontrivial cube
+ * roots in our field, and the curve equation has no x coefficient)
+ * then the answer is not infinity but also not given by the above
+ * equation. In this case, we cmov in place an alternate expression
+ * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
+ * expressions for lambda are defined, they are equal, and can be
+ * obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
+ * then substitution of x^3 + 7 for y^2 (using the curve equation).
+ * For all pairs of nonzero points (a, b) at least one is defined,
+ * so this covers everything.
+ */
+
+ secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
+ u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
+ secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
+ s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
+ secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
+ secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
+ t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
+ m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
+ secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
+ secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
+ secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
+ secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
+ /** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
+ * case that Z = z1z2 = 0, and this is special-cased later on). */
+ degenerate = secp256k1_fe_normalizes_to_zero(&m) &
+ secp256k1_fe_normalizes_to_zero(&rr);
+ /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
+ * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
+ * a nontrivial cube root of one. In either case, an alternate
+ * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
+ * so we set R/M equal to this. */
+ rr_alt = s1;
+ secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
+ secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
+
+ secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
+ secp256k1_fe_cmov(&m_alt, &m, !degenerate);
+ /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
+ * From here on out Ralt and Malt represent the numerator
+ * and denominator of lambda; R and M represent the explicit
+ * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
+ secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
+ secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
+ /* These two lines use the observation that either M == Malt or M == 0,
+ * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
+ * zero (which is "computed" by cmov). So the cost is one squaring
+ * versus two multiplications. */
+ secp256k1_fe_sqr(&n, &n);
+ secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
+ secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
+ secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
+ infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
+ secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
+ secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
+ secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
+ secp256k1_fe_normalize_weak(&t);
+ r->x = t; /* r->x = Ralt^2-Q (1) */
+ secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
+ secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
+ secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
+ secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
+ secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
+ secp256k1_fe_normalize_weak(&r->y);
+ secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
+ secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
+
+ /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
+ secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
+ secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
+ secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
+ r->infinity = infinity;
+}
+
+static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
+ /* Operations: 4 mul, 1 sqr */
+ secp256k1_fe zz;
+ VERIFY_CHECK(!secp256k1_fe_is_zero(s));
+ secp256k1_fe_sqr(&zz, s);
+ secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
+ secp256k1_fe_mul(&r->y, &r->y, &zz);
+ secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
+ secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
+}
+
+static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
+ secp256k1_fe x, y;
+ VERIFY_CHECK(!a->infinity);
+ x = a->x;
+ secp256k1_fe_normalize(&x);
+ y = a->y;
+ secp256k1_fe_normalize(&y);
+ secp256k1_fe_to_storage(&r->x, &x);
+ secp256k1_fe_to_storage(&r->y, &y);
+}
+
+static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
+ secp256k1_fe_from_storage(&r->x, &a->x);
+ secp256k1_fe_from_storage(&r->y, &a->y);
+ r->infinity = 0;
+}
+
+static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
+ secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
+ secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
+}
+
+#ifdef USE_ENDOMORPHISM
+static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
+ static const secp256k1_fe beta = SECP256K1_FE_CONST(
+ 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
+ 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
+ );
+ *r = *a;
+ secp256k1_fe_mul(&r->x, &r->x, &beta);
+}
+#endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/hash.h b/crypto/secp256k1/libsecp256k1/src/hash.h
new file mode 100644
index 000000000..0ff01e63f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/hash.h
@@ -0,0 +1,41 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_HASH_
+#define _SECP256K1_HASH_
+
+#include <stdlib.h>
+#include <stdint.h>
+
+typedef struct {
+ uint32_t s[32];
+ uint32_t buf[16]; /* In big endian */
+ size_t bytes;
+} secp256k1_sha256_t;
+
+static void secp256k1_sha256_initialize(secp256k1_sha256_t *hash);
+static void secp256k1_sha256_write(secp256k1_sha256_t *hash, const unsigned char *data, size_t size);
+static void secp256k1_sha256_finalize(secp256k1_sha256_t *hash, unsigned char *out32);
+
+typedef struct {
+ secp256k1_sha256_t inner, outer;
+} secp256k1_hmac_sha256_t;
+
+static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256_t *hash, const unsigned char *key, size_t size);
+static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256_t *hash, const unsigned char *data, size_t size);
+static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsigned char *out32);
+
+typedef struct {
+ unsigned char v[32];
+ unsigned char k[32];
+ int retry;
+} secp256k1_rfc6979_hmac_sha256_t;
+
+static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen);
+static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256_t *rng, unsigned char *out, size_t outlen);
+static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256_t *rng);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/hash_impl.h b/crypto/secp256k1/libsecp256k1/src/hash_impl.h
new file mode 100644
index 000000000..ae55df6d8
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/hash_impl.h
@@ -0,0 +1,283 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_HASH_IMPL_H_
+#define _SECP256K1_HASH_IMPL_H_
+
+#include "hash.h"
+
+#include <stdlib.h>
+#include <stdint.h>
+#include <string.h>
+
+#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
+#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
+#define Sigma0(x) (((x) >> 2 | (x) << 30) ^ ((x) >> 13 | (x) << 19) ^ ((x) >> 22 | (x) << 10))
+#define Sigma1(x) (((x) >> 6 | (x) << 26) ^ ((x) >> 11 | (x) << 21) ^ ((x) >> 25 | (x) << 7))
+#define sigma0(x) (((x) >> 7 | (x) << 25) ^ ((x) >> 18 | (x) << 14) ^ ((x) >> 3))
+#define sigma1(x) (((x) >> 17 | (x) << 15) ^ ((x) >> 19 | (x) << 13) ^ ((x) >> 10))
+
+#define Round(a,b,c,d,e,f,g,h,k,w) do { \
+ uint32_t t1 = (h) + Sigma1(e) + Ch((e), (f), (g)) + (k) + (w); \
+ uint32_t t2 = Sigma0(a) + Maj((a), (b), (c)); \
+ (d) += t1; \
+ (h) = t1 + t2; \
+} while(0)
+
+#ifdef WORDS_BIGENDIAN
+#define BE32(x) (x)
+#else
+#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24))
+#endif
+
+static void secp256k1_sha256_initialize(secp256k1_sha256_t *hash) {
+ hash->s[0] = 0x6a09e667ul;
+ hash->s[1] = 0xbb67ae85ul;
+ hash->s[2] = 0x3c6ef372ul;
+ hash->s[3] = 0xa54ff53aul;
+ hash->s[4] = 0x510e527ful;
+ hash->s[5] = 0x9b05688cul;
+ hash->s[6] = 0x1f83d9abul;
+ hash->s[7] = 0x5be0cd19ul;
+ hash->bytes = 0;
+}
+
+/** Perform one SHA-256 transformation, processing 16 big endian 32-bit words. */
+static void secp256k1_sha256_transform(uint32_t* s, const uint32_t* chunk) {
+ uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
+ uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
+
+ Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = BE32(chunk[0]));
+ Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = BE32(chunk[1]));
+ Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = BE32(chunk[2]));
+ Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = BE32(chunk[3]));
+ Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = BE32(chunk[4]));
+ Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = BE32(chunk[5]));
+ Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = BE32(chunk[6]));
+ Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = BE32(chunk[7]));
+ Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = BE32(chunk[8]));
+ Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = BE32(chunk[9]));
+ Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = BE32(chunk[10]));
+ Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = BE32(chunk[11]));
+ Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = BE32(chunk[12]));
+ Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = BE32(chunk[13]));
+ Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = BE32(chunk[14]));
+ Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = BE32(chunk[15]));
+
+ Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
+ Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
+ Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
+ Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
+ Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
+ Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
+ Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
+ Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
+ Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
+ Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
+ Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
+ Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
+ Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
+ Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
+ Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
+ Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
+
+ Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
+ Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
+ Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
+ Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
+ Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
+ Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
+ Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
+ Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
+ Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
+ Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
+ Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
+ Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
+ Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
+ Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
+ Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
+ Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
+
+ Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
+ Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
+ Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
+ Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
+ Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
+ Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
+ Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
+ Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
+ Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
+ Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
+ Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
+ Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
+ Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
+ Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
+ Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
+ Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
+
+ s[0] += a;
+ s[1] += b;
+ s[2] += c;
+ s[3] += d;
+ s[4] += e;
+ s[5] += f;
+ s[6] += g;
+ s[7] += h;
+}
+
+static void secp256k1_sha256_write(secp256k1_sha256_t *hash, const unsigned char *data, size_t len) {
+ size_t bufsize = hash->bytes & 0x3F;
+ hash->bytes += len;
+ while (bufsize + len >= 64) {
+ /* Fill the buffer, and process it. */
+ memcpy(((unsigned char*)hash->buf) + bufsize, data, 64 - bufsize);
+ data += 64 - bufsize;
+ len -= 64 - bufsize;
+ secp256k1_sha256_transform(hash->s, hash->buf);
+ bufsize = 0;
+ }
+ if (len) {
+ /* Fill the buffer with what remains. */
+ memcpy(((unsigned char*)hash->buf) + bufsize, data, len);
+ }
+}
+
+static void secp256k1_sha256_finalize(secp256k1_sha256_t *hash, unsigned char *out32) {
+ static const unsigned char pad[64] = {0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+ uint32_t sizedesc[2];
+ uint32_t out[8];
+ int i = 0;
+ sizedesc[0] = BE32(hash->bytes >> 29);
+ sizedesc[1] = BE32(hash->bytes << 3);
+ secp256k1_sha256_write(hash, pad, 1 + ((119 - (hash->bytes % 64)) % 64));
+ secp256k1_sha256_write(hash, (const unsigned char*)sizedesc, 8);
+ for (i = 0; i < 8; i++) {
+ out[i] = BE32(hash->s[i]);
+ hash->s[i] = 0;
+ }
+ memcpy(out32, (const unsigned char*)out, 32);
+}
+
+static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256_t *hash, const unsigned char *key, size_t keylen) {
+ int n;
+ unsigned char rkey[64];
+ if (keylen <= 64) {
+ memcpy(rkey, key, keylen);
+ memset(rkey + keylen, 0, 64 - keylen);
+ } else {
+ secp256k1_sha256_t sha256;
+ secp256k1_sha256_initialize(&sha256);
+ secp256k1_sha256_write(&sha256, key, keylen);
+ secp256k1_sha256_finalize(&sha256, rkey);
+ memset(rkey + 32, 0, 32);
+ }
+
+ secp256k1_sha256_initialize(&hash->outer);
+ for (n = 0; n < 64; n++) {
+ rkey[n] ^= 0x5c;
+ }
+ secp256k1_sha256_write(&hash->outer, rkey, 64);
+
+ secp256k1_sha256_initialize(&hash->inner);
+ for (n = 0; n < 64; n++) {
+ rkey[n] ^= 0x5c ^ 0x36;
+ }
+ secp256k1_sha256_write(&hash->inner, rkey, 64);
+ memset(rkey, 0, 64);
+}
+
+static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256_t *hash, const unsigned char *data, size_t size) {
+ secp256k1_sha256_write(&hash->inner, data, size);
+}
+
+static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsigned char *out32) {
+ unsigned char temp[32];
+ secp256k1_sha256_finalize(&hash->inner, temp);
+ secp256k1_sha256_write(&hash->outer, temp, 32);
+ memset(temp, 0, 32);
+ secp256k1_sha256_finalize(&hash->outer, out32);
+}
+
+
+static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen) {
+ secp256k1_hmac_sha256_t hmac;
+ static const unsigned char zero[1] = {0x00};
+ static const unsigned char one[1] = {0x01};
+
+ memset(rng->v, 0x01, 32); /* RFC6979 3.2.b. */
+ memset(rng->k, 0x00, 32); /* RFC6979 3.2.c. */
+
+ /* RFC6979 3.2.d. */
+ secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
+ secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
+ secp256k1_hmac_sha256_write(&hmac, zero, 1);
+ secp256k1_hmac_sha256_write(&hmac, key, keylen);
+ secp256k1_hmac_sha256_finalize(&hmac, rng->k);
+ secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
+ secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
+ secp256k1_hmac_sha256_finalize(&hmac, rng->v);
+
+ /* RFC6979 3.2.f. */
+ secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
+ secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
+ secp256k1_hmac_sha256_write(&hmac, one, 1);
+ secp256k1_hmac_sha256_write(&hmac, key, keylen);
+ secp256k1_hmac_sha256_finalize(&hmac, rng->k);
+ secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
+ secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
+ secp256k1_hmac_sha256_finalize(&hmac, rng->v);
+ rng->retry = 0;
+}
+
+static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256_t *rng, unsigned char *out, size_t outlen) {
+ /* RFC6979 3.2.h. */
+ static const unsigned char zero[1] = {0x00};
+ if (rng->retry) {
+ secp256k1_hmac_sha256_t hmac;
+ secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
+ secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
+ secp256k1_hmac_sha256_write(&hmac, zero, 1);
+ secp256k1_hmac_sha256_finalize(&hmac, rng->k);
+ secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
+ secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
+ secp256k1_hmac_sha256_finalize(&hmac, rng->v);
+ }
+
+ while (outlen > 0) {
+ secp256k1_hmac_sha256_t hmac;
+ int now = outlen;
+ secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
+ secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
+ secp256k1_hmac_sha256_finalize(&hmac, rng->v);
+ if (now > 32) {
+ now = 32;
+ }
+ memcpy(out, rng->v, now);
+ out += now;
+ outlen -= now;
+ }
+
+ rng->retry = 1;
+}
+
+static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256_t *rng) {
+ memset(rng->k, 0, 32);
+ memset(rng->v, 0, 32);
+ rng->retry = 0;
+}
+
+
+#undef Round
+#undef sigma0
+#undef sigma1
+#undef Sigma0
+#undef Sigma1
+#undef Ch
+#undef Maj
+#undef ReadBE32
+#undef WriteBE32
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java
new file mode 100644
index 000000000..90a498eaa
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java
@@ -0,0 +1,60 @@
+package org.bitcoin;
+
+import java.nio.ByteBuffer;
+import java.nio.ByteOrder;
+
+import com.google.common.base.Preconditions;
+
+
+/**
+ * This class holds native methods to handle ECDSA verification.
+ * You can find an example library that can be used for this at
+ * https://github.com/sipa/secp256k1
+ */
+public class NativeSecp256k1 {
+ public static final boolean enabled;
+ static {
+ boolean isEnabled = true;
+ try {
+ System.loadLibrary("javasecp256k1");
+ } catch (UnsatisfiedLinkError e) {
+ isEnabled = false;
+ }
+ enabled = isEnabled;
+ }
+
+ private static ThreadLocal<ByteBuffer> nativeECDSABuffer = new ThreadLocal<ByteBuffer>();
+ /**
+ * Verifies the given secp256k1 signature in native code.
+ * Calling when enabled == false is undefined (probably library not loaded)
+ *
+ * @param data The data which was signed, must be exactly 32 bytes
+ * @param signature The signature
+ * @param pub The public key which did the signing
+ */
+ public static boolean verify(byte[] data, byte[] signature, byte[] pub) {
+ Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null) {
+ byteBuff = ByteBuffer.allocateDirect(32 + 8 + 520 + 520);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(data);
+ byteBuff.putInt(signature.length);
+ byteBuff.putInt(pub.length);
+ byteBuff.put(signature);
+ byteBuff.put(pub);
+ return secp256k1_ecdsa_verify(byteBuff) == 1;
+ }
+
+ /**
+ * @param byteBuff signature format is byte[32] data,
+ * native-endian int signatureLength, native-endian int pubkeyLength,
+ * byte[signatureLength] signature, byte[pubkeyLength] pub
+ * @returns 1 for valid signature, anything else for invalid
+ */
+ private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff);
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c
new file mode 100644
index 000000000..bb4cd7072
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c
@@ -0,0 +1,23 @@
+#include "org_bitcoin_NativeSecp256k1.h"
+#include "include/secp256k1.h"
+
+JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject)
+{
+ unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
+ int sigLen = *((int*)(data + 32));
+ int pubLen = *((int*)(data + 32 + 4));
+
+ return secp256k1_ecdsa_verify(data, 32, data+32+8, sigLen, data+32+8+sigLen, pubLen);
+}
+
+static void __javasecp256k1_attach(void) __attribute__((constructor));
+static void __javasecp256k1_detach(void) __attribute__((destructor));
+
+static void __javasecp256k1_attach(void) {
+ secp256k1_start(SECP256K1_START_VERIFY);
+}
+
+static void __javasecp256k1_detach(void) {
+ secp256k1_stop();
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h
new file mode 100644
index 000000000..d7fb004fa
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h
@@ -0,0 +1,21 @@
+/* DO NOT EDIT THIS FILE - it is machine generated */
+#include <jni.h>
+/* Header for class org_bitcoin_NativeSecp256k1 */
+
+#ifndef _Included_org_bitcoin_NativeSecp256k1
+#define _Included_org_bitcoin_NativeSecp256k1
+#ifdef __cplusplus
+extern "C" {
+#endif
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_ecdsa_verify
+ * Signature: (Ljava/nio/ByteBuffer;)I
+ */
+JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
+ (JNIEnv *, jclass, jobject);
+
+#ifdef __cplusplus
+}
+#endif
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include
new file mode 100644
index 000000000..8ef3aff92
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include
@@ -0,0 +1,9 @@
+include_HEADERS += include/secp256k1_ecdh.h
+noinst_HEADERS += src/modules/ecdh/main_impl.h
+noinst_HEADERS += src/modules/ecdh/tests_impl.h
+if USE_BENCHMARK
+noinst_PROGRAMS += bench_ecdh
+bench_ecdh_SOURCES = src/bench_ecdh.c
+bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS)
+bench_ecdh_LDFLAGS = -static
+endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h
new file mode 100644
index 000000000..c23e4f82f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h
@@ -0,0 +1,54 @@
+/**********************************************************************
+ * Copyright (c) 2015 Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_ECDH_MAIN_
+#define _SECP256K1_MODULE_ECDH_MAIN_
+
+#include "include/secp256k1_ecdh.h"
+#include "ecmult_const_impl.h"
+
+int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) {
+ int ret = 0;
+ int overflow = 0;
+ secp256k1_gej res;
+ secp256k1_ge pt;
+ secp256k1_scalar s;
+ ARG_CHECK(result != NULL);
+ ARG_CHECK(point != NULL);
+ ARG_CHECK(scalar != NULL);
+ (void)ctx;
+
+ secp256k1_pubkey_load(ctx, &pt, point);
+ secp256k1_scalar_set_b32(&s, scalar, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&s)) {
+ ret = 0;
+ } else {
+ unsigned char x[32];
+ unsigned char y[1];
+ secp256k1_sha256_t sha;
+
+ secp256k1_ecmult_const(&res, &pt, &s);
+ secp256k1_ge_set_gej(&pt, &res);
+ /* Compute a hash of the point in compressed form
+ * Note we cannot use secp256k1_eckey_pubkey_serialize here since it does not
+ * expect its output to be secret and has a timing sidechannel. */
+ secp256k1_fe_normalize(&pt.x);
+ secp256k1_fe_normalize(&pt.y);
+ secp256k1_fe_get_b32(x, &pt.x);
+ y[0] = 0x02 | secp256k1_fe_is_odd(&pt.y);
+
+ secp256k1_sha256_initialize(&sha);
+ secp256k1_sha256_write(&sha, y, sizeof(y));
+ secp256k1_sha256_write(&sha, x, sizeof(x));
+ secp256k1_sha256_finalize(&sha, result);
+ ret = 1;
+ }
+
+ secp256k1_scalar_clear(&s);
+ return ret;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h
new file mode 100644
index 000000000..7badc9033
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h
@@ -0,0 +1,75 @@
+/**********************************************************************
+ * Copyright (c) 2015 Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_ECDH_TESTS_
+#define _SECP256K1_MODULE_ECDH_TESTS_
+
+void test_ecdh_generator_basepoint(void) {
+ unsigned char s_one[32] = { 0 };
+ secp256k1_pubkey point[2];
+ int i;
+
+ s_one[31] = 1;
+ /* Check against pubkey creation when the basepoint is the generator */
+ for (i = 0; i < 100; ++i) {
+ secp256k1_sha256_t sha;
+ unsigned char s_b32[32];
+ unsigned char output_ecdh[32];
+ unsigned char output_ser[32];
+ unsigned char point_ser[33];
+ size_t point_ser_len = sizeof(point_ser);
+ secp256k1_scalar s;
+
+ random_scalar_order(&s);
+ secp256k1_scalar_get_b32(s_b32, &s);
+
+ /* compute using ECDH function */
+ CHECK(secp256k1_ec_pubkey_create(ctx, &point[0], s_one) == 1);
+ CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32) == 1);
+ /* compute "explicitly" */
+ CHECK(secp256k1_ec_pubkey_create(ctx, &point[1], s_b32) == 1);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_COMPRESSED) == 1);
+ CHECK(point_ser_len == sizeof(point_ser));
+ secp256k1_sha256_initialize(&sha);
+ secp256k1_sha256_write(&sha, point_ser, point_ser_len);
+ secp256k1_sha256_finalize(&sha, output_ser);
+ /* compare */
+ CHECK(memcmp(output_ecdh, output_ser, sizeof(output_ser)) == 0);
+ }
+}
+
+void test_bad_scalar(void) {
+ unsigned char s_zero[32] = { 0 };
+ unsigned char s_overflow[32] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
+ 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
+ 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41
+ };
+ unsigned char s_rand[32] = { 0 };
+ unsigned char output[32];
+ secp256k1_scalar rand;
+ secp256k1_pubkey point;
+
+ /* Create random point */
+ random_scalar_order(&rand);
+ secp256k1_scalar_get_b32(s_rand, &rand);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &point, s_rand) == 1);
+
+ /* Try to multiply it by bad values */
+ CHECK(secp256k1_ecdh(ctx, output, &point, s_zero) == 0);
+ CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 0);
+ /* ...and a good one */
+ s_overflow[31] -= 1;
+ CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 1);
+}
+
+void run_ecdh_tests(void) {
+ test_ecdh_generator_basepoint();
+ test_bad_scalar();
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include
new file mode 100644
index 000000000..754469eeb
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include
@@ -0,0 +1,9 @@
+include_HEADERS += include/secp256k1_recovery.h
+noinst_HEADERS += src/modules/recovery/main_impl.h
+noinst_HEADERS += src/modules/recovery/tests_impl.h
+if USE_BENCHMARK
+noinst_PROGRAMS += bench_recover
+bench_recover_SOURCES = src/bench_recover.c
+bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS)
+bench_recover_LDFLAGS = -static
+endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h
new file mode 100644
index 000000000..75b695894
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h
@@ -0,0 +1,156 @@
+/**********************************************************************
+ * Copyright (c) 2013-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_RECOVERY_MAIN_
+#define _SECP256K1_MODULE_RECOVERY_MAIN_
+
+#include "include/secp256k1_recovery.h"
+
+static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const secp256k1_ecdsa_recoverable_signature* sig) {
+ (void)ctx;
+ if (sizeof(secp256k1_scalar) == 32) {
+ /* When the secp256k1_scalar type is exactly 32 byte, use its
+ * representation inside secp256k1_ecdsa_signature, as conversion is very fast.
+ * Note that secp256k1_ecdsa_signature_save must use the same representation. */
+ memcpy(r, &sig->data[0], 32);
+ memcpy(s, &sig->data[32], 32);
+ } else {
+ secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
+ secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
+ }
+ *recid = sig->data[64];
+}
+
+static void secp256k1_ecdsa_recoverable_signature_save(secp256k1_ecdsa_recoverable_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s, int recid) {
+ if (sizeof(secp256k1_scalar) == 32) {
+ memcpy(&sig->data[0], r, 32);
+ memcpy(&sig->data[32], s, 32);
+ } else {
+ secp256k1_scalar_get_b32(&sig->data[0], r);
+ secp256k1_scalar_get_b32(&sig->data[32], s);
+ }
+ sig->data[64] = recid;
+}
+
+int secp256k1_ecdsa_recoverable_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature* sig, const unsigned char *input64, int recid) {
+ secp256k1_scalar r, s;
+ int ret = 1;
+ int overflow = 0;
+
+ (void)ctx;
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(input64 != NULL);
+ ARG_CHECK(recid >= 0 && recid <= 3);
+
+ secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
+ ret &= !overflow;
+ secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
+ ret &= !overflow;
+ if (ret) {
+ secp256k1_ecdsa_recoverable_signature_save(sig, &r, &s, recid);
+ } else {
+ memset(sig, 0, sizeof(*sig));
+ }
+ return ret;
+}
+
+int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature* sig) {
+ secp256k1_scalar r, s;
+
+ (void)ctx;
+ ARG_CHECK(output64 != NULL);
+ ARG_CHECK(sig != NULL);
+
+ secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, recid, sig);
+ secp256k1_scalar_get_b32(&output64[0], &r);
+ secp256k1_scalar_get_b32(&output64[32], &s);
+ return 1;
+}
+
+int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const secp256k1_ecdsa_recoverable_signature* sigin) {
+ secp256k1_scalar r, s;
+ int recid;
+
+ (void)ctx;
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(sigin != NULL);
+
+ secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, sigin);
+ secp256k1_ecdsa_signature_save(sig, &r, &s);
+ return 1;
+}
+
+int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
+ secp256k1_scalar r, s;
+ secp256k1_scalar sec, non, msg;
+ int recid;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(signature != NULL);
+ ARG_CHECK(seckey != NULL);
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_default;
+ }
+
+ secp256k1_scalar_set_b32(&sec, seckey, &overflow);
+ /* Fail if the secret key is invalid. */
+ if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
+ unsigned int count = 0;
+ secp256k1_scalar_set_b32(&msg, msg32, NULL);
+ while (1) {
+ unsigned char nonce32[32];
+ ret = noncefp(nonce32, seckey, msg32, NULL, (void*)noncedata, count);
+ if (!ret) {
+ break;
+ }
+ secp256k1_scalar_set_b32(&non, nonce32, &overflow);
+ memset(nonce32, 0, 32);
+ if (!secp256k1_scalar_is_zero(&non) && !overflow) {
+ if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) {
+ break;
+ }
+ }
+ count++;
+ }
+ secp256k1_scalar_clear(&msg);
+ secp256k1_scalar_clear(&non);
+ secp256k1_scalar_clear(&sec);
+ }
+ if (ret) {
+ secp256k1_ecdsa_recoverable_signature_save(signature, &r, &s, recid);
+ } else {
+ memset(signature, 0, sizeof(*signature));
+ }
+ return ret;
+}
+
+int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32) {
+ secp256k1_ge q;
+ secp256k1_scalar r, s;
+ secp256k1_scalar m;
+ int recid;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(signature != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, signature);
+ ARG_CHECK(recid >= 0 && recid < 4);
+ secp256k1_scalar_set_b32(&m, msg32, NULL);
+ if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &r, &s, &q, &m, recid)) {
+ secp256k1_pubkey_save(pubkey, &q);
+ return 1;
+ } else {
+ memset(pubkey, 0, sizeof(*pubkey));
+ return 0;
+ }
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h
new file mode 100644
index 000000000..5a78fae92
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h
@@ -0,0 +1,249 @@
+/**********************************************************************
+ * Copyright (c) 2013-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_MODULE_RECOVERY_TESTS_
+#define _SECP256K1_MODULE_RECOVERY_TESTS_
+
+void test_ecdsa_recovery_end_to_end(void) {
+ unsigned char extra[32] = {0x00};
+ unsigned char privkey[32];
+ unsigned char message[32];
+ secp256k1_ecdsa_signature signature[5];
+ secp256k1_ecdsa_recoverable_signature rsignature[5];
+ unsigned char sig[74];
+ secp256k1_pubkey pubkey;
+ secp256k1_pubkey recpubkey;
+ int recid = 0;
+
+ /* Generate a random key and message. */
+ {
+ secp256k1_scalar msg, key;
+ random_scalar_order_test(&msg);
+ random_scalar_order_test(&key);
+ secp256k1_scalar_get_b32(privkey, &key);
+ secp256k1_scalar_get_b32(message, &msg);
+ }
+
+ /* Construct and verify corresponding public key. */
+ CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
+
+ /* Serialize/parse compact and verify/recover. */
+ extra[0] = 0;
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[0], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[4], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[1], message, privkey, NULL, extra) == 1);
+ extra[31] = 1;
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[2], message, privkey, NULL, extra) == 1);
+ extra[31] = 0;
+ extra[0] = 1;
+ CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[3], message, privkey, NULL, extra) == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1);
+ memset(&rsignature[4], 0, sizeof(rsignature[4]));
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1);
+ /* Parse compact (with recovery id) and recover. */
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 1);
+ CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
+ /* Serialize/destroy/parse signature and verify again. */
+ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1);
+ sig[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 0);
+ /* Recover again */
+ CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 0 ||
+ memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
+}
+
+/* Tests several edge cases. */
+void test_ecdsa_recovery_edge_cases(void) {
+ const unsigned char msg32[32] = {
+ 'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
+ 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
+ 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
+ 's', 's', 'a', 'g', 'e', '.', '.', '.'
+ };
+ const unsigned char sig64[64] = {
+ /* Generated by signing the above message with nonce 'This is the nonce we will use...'
+ * and secret key 0 (which is not valid), resulting in recid 0. */
+ 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
+ 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
+ 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
+ 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
+ 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
+ 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
+ 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
+ 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
+ };
+ secp256k1_pubkey pubkey;
+ /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
+ const unsigned char sigb64[64] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ };
+ secp256k1_pubkey pubkeyb;
+ secp256k1_ecdsa_recoverable_signature rsig;
+ secp256k1_ecdsa_signature sig;
+ int recid;
+
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 0));
+ CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32));
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 1));
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32));
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 2));
+ CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32));
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 3));
+ CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32));
+
+ for (recid = 0; recid < 4; recid++) {
+ int i;
+ int recid2;
+ /* (4,4) encoded in DER. */
+ unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
+ unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01};
+ unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00};
+ unsigned char sigbderalt1[39] = {
+ 0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
+ };
+ unsigned char sigbderalt2[39] = {
+ 0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ };
+ unsigned char sigbderalt3[40] = {
+ 0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
+ };
+ unsigned char sigbderalt4[40] = {
+ 0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ };
+ /* (order + r,4) encoded in DER. */
+ unsigned char sigbderlong[40] = {
+ 0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC,
+ 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
+ 0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
+ };
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ for (recid2 = 0; recid2 < 4; recid2++) {
+ secp256k1_pubkey pubkey2b;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid2) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkey2b, &rsig, msg32) == 1);
+ /* Verifying with (order + r,4) should always fail. */
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderlong, sizeof(sigbderlong)) == 0);
+ }
+ /* DER parsing tests. */
+ /* Zero length r/s. */
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zr, sizeof(sigcder_zr)) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zs, sizeof(sigcder_zs)) == 0);
+ /* Leading zeros. */
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt1, sizeof(sigbderalt1)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt2, sizeof(sigbderalt2)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
+ sigbderalt3[4] = 1;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 0);
+ sigbderalt4[7] = 1;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 0);
+ /* Damage signature. */
+ sigbder[7]++;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0);
+ sigbder[7]--;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, 6) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder) - 1) == 0);
+ for(i = 0; i < 8; i++) {
+ int c;
+ unsigned char orig = sigbder[i];
+ /*Try every single-byte change.*/
+ for (c = 0; c < 256; c++) {
+ if (c == orig ) {
+ continue;
+ }
+ sigbder[i] = c;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 0 || secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0);
+ }
+ sigbder[i] = orig;
+ }
+ }
+
+ /* Test r/s equal to zero */
+ {
+ /* (1,1) encoded in DER. */
+ unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01};
+ unsigned char sigc64[64] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ };
+ secp256k1_pubkey pubkeyc;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyc, &rsig, msg32) == 1);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 1);
+ sigcder[4] = 0;
+ sigc64[31] = 0;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 0);
+ sigcder[4] = 1;
+ sigcder[7] = 0;
+ sigc64[31] = 1;
+ sigc64[63] = 0;
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1);
+ CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 0);
+ }
+}
+
+void run_recovery_tests(void) {
+ int i;
+ for (i = 0; i < 64*count; i++) {
+ test_ecdsa_recovery_end_to_end();
+ }
+ test_ecdsa_recovery_edge_cases();
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include
new file mode 100644
index 000000000..bad4cb7c5
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include
@@ -0,0 +1,11 @@
+include_HEADERS += include/secp256k1_schnorr.h
+noinst_HEADERS += src/modules/schnorr/main_impl.h
+noinst_HEADERS += src/modules/schnorr/schnorr.h
+noinst_HEADERS += src/modules/schnorr/schnorr_impl.h
+noinst_HEADERS += src/modules/schnorr/tests_impl.h
+if USE_BENCHMARK
+noinst_PROGRAMS += bench_schnorr_verify
+bench_schnorr_verify_SOURCES = src/bench_schnorr_verify.c
+bench_schnorr_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
+bench_schnorr_verify_LDFLAGS = -static
+endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h
new file mode 100644
index 000000000..c10fd259f
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h
@@ -0,0 +1,164 @@
+/**********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef SECP256K1_MODULE_SCHNORR_MAIN
+#define SECP256K1_MODULE_SCHNORR_MAIN
+
+#include "include/secp256k1_schnorr.h"
+#include "modules/schnorr/schnorr_impl.h"
+
+static void secp256k1_schnorr_msghash_sha256(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) {
+ secp256k1_sha256_t sha;
+ secp256k1_sha256_initialize(&sha);
+ secp256k1_sha256_write(&sha, r32, 32);
+ secp256k1_sha256_write(&sha, msg32, 32);
+ secp256k1_sha256_finalize(&sha, h32);
+}
+
+static const unsigned char secp256k1_schnorr_algo16[17] = "Schnorr+SHA256 ";
+
+int secp256k1_schnorr_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
+ secp256k1_scalar sec, non;
+ int ret = 0;
+ int overflow = 0;
+ unsigned int count = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(seckey != NULL);
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_default;
+ }
+
+ secp256k1_scalar_set_b32(&sec, seckey, NULL);
+ while (1) {
+ unsigned char nonce32[32];
+ ret = noncefp(nonce32, msg32, seckey, secp256k1_schnorr_algo16, (void*)noncedata, count);
+ if (!ret) {
+ break;
+ }
+ secp256k1_scalar_set_b32(&non, nonce32, &overflow);
+ memset(nonce32, 0, 32);
+ if (!secp256k1_scalar_is_zero(&non) && !overflow) {
+ if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, NULL, secp256k1_schnorr_msghash_sha256, msg32)) {
+ break;
+ }
+ }
+ count++;
+ }
+ if (!ret) {
+ memset(sig64, 0, 64);
+ }
+ secp256k1_scalar_clear(&non);
+ secp256k1_scalar_clear(&sec);
+ return ret;
+}
+
+int secp256k1_schnorr_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
+ secp256k1_ge q;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ secp256k1_pubkey_load(ctx, &q, pubkey);
+ return secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32);
+}
+
+int secp256k1_schnorr_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *sig64, const unsigned char *msg32) {
+ secp256k1_ge q;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32)) {
+ secp256k1_pubkey_save(pubkey, &q);
+ return 1;
+ } else {
+ memset(pubkey, 0, sizeof(*pubkey));
+ return 0;
+ }
+}
+
+int secp256k1_schnorr_generate_nonce_pair(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, unsigned char *privnonce32, const unsigned char *sec32, const unsigned char *msg32, secp256k1_nonce_function noncefp, const void* noncedata) {
+ int count = 0;
+ int ret = 1;
+ secp256k1_gej Qj;
+ secp256k1_ge Q;
+ secp256k1_scalar sec;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sec32 != NULL);
+ ARG_CHECK(pubnonce != NULL);
+ ARG_CHECK(privnonce32 != NULL);
+
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_default;
+ }
+
+ do {
+ int overflow;
+ ret = noncefp(privnonce32, sec32, msg32, secp256k1_schnorr_algo16, (void*)noncedata, count++);
+ if (!ret) {
+ break;
+ }
+ secp256k1_scalar_set_b32(&sec, privnonce32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&sec)) {
+ continue;
+ }
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sec);
+ secp256k1_ge_set_gej(&Q, &Qj);
+
+ secp256k1_pubkey_save(pubnonce, &Q);
+ break;
+ } while(1);
+
+ secp256k1_scalar_clear(&sec);
+ if (!ret) {
+ memset(pubnonce, 0, sizeof(*pubnonce));
+ }
+ return ret;
+}
+
+int secp256k1_schnorr_partial_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *sec32, const secp256k1_pubkey *pubnonce_others, const unsigned char *secnonce32) {
+ int overflow = 0;
+ secp256k1_scalar sec, non;
+ secp256k1_ge pubnon;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(sec32 != NULL);
+ ARG_CHECK(secnonce32 != NULL);
+ ARG_CHECK(pubnonce_others != NULL);
+
+ secp256k1_scalar_set_b32(&sec, sec32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&sec)) {
+ return -1;
+ }
+ secp256k1_scalar_set_b32(&non, secnonce32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&non)) {
+ return -1;
+ }
+ secp256k1_pubkey_load(ctx, &pubnon, pubnonce_others);
+ return secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, &pubnon, secp256k1_schnorr_msghash_sha256, msg32);
+}
+
+int secp256k1_schnorr_partial_combine(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, int n) {
+ ARG_CHECK(sig64 != NULL);
+ ARG_CHECK(n >= 1);
+ ARG_CHECK(sig64sin != NULL);
+ return secp256k1_schnorr_sig_combine(sig64, n, sig64sin);
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h
new file mode 100644
index 000000000..d227433d4
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h
@@ -0,0 +1,20 @@
+/***********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php. *
+ ***********************************************************************/
+
+#ifndef _SECP256K1_MODULE_SCHNORR_H_
+#define _SECP256K1_MODULE_SCHNORR_H_
+
+#include "scalar.h"
+#include "group.h"
+
+typedef void (*secp256k1_schnorr_msghash)(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32);
+
+static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
+static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
+static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
+static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h
new file mode 100644
index 000000000..ed70390bb
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h
@@ -0,0 +1,207 @@
+/***********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php. *
+ ***********************************************************************/
+
+#ifndef _SECP256K1_SCHNORR_IMPL_H_
+#define _SECP256K1_SCHNORR_IMPL_H_
+
+#include <string.h>
+
+#include "schnorr.h"
+#include "num.h"
+#include "field.h"
+#include "group.h"
+#include "ecmult.h"
+#include "ecmult_gen.h"
+
+/**
+ * Custom Schnorr-based signature scheme. They support multiparty signing, public key
+ * recovery and batch validation.
+ *
+ * Rationale for verifying R's y coordinate:
+ * In order to support batch validation and public key recovery, the full R point must
+ * be known to verifiers, rather than just its x coordinate. In order to not risk
+ * being more strict in batch validation than normal validation, validators must be
+ * required to reject signatures with incorrect y coordinate. This is only possible
+ * by including a (relatively slow) field inverse, or a field square root. However,
+ * batch validation offers potentially much higher benefits than this cost.
+ *
+ * Rationale for having an implicit y coordinate oddness:
+ * If we commit to having the full R point known to verifiers, there are two mechanism.
+ * Either include its oddness in the signature, or give it an implicit fixed value.
+ * As the R y coordinate can be flipped by a simple negation of the nonce, we choose the
+ * latter, as it comes with nearly zero impact on signing or validation performance, and
+ * saves a byte in the signature.
+ *
+ * Signing:
+ * Inputs: 32-byte message m, 32-byte scalar key x (!=0), 32-byte scalar nonce k (!=0)
+ *
+ * Compute point R = k * G. Reject nonce if R's y coordinate is odd (or negate nonce).
+ * Compute 32-byte r, the serialization of R's x coordinate.
+ * Compute scalar h = Hash(r || m). Reject nonce if h == 0 or h >= order.
+ * Compute scalar s = k - h * x.
+ * The signature is (r, s).
+ *
+ *
+ * Verification:
+ * Inputs: 32-byte message m, public key point Q, signature: (32-byte r, scalar s)
+ *
+ * Signature is invalid if s >= order.
+ * Signature is invalid if r >= p.
+ * Compute scalar h = Hash(r || m). Signature is invalid if h == 0 or h >= order.
+ * Option 1 (faster for single verification):
+ * Compute point R = h * Q + s * G. Signature is invalid if R is infinity or R's y coordinate is odd.
+ * Signature is valid if the serialization of R's x coordinate equals r.
+ * Option 2 (allows batch validation and pubkey recovery):
+ * Decompress x coordinate r into point R, with odd y coordinate. Fail if R is not on the curve.
+ * Signature is valid if R + h * Q + s * G == 0.
+ */
+
+static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
+ secp256k1_gej Rj;
+ secp256k1_ge Ra;
+ unsigned char h32[32];
+ secp256k1_scalar h, s;
+ int overflow;
+ secp256k1_scalar n;
+
+ if (secp256k1_scalar_is_zero(key) || secp256k1_scalar_is_zero(nonce)) {
+ return 0;
+ }
+ n = *nonce;
+
+ secp256k1_ecmult_gen(ctx, &Rj, &n);
+ if (pubnonce != NULL) {
+ secp256k1_gej_add_ge(&Rj, &Rj, pubnonce);
+ }
+ secp256k1_ge_set_gej(&Ra, &Rj);
+ secp256k1_fe_normalize(&Ra.y);
+ if (secp256k1_fe_is_odd(&Ra.y)) {
+ /* R's y coordinate is odd, which is not allowed (see rationale above).
+ Force it to be even by negating the nonce. Note that this even works
+ for multiparty signing, as the R point is known to all participants,
+ which can all decide to flip the sign in unison, resulting in the
+ overall R point to be negated too. */
+ secp256k1_scalar_negate(&n, &n);
+ }
+ secp256k1_fe_normalize(&Ra.x);
+ secp256k1_fe_get_b32(sig64, &Ra.x);
+ hash(h32, sig64, msg32);
+ overflow = 0;
+ secp256k1_scalar_set_b32(&h, h32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&h)) {
+ secp256k1_scalar_clear(&n);
+ return 0;
+ }
+ secp256k1_scalar_mul(&s, &h, key);
+ secp256k1_scalar_negate(&s, &s);
+ secp256k1_scalar_add(&s, &s, &n);
+ secp256k1_scalar_clear(&n);
+ secp256k1_scalar_get_b32(sig64 + 32, &s);
+ return 1;
+}
+
+static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
+ secp256k1_gej Qj, Rj;
+ secp256k1_ge Ra;
+ secp256k1_fe Rx;
+ secp256k1_scalar h, s;
+ unsigned char hh[32];
+ int overflow;
+
+ if (secp256k1_ge_is_infinity(pubkey)) {
+ return 0;
+ }
+ hash(hh, sig64, msg32);
+ overflow = 0;
+ secp256k1_scalar_set_b32(&h, hh, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&h)) {
+ return 0;
+ }
+ overflow = 0;
+ secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow);
+ if (overflow) {
+ return 0;
+ }
+ if (!secp256k1_fe_set_b32(&Rx, sig64)) {
+ return 0;
+ }
+ secp256k1_gej_set_ge(&Qj, pubkey);
+ secp256k1_ecmult(ctx, &Rj, &Qj, &h, &s);
+ if (secp256k1_gej_is_infinity(&Rj)) {
+ return 0;
+ }
+ secp256k1_ge_set_gej_var(&Ra, &Rj);
+ secp256k1_fe_normalize_var(&Ra.y);
+ if (secp256k1_fe_is_odd(&Ra.y)) {
+ return 0;
+ }
+ return secp256k1_fe_equal_var(&Rx, &Ra.x);
+}
+
+static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
+ secp256k1_gej Qj, Rj;
+ secp256k1_ge Ra;
+ secp256k1_fe Rx;
+ secp256k1_scalar h, s;
+ unsigned char hh[32];
+ int overflow;
+
+ hash(hh, sig64, msg32);
+ overflow = 0;
+ secp256k1_scalar_set_b32(&h, hh, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(&h)) {
+ return 0;
+ }
+ overflow = 0;
+ secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow);
+ if (overflow) {
+ return 0;
+ }
+ if (!secp256k1_fe_set_b32(&Rx, sig64)) {
+ return 0;
+ }
+ if (!secp256k1_ge_set_xo_var(&Ra, &Rx, 0)) {
+ return 0;
+ }
+ secp256k1_gej_set_ge(&Rj, &Ra);
+ secp256k1_scalar_inverse_var(&h, &h);
+ secp256k1_scalar_negate(&s, &s);
+ secp256k1_scalar_mul(&s, &s, &h);
+ secp256k1_ecmult(ctx, &Qj, &Rj, &h, &s);
+ if (secp256k1_gej_is_infinity(&Qj)) {
+ return 0;
+ }
+ secp256k1_ge_set_gej(pubkey, &Qj);
+ return 1;
+}
+
+static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins) {
+ secp256k1_scalar s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ int i;
+ for (i = 0; i < n; i++) {
+ secp256k1_scalar si;
+ int overflow;
+ secp256k1_scalar_set_b32(&si, sig64ins[i] + 32, &overflow);
+ if (overflow) {
+ return -1;
+ }
+ if (i) {
+ if (memcmp(sig64ins[i - 1], sig64ins[i], 32) != 0) {
+ return -1;
+ }
+ }
+ secp256k1_scalar_add(&s, &s, &si);
+ }
+ if (secp256k1_scalar_is_zero(&s)) {
+ return 0;
+ }
+ memcpy(sig64, sig64ins[0], 32);
+ secp256k1_scalar_get_b32(sig64 + 32, &s);
+ secp256k1_scalar_clear(&s);
+ return 1;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h
new file mode 100644
index 000000000..79737f748
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h
@@ -0,0 +1,175 @@
+/**********************************************************************
+ * Copyright (c) 2014-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef SECP256K1_MODULE_SCHNORR_TESTS
+#define SECP256K1_MODULE_SCHNORR_TESTS
+
+#include "include/secp256k1_schnorr.h"
+
+void test_schnorr_end_to_end(void) {
+ unsigned char privkey[32];
+ unsigned char message[32];
+ unsigned char schnorr_signature[64];
+ secp256k1_pubkey pubkey, recpubkey;
+
+ /* Generate a random key and message. */
+ {
+ secp256k1_scalar key;
+ random_scalar_order_test(&key);
+ secp256k1_scalar_get_b32(privkey, &key);
+ secp256k1_rand256_test(message);
+ }
+
+ /* Construct and verify corresponding public key. */
+ CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
+
+ /* Schnorr sign. */
+ CHECK(secp256k1_schnorr_sign(ctx, schnorr_signature, message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_schnorr_verify(ctx, schnorr_signature, message, &pubkey) == 1);
+ CHECK(secp256k1_schnorr_recover(ctx, &recpubkey, schnorr_signature, message) == 1);
+ CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
+ /* Destroy signature and verify again. */
+ schnorr_signature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
+ CHECK(secp256k1_schnorr_verify(ctx, schnorr_signature, message, &pubkey) == 0);
+ CHECK(secp256k1_schnorr_recover(ctx, &recpubkey, schnorr_signature, message) != 1 ||
+ memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
+}
+
+/** Horribly broken hash function. Do not use for anything but tests. */
+void test_schnorr_hash(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) {
+ int i;
+ for (i = 0; i < 32; i++) {
+ h32[i] = r32[i] ^ msg32[i];
+ }
+}
+
+void test_schnorr_sign_verify(void) {
+ unsigned char msg32[32];
+ unsigned char sig64[3][64];
+ secp256k1_gej pubkeyj[3];
+ secp256k1_ge pubkey[3];
+ secp256k1_scalar nonce[3], key[3];
+ int i = 0;
+ int k;
+
+ secp256k1_rand256_test(msg32);
+
+ for (k = 0; k < 3; k++) {
+ random_scalar_order_test(&key[k]);
+
+ do {
+ random_scalar_order_test(&nonce[k]);
+ if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64[k], &key[k], &nonce[k], NULL, &test_schnorr_hash, msg32)) {
+ break;
+ }
+ } while(1);
+
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubkeyj[k], &key[k]);
+ secp256k1_ge_set_gej_var(&pubkey[k], &pubkeyj[k]);
+ CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64[k], &pubkey[k], &test_schnorr_hash, msg32));
+
+ for (i = 0; i < 4; i++) {
+ int pos = secp256k1_rand32() % 64;
+ int mod = 1 + (secp256k1_rand32() % 255);
+ sig64[k][pos] ^= mod;
+ CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64[k], &pubkey[k], &test_schnorr_hash, msg32) == 0);
+ sig64[k][pos] ^= mod;
+ }
+ }
+}
+
+void test_schnorr_threshold(void) {
+ unsigned char msg[32];
+ unsigned char sec[5][32];
+ secp256k1_pubkey pub[5];
+ unsigned char nonce[5][32];
+ secp256k1_pubkey pubnonce[5];
+ unsigned char sig[5][64];
+ const unsigned char* sigs[5];
+ unsigned char allsig[64];
+ const secp256k1_pubkey* pubs[5];
+ secp256k1_pubkey allpub;
+ int n, i;
+ int damage;
+ int ret = 0;
+
+ damage = (secp256k1_rand32() % 2) ? (1 + (secp256k1_rand32() % 4)) : 0;
+ secp256k1_rand256_test(msg);
+ n = 2 + (secp256k1_rand32() % 4);
+ for (i = 0; i < n; i++) {
+ do {
+ secp256k1_rand256_test(sec[i]);
+ } while (!secp256k1_ec_seckey_verify(ctx, sec[i]));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pub[i], sec[i]));
+ CHECK(secp256k1_schnorr_generate_nonce_pair(ctx, &pubnonce[i], nonce[i], msg, sec[i], NULL, NULL));
+ pubs[i] = &pub[i];
+ }
+ if (damage == 1) {
+ nonce[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
+ } else if (damage == 2) {
+ sec[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
+ }
+ for (i = 0; i < n; i++) {
+ secp256k1_pubkey allpubnonce;
+ const secp256k1_pubkey *pubnonces[4];
+ int j;
+ for (j = 0; j < i; j++) {
+ pubnonces[j] = &pubnonce[j];
+ }
+ for (j = i + 1; j < n; j++) {
+ pubnonces[j - 1] = &pubnonce[j];
+ }
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &allpubnonce, pubnonces, n - 1));
+ ret |= (secp256k1_schnorr_partial_sign(ctx, sig[i], msg, sec[i], &allpubnonce, nonce[i]) != 1) * 1;
+ sigs[i] = sig[i];
+ }
+ if (damage == 3) {
+ sig[secp256k1_rand32() % n][secp256k1_rand32() % 64] ^= 1 + (secp256k1_rand32() % 255);
+ }
+ ret |= (secp256k1_ec_pubkey_combine(ctx, &allpub, pubs, n) != 1) * 2;
+ if ((ret & 1) == 0) {
+ ret |= (secp256k1_schnorr_partial_combine(ctx, allsig, sigs, n) != 1) * 4;
+ }
+ if (damage == 4) {
+ allsig[secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
+ }
+ if ((ret & 7) == 0) {
+ ret |= (secp256k1_schnorr_verify(ctx, allsig, msg, &allpub) != 1) * 8;
+ }
+ CHECK((ret == 0) == (damage == 0));
+}
+
+void test_schnorr_recovery(void) {
+ unsigned char msg32[32];
+ unsigned char sig64[64];
+ secp256k1_ge Q;
+
+ secp256k1_rand256_test(msg32);
+ secp256k1_rand256_test(sig64);
+ secp256k1_rand256_test(sig64 + 32);
+ if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &Q, &test_schnorr_hash, msg32) == 1) {
+ CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &Q, &test_schnorr_hash, msg32) == 1);
+ }
+}
+
+void run_schnorr_tests(void) {
+ int i;
+ for (i = 0; i < 32*count; i++) {
+ test_schnorr_end_to_end();
+ }
+ for (i = 0; i < 32 * count; i++) {
+ test_schnorr_sign_verify();
+ }
+ for (i = 0; i < 16 * count; i++) {
+ test_schnorr_recovery();
+ }
+ for (i = 0; i < 10 * count; i++) {
+ test_schnorr_threshold();
+ }
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/num.h b/crypto/secp256k1/libsecp256k1/src/num.h
new file mode 100644
index 000000000..ebfa71eb4
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/num.h
@@ -0,0 +1,68 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_NUM_
+#define _SECP256K1_NUM_
+
+#ifndef USE_NUM_NONE
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#if defined(USE_NUM_GMP)
+#include "num_gmp.h"
+#else
+#error "Please select num implementation"
+#endif
+
+/** Copy a number. */
+static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a);
+
+/** Convert a number's absolute value to a binary big-endian string.
+ * There must be enough place. */
+static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a);
+
+/** Set a number to the value of a binary big-endian string. */
+static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen);
+
+/** Compute a modular inverse. The input must be less than the modulus. */
+static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m);
+
+/** Compare the absolute value of two numbers. */
+static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b);
+
+/** Test whether two number are equal (including sign). */
+static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b);
+
+/** Add two (signed) numbers. */
+static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
+
+/** Subtract two (signed) numbers. */
+static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
+
+/** Multiply two (signed) numbers. */
+static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
+
+/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1,
+ even if r was negative. */
+static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m);
+
+/** Right-shift the passed number by bits bits. */
+static void secp256k1_num_shift(secp256k1_num *r, int bits);
+
+/** Check whether a number is zero. */
+static int secp256k1_num_is_zero(const secp256k1_num *a);
+
+/** Check whether a number is strictly negative. */
+static int secp256k1_num_is_neg(const secp256k1_num *a);
+
+/** Change a number's sign. */
+static void secp256k1_num_negate(secp256k1_num *r);
+
+#endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/num_gmp.h b/crypto/secp256k1/libsecp256k1/src/num_gmp.h
new file mode 100644
index 000000000..7dd813088
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/num_gmp.h
@@ -0,0 +1,20 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_NUM_REPR_
+#define _SECP256K1_NUM_REPR_
+
+#include <gmp.h>
+
+#define NUM_LIMBS ((256+GMP_NUMB_BITS-1)/GMP_NUMB_BITS)
+
+typedef struct {
+ mp_limb_t data[2*NUM_LIMBS];
+ int neg;
+ int limbs;
+} secp256k1_num;
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h b/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h
new file mode 100644
index 000000000..f43e7a56c
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h
@@ -0,0 +1,260 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_NUM_REPR_IMPL_H_
+#define _SECP256K1_NUM_REPR_IMPL_H_
+
+#include <string.h>
+#include <stdlib.h>
+#include <gmp.h>
+
+#include "util.h"
+#include "num.h"
+
+#ifdef VERIFY
+static void secp256k1_num_sanity(const secp256k1_num *a) {
+ VERIFY_CHECK(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0));
+}
+#else
+#define secp256k1_num_sanity(a) do { } while(0)
+#endif
+
+static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a) {
+ *r = *a;
+}
+
+static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a) {
+ unsigned char tmp[65];
+ int len = 0;
+ int shift = 0;
+ if (a->limbs>1 || a->data[0] != 0) {
+ len = mpn_get_str(tmp, 256, (mp_limb_t*)a->data, a->limbs);
+ }
+ while (shift < len && tmp[shift] == 0) shift++;
+ VERIFY_CHECK(len-shift <= (int)rlen);
+ memset(r, 0, rlen - len + shift);
+ if (len > shift) {
+ memcpy(r + rlen - len + shift, tmp + shift, len - shift);
+ }
+ memset(tmp, 0, sizeof(tmp));
+}
+
+static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen) {
+ int len;
+ VERIFY_CHECK(alen > 0);
+ VERIFY_CHECK(alen <= 64);
+ len = mpn_set_str(r->data, a, alen, 256);
+ if (len == 0) {
+ r->data[0] = 0;
+ len = 1;
+ }
+ VERIFY_CHECK(len <= NUM_LIMBS*2);
+ r->limbs = len;
+ r->neg = 0;
+ while (r->limbs > 1 && r->data[r->limbs-1]==0) {
+ r->limbs--;
+ }
+}
+
+static void secp256k1_num_add_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
+ mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs);
+ r->limbs = a->limbs;
+ if (c != 0) {
+ VERIFY_CHECK(r->limbs < 2*NUM_LIMBS);
+ r->data[r->limbs++] = c;
+ }
+}
+
+static void secp256k1_num_sub_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
+ mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs);
+ VERIFY_CHECK(c == 0);
+ r->limbs = a->limbs;
+ while (r->limbs > 1 && r->data[r->limbs-1]==0) {
+ r->limbs--;
+ }
+}
+
+static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m) {
+ secp256k1_num_sanity(r);
+ secp256k1_num_sanity(m);
+
+ if (r->limbs >= m->limbs) {
+ mp_limb_t t[2*NUM_LIMBS];
+ mpn_tdiv_qr(t, r->data, 0, r->data, r->limbs, m->data, m->limbs);
+ memset(t, 0, sizeof(t));
+ r->limbs = m->limbs;
+ while (r->limbs > 1 && r->data[r->limbs-1]==0) {
+ r->limbs--;
+ }
+ }
+
+ if (r->neg && (r->limbs > 1 || r->data[0] != 0)) {
+ secp256k1_num_sub_abs(r, m, r);
+ r->neg = 0;
+ }
+}
+
+static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m) {
+ int i;
+ mp_limb_t g[NUM_LIMBS+1];
+ mp_limb_t u[NUM_LIMBS+1];
+ mp_limb_t v[NUM_LIMBS+1];
+ mp_size_t sn;
+ mp_size_t gn;
+ secp256k1_num_sanity(a);
+ secp256k1_num_sanity(m);
+
+ /** mpn_gcdext computes: (G,S) = gcdext(U,V), where
+ * * G = gcd(U,V)
+ * * G = U*S + V*T
+ * * U has equal or more limbs than V, and V has no padding
+ * If we set U to be (a padded version of) a, and V = m:
+ * G = a*S + m*T
+ * G = a*S mod m
+ * Assuming G=1:
+ * S = 1/a mod m
+ */
+ VERIFY_CHECK(m->limbs <= NUM_LIMBS);
+ VERIFY_CHECK(m->data[m->limbs-1] != 0);
+ for (i = 0; i < m->limbs; i++) {
+ u[i] = (i < a->limbs) ? a->data[i] : 0;
+ v[i] = m->data[i];
+ }
+ sn = NUM_LIMBS+1;
+ gn = mpn_gcdext(g, r->data, &sn, u, m->limbs, v, m->limbs);
+ VERIFY_CHECK(gn == 1);
+ VERIFY_CHECK(g[0] == 1);
+ r->neg = a->neg ^ m->neg;
+ if (sn < 0) {
+ mpn_sub(r->data, m->data, m->limbs, r->data, -sn);
+ r->limbs = m->limbs;
+ while (r->limbs > 1 && r->data[r->limbs-1]==0) {
+ r->limbs--;
+ }
+ } else {
+ r->limbs = sn;
+ }
+ memset(g, 0, sizeof(g));
+ memset(u, 0, sizeof(u));
+ memset(v, 0, sizeof(v));
+}
+
+static int secp256k1_num_is_zero(const secp256k1_num *a) {
+ return (a->limbs == 1 && a->data[0] == 0);
+}
+
+static int secp256k1_num_is_neg(const secp256k1_num *a) {
+ return (a->limbs > 1 || a->data[0] != 0) && a->neg;
+}
+
+static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b) {
+ if (a->limbs > b->limbs) {
+ return 1;
+ }
+ if (a->limbs < b->limbs) {
+ return -1;
+ }
+ return mpn_cmp(a->data, b->data, a->limbs);
+}
+
+static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b) {
+ if (a->limbs > b->limbs) {
+ return 0;
+ }
+ if (a->limbs < b->limbs) {
+ return 0;
+ }
+ if ((a->neg && !secp256k1_num_is_zero(a)) != (b->neg && !secp256k1_num_is_zero(b))) {
+ return 0;
+ }
+ return mpn_cmp(a->data, b->data, a->limbs) == 0;
+}
+
+static void secp256k1_num_subadd(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b, int bneg) {
+ if (!(b->neg ^ bneg ^ a->neg)) { /* a and b have the same sign */
+ r->neg = a->neg;
+ if (a->limbs >= b->limbs) {
+ secp256k1_num_add_abs(r, a, b);
+ } else {
+ secp256k1_num_add_abs(r, b, a);
+ }
+ } else {
+ if (secp256k1_num_cmp(a, b) > 0) {
+ r->neg = a->neg;
+ secp256k1_num_sub_abs(r, a, b);
+ } else {
+ r->neg = b->neg ^ bneg;
+ secp256k1_num_sub_abs(r, b, a);
+ }
+ }
+}
+
+static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
+ secp256k1_num_sanity(a);
+ secp256k1_num_sanity(b);
+ secp256k1_num_subadd(r, a, b, 0);
+}
+
+static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
+ secp256k1_num_sanity(a);
+ secp256k1_num_sanity(b);
+ secp256k1_num_subadd(r, a, b, 1);
+}
+
+static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
+ mp_limb_t tmp[2*NUM_LIMBS+1];
+ secp256k1_num_sanity(a);
+ secp256k1_num_sanity(b);
+
+ VERIFY_CHECK(a->limbs + b->limbs <= 2*NUM_LIMBS+1);
+ if ((a->limbs==1 && a->data[0]==0) || (b->limbs==1 && b->data[0]==0)) {
+ r->limbs = 1;
+ r->neg = 0;
+ r->data[0] = 0;
+ return;
+ }
+ if (a->limbs >= b->limbs) {
+ mpn_mul(tmp, a->data, a->limbs, b->data, b->limbs);
+ } else {
+ mpn_mul(tmp, b->data, b->limbs, a->data, a->limbs);
+ }
+ r->limbs = a->limbs + b->limbs;
+ if (r->limbs > 1 && tmp[r->limbs - 1]==0) {
+ r->limbs--;
+ }
+ VERIFY_CHECK(r->limbs <= 2*NUM_LIMBS);
+ mpn_copyi(r->data, tmp, r->limbs);
+ r->neg = a->neg ^ b->neg;
+ memset(tmp, 0, sizeof(tmp));
+}
+
+static void secp256k1_num_shift(secp256k1_num *r, int bits) {
+ if (bits % GMP_NUMB_BITS) {
+ /* Shift within limbs. */
+ mpn_rshift(r->data, r->data, r->limbs, bits % GMP_NUMB_BITS);
+ }
+ if (bits >= GMP_NUMB_BITS) {
+ int i;
+ /* Shift full limbs. */
+ for (i = 0; i < r->limbs; i++) {
+ int index = i + (bits / GMP_NUMB_BITS);
+ if (index < r->limbs && index < 2*NUM_LIMBS) {
+ r->data[i] = r->data[index];
+ } else {
+ r->data[i] = 0;
+ }
+ }
+ }
+ while (r->limbs>1 && r->data[r->limbs-1]==0) {
+ r->limbs--;
+ }
+}
+
+static void secp256k1_num_negate(secp256k1_num *r) {
+ r->neg ^= 1;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/num_impl.h b/crypto/secp256k1/libsecp256k1/src/num_impl.h
new file mode 100644
index 000000000..0b0e3a072
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/num_impl.h
@@ -0,0 +1,24 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_NUM_IMPL_H_
+#define _SECP256K1_NUM_IMPL_H_
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#include "num.h"
+
+#if defined(USE_NUM_GMP)
+#include "num_gmp_impl.h"
+#elif defined(USE_NUM_NONE)
+/* Nothing. */
+#else
+#error "Please select num implementation"
+#endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar.h b/crypto/secp256k1/libsecp256k1/src/scalar.h
new file mode 100644
index 000000000..b590ccd6d
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar.h
@@ -0,0 +1,104 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_
+#define _SECP256K1_SCALAR_
+
+#include "num.h"
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#if defined(USE_SCALAR_4X64)
+#include "scalar_4x64.h"
+#elif defined(USE_SCALAR_8X32)
+#include "scalar_8x32.h"
+#else
+#error "Please select scalar implementation"
+#endif
+
+/** Clear a scalar to prevent the leak of sensitive data. */
+static void secp256k1_scalar_clear(secp256k1_scalar *r);
+
+/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
+static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
+
+/** Access bits from a scalar. Not constant time. */
+static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
+
+/** Set a scalar from a big endian byte array. */
+static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow);
+
+/** Set a scalar to an unsigned integer. */
+static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v);
+
+/** Convert a scalar to a byte array. */
+static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a);
+
+/** Add two scalars together (modulo the group order). Returns whether it overflowed. */
+static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
+
+/** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */
+static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag);
+
+/** Multiply two scalars (modulo the group order). */
+static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
+
+/** Shift a scalar right by some amount strictly between 0 and 16, returning
+ * the low bits that were shifted off */
+static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
+
+/** Compute the square of a scalar (modulo the group order). */
+static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a);
+
+/** Compute the inverse of a scalar (modulo the group order). */
+static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
+
+/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */
+static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a);
+
+/** Compute the complement of a scalar (modulo the group order). */
+static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a);
+
+/** Check whether a scalar equals zero. */
+static int secp256k1_scalar_is_zero(const secp256k1_scalar *a);
+
+/** Check whether a scalar equals one. */
+static int secp256k1_scalar_is_one(const secp256k1_scalar *a);
+
+/** Check whether a scalar, considered as an nonnegative integer, is even. */
+static int secp256k1_scalar_is_even(const secp256k1_scalar *a);
+
+/** Check whether a scalar is higher than the group order divided by 2. */
+static int secp256k1_scalar_is_high(const secp256k1_scalar *a);
+
+/** Conditionally negate a number, in constant time.
+ * Returns -1 if the number was negated, 1 otherwise */
+static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag);
+
+#ifndef USE_NUM_NONE
+/** Convert a scalar to a number. */
+static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a);
+
+/** Get the order of the group as a number. */
+static void secp256k1_scalar_order_get_num(secp256k1_num *r);
+#endif
+
+/** Compare two scalars. */
+static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
+
+#ifdef USE_ENDOMORPHISM
+/** Find r1 and r2 such that r1+r2*2^128 = a. */
+static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
+/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */
+static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
+#endif
+
+/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
+static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h b/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h
new file mode 100644
index 000000000..cff406038
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h
@@ -0,0 +1,19 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_REPR_
+#define _SECP256K1_SCALAR_REPR_
+
+#include <stdint.h>
+
+/** A scalar modulo the group order of the secp256k1 curve. */
+typedef struct {
+ uint64_t d[4];
+} secp256k1_scalar;
+
+#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h
new file mode 100644
index 000000000..cbec34d71
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h
@@ -0,0 +1,947 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_REPR_IMPL_H_
+#define _SECP256K1_SCALAR_REPR_IMPL_H_
+
+/* Limbs of the secp256k1 order. */
+#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
+#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
+#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
+#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
+
+/* Limbs of 2^256 minus the secp256k1 order. */
+#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
+#define SECP256K1_N_C_1 (~SECP256K1_N_1)
+#define SECP256K1_N_C_2 (1)
+
+/* Limbs of half the secp256k1 order. */
+#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
+#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
+#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
+#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
+
+SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
+ r->d[0] = 0;
+ r->d[1] = 0;
+ r->d[2] = 0;
+ r->d[3] = 0;
+}
+
+SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
+ r->d[0] = v;
+ r->d[1] = 0;
+ r->d[2] = 0;
+ r->d[3] = 0;
+}
+
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
+ VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
+ return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
+}
+
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
+ VERIFY_CHECK(count < 32);
+ VERIFY_CHECK(offset + count <= 256);
+ if ((offset + count - 1) >> 6 == offset >> 6) {
+ return secp256k1_scalar_get_bits(a, offset, count);
+ } else {
+ VERIFY_CHECK((offset >> 6) + 1 < 4);
+ return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1);
+ }
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
+ int yes = 0;
+ int no = 0;
+ no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
+ no |= (a->d[2] < SECP256K1_N_2);
+ yes |= (a->d[2] > SECP256K1_N_2) & ~no;
+ no |= (a->d[1] < SECP256K1_N_1);
+ yes |= (a->d[1] > SECP256K1_N_1) & ~no;
+ yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
+ return yes;
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
+ uint128_t t;
+ VERIFY_CHECK(overflow <= 1);
+ t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
+ r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1;
+ r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2;
+ r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint64_t)r->d[3];
+ r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
+ return overflow;
+}
+
+static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ int overflow;
+ uint128_t t = (uint128_t)a->d[0] + b->d[0];
+ r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint128_t)a->d[1] + b->d[1];
+ r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint128_t)a->d[2] + b->d[2];
+ r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint128_t)a->d[3] + b->d[3];
+ r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ overflow = t + secp256k1_scalar_check_overflow(r);
+ VERIFY_CHECK(overflow == 0 || overflow == 1);
+ secp256k1_scalar_reduce(r, overflow);
+ return overflow;
+}
+
+static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
+ uint128_t t;
+ VERIFY_CHECK(bit < 256);
+ bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
+ t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
+ r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
+ r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
+ r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
+ t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
+ r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
+#ifdef VERIFY
+ VERIFY_CHECK((t >> 64) == 0);
+ VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
+#endif
+}
+
+static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
+ int over;
+ r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
+ r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
+ r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
+ r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
+ over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
+ if (overflow) {
+ *overflow = over;
+ }
+}
+
+static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
+ bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
+ bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
+ bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
+ bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
+ return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
+}
+
+static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
+ uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
+ uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
+ r->d[0] = t & nonzero; t >>= 64;
+ t += (uint128_t)(~a->d[1]) + SECP256K1_N_1;
+ r->d[1] = t & nonzero; t >>= 64;
+ t += (uint128_t)(~a->d[2]) + SECP256K1_N_2;
+ r->d[2] = t & nonzero; t >>= 64;
+ t += (uint128_t)(~a->d[3]) + SECP256K1_N_3;
+ r->d[3] = t & nonzero;
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
+ return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
+}
+
+static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
+ int yes = 0;
+ int no = 0;
+ no |= (a->d[3] < SECP256K1_N_H_3);
+ yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
+ no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
+ no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
+ yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
+ yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
+ return yes;
+}
+
+static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
+ /* If we are flag = 0, mask = 00...00 and this is a no-op;
+ * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
+ uint64_t mask = !flag - 1;
+ uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
+ uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
+ r->d[0] = t & nonzero; t >>= 64;
+ t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
+ r->d[1] = t & nonzero; t >>= 64;
+ t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
+ r->d[2] = t & nonzero; t >>= 64;
+ t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
+ r->d[3] = t & nonzero;
+ return 2 * (mask == 0) - 1;
+}
+
+/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
+
+/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
+#define muladd(a,b) { \
+ uint64_t tl, th; \
+ { \
+ uint128_t t = (uint128_t)a * b; \
+ th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
+ tl = t; \
+ } \
+ c0 += tl; /* overflow is handled on the next line */ \
+ th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
+ c1 += th; /* overflow is handled on the next line */ \
+ c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
+ VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
+}
+
+/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
+#define muladd_fast(a,b) { \
+ uint64_t tl, th; \
+ { \
+ uint128_t t = (uint128_t)a * b; \
+ th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
+ tl = t; \
+ } \
+ c0 += tl; /* overflow is handled on the next line */ \
+ th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
+ c1 += th; /* never overflows by contract (verified in the next line) */ \
+ VERIFY_CHECK(c1 >= th); \
+}
+
+/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
+#define muladd2(a,b) { \
+ uint64_t tl, th, th2, tl2; \
+ { \
+ uint128_t t = (uint128_t)a * b; \
+ th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
+ tl = t; \
+ } \
+ th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \
+ c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
+ tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \
+ th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
+ c0 += tl2; /* overflow is handled on the next line */ \
+ th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
+ c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
+ VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
+ c1 += th2; /* overflow is handled on the next line */ \
+ c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
+}
+
+/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
+#define sumadd(a) { \
+ unsigned int over; \
+ c0 += (a); /* overflow is handled on the next line */ \
+ over = (c0 < (a)) ? 1 : 0; \
+ c1 += over; /* overflow is handled on the next line */ \
+ c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
+}
+
+/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
+#define sumadd_fast(a) { \
+ c0 += (a); /* overflow is handled on the next line */ \
+ c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
+ VERIFY_CHECK(c2 == 0); \
+}
+
+/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */
+#define extract(n) { \
+ (n) = c0; \
+ c0 = c1; \
+ c1 = c2; \
+ c2 = 0; \
+}
+
+/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */
+#define extract_fast(n) { \
+ (n) = c0; \
+ c0 = c1; \
+ c1 = 0; \
+ VERIFY_CHECK(c2 == 0); \
+}
+
+static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
+#ifdef USE_ASM_X86_64
+ /* Reduce 512 bits into 385. */
+ uint64_t m0, m1, m2, m3, m4, m5, m6;
+ uint64_t p0, p1, p2, p3, p4;
+ uint64_t c;
+
+ __asm__ __volatile__(
+ /* Preload. */
+ "movq 32(%%rsi), %%r11\n"
+ "movq 40(%%rsi), %%r12\n"
+ "movq 48(%%rsi), %%r13\n"
+ "movq 56(%%rsi), %%r14\n"
+ /* Initialize r8,r9,r10 */
+ "movq 0(%%rsi), %%r8\n"
+ "movq $0, %%r9\n"
+ "movq $0, %%r10\n"
+ /* (r8,r9) += n0 * c0 */
+ "movq %8, %%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ /* extract m0 */
+ "movq %%r8, %q0\n"
+ "movq $0, %%r8\n"
+ /* (r9,r10) += l1 */
+ "addq 8(%%rsi), %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r9,r10,r8) += n1 * c0 */
+ "movq %8, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* (r9,r10,r8) += n0 * c1 */
+ "movq %9, %%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* extract m1 */
+ "movq %%r9, %q1\n"
+ "movq $0, %%r9\n"
+ /* (r10,r8,r9) += l2 */
+ "addq 16(%%rsi), %%r10\n"
+ "adcq $0, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += n2 * c0 */
+ "movq %8, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += n1 * c1 */
+ "movq %9, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += n0 */
+ "addq %%r11, %%r10\n"
+ "adcq $0, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* extract m2 */
+ "movq %%r10, %q2\n"
+ "movq $0, %%r10\n"
+ /* (r8,r9,r10) += l3 */
+ "addq 24(%%rsi), %%r8\n"
+ "adcq $0, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r8,r9,r10) += n3 * c0 */
+ "movq %8, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r8,r9,r10) += n2 * c1 */
+ "movq %9, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r8,r9,r10) += n1 */
+ "addq %%r12, %%r8\n"
+ "adcq $0, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* extract m3 */
+ "movq %%r8, %q3\n"
+ "movq $0, %%r8\n"
+ /* (r9,r10,r8) += n3 * c1 */
+ "movq %9, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* (r9,r10,r8) += n2 */
+ "addq %%r13, %%r9\n"
+ "adcq $0, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* extract m4 */
+ "movq %%r9, %q4\n"
+ /* (r10,r8) += n3 */
+ "addq %%r14, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* extract m5 */
+ "movq %%r10, %q5\n"
+ /* extract m6 */
+ "movq %%r8, %q6\n"
+ : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
+ : "S"(l), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
+ : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
+
+ /* Reduce 385 bits into 258. */
+ __asm__ __volatile__(
+ /* Preload */
+ "movq %q9, %%r11\n"
+ "movq %q10, %%r12\n"
+ "movq %q11, %%r13\n"
+ /* Initialize (r8,r9,r10) */
+ "movq %q5, %%r8\n"
+ "movq $0, %%r9\n"
+ "movq $0, %%r10\n"
+ /* (r8,r9) += m4 * c0 */
+ "movq %12, %%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ /* extract p0 */
+ "movq %%r8, %q0\n"
+ "movq $0, %%r8\n"
+ /* (r9,r10) += m1 */
+ "addq %q6, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r9,r10,r8) += m5 * c0 */
+ "movq %12, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* (r9,r10,r8) += m4 * c1 */
+ "movq %13, %%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* extract p1 */
+ "movq %%r9, %q1\n"
+ "movq $0, %%r9\n"
+ /* (r10,r8,r9) += m2 */
+ "addq %q7, %%r10\n"
+ "adcq $0, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += m6 * c0 */
+ "movq %12, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += m5 * c1 */
+ "movq %13, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += m4 */
+ "addq %%r11, %%r10\n"
+ "adcq $0, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* extract p2 */
+ "movq %%r10, %q2\n"
+ /* (r8,r9) += m3 */
+ "addq %q8, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r8,r9) += m6 * c1 */
+ "movq %13, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ /* (r8,r9) += m5 */
+ "addq %%r12, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* extract p3 */
+ "movq %%r8, %q3\n"
+ /* (r9) += m6 */
+ "addq %%r13, %%r9\n"
+ /* extract p4 */
+ "movq %%r9, %q4\n"
+ : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4)
+ : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
+ : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc");
+
+ /* Reduce 258 bits into 256. */
+ __asm__ __volatile__(
+ /* Preload */
+ "movq %q5, %%r10\n"
+ /* (rax,rdx) = p4 * c0 */
+ "movq %7, %%rax\n"
+ "mulq %%r10\n"
+ /* (rax,rdx) += p0 */
+ "addq %q1, %%rax\n"
+ "adcq $0, %%rdx\n"
+ /* extract r0 */
+ "movq %%rax, 0(%q6)\n"
+ /* Move to (r8,r9) */
+ "movq %%rdx, %%r8\n"
+ "movq $0, %%r9\n"
+ /* (r8,r9) += p1 */
+ "addq %q2, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r8,r9) += p4 * c1 */
+ "movq %8, %%rax\n"
+ "mulq %%r10\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ /* Extract r1 */
+ "movq %%r8, 8(%q6)\n"
+ "movq $0, %%r8\n"
+ /* (r9,r8) += p4 */
+ "addq %%r10, %%r9\n"
+ "adcq $0, %%r8\n"
+ /* (r9,r8) += p2 */
+ "addq %q3, %%r9\n"
+ "adcq $0, %%r8\n"
+ /* Extract r2 */
+ "movq %%r9, 16(%q6)\n"
+ "movq $0, %%r9\n"
+ /* (r8,r9) += p3 */
+ "addq %q4, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* Extract r3 */
+ "movq %%r8, 24(%q6)\n"
+ /* Extract c */
+ "movq %%r9, %q0\n"
+ : "=g"(c)
+ : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
+ : "rax", "rdx", "r8", "r9", "r10", "cc", "memory");
+#else
+ uint128_t c;
+ uint64_t c0, c1, c2;
+ uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
+ uint64_t m0, m1, m2, m3, m4, m5;
+ uint32_t m6;
+ uint64_t p0, p1, p2, p3;
+ uint32_t p4;
+
+ /* Reduce 512 bits into 385. */
+ /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
+ c0 = l[0]; c1 = 0; c2 = 0;
+ muladd_fast(n0, SECP256K1_N_C_0);
+ extract_fast(m0);
+ sumadd_fast(l[1]);
+ muladd(n1, SECP256K1_N_C_0);
+ muladd(n0, SECP256K1_N_C_1);
+ extract(m1);
+ sumadd(l[2]);
+ muladd(n2, SECP256K1_N_C_0);
+ muladd(n1, SECP256K1_N_C_1);
+ sumadd(n0);
+ extract(m2);
+ sumadd(l[3]);
+ muladd(n3, SECP256K1_N_C_0);
+ muladd(n2, SECP256K1_N_C_1);
+ sumadd(n1);
+ extract(m3);
+ muladd(n3, SECP256K1_N_C_1);
+ sumadd(n2);
+ extract(m4);
+ sumadd_fast(n3);
+ extract_fast(m5);
+ VERIFY_CHECK(c0 <= 1);
+ m6 = c0;
+
+ /* Reduce 385 bits into 258. */
+ /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
+ c0 = m0; c1 = 0; c2 = 0;
+ muladd_fast(m4, SECP256K1_N_C_0);
+ extract_fast(p0);
+ sumadd_fast(m1);
+ muladd(m5, SECP256K1_N_C_0);
+ muladd(m4, SECP256K1_N_C_1);
+ extract(p1);
+ sumadd(m2);
+ muladd(m6, SECP256K1_N_C_0);
+ muladd(m5, SECP256K1_N_C_1);
+ sumadd(m4);
+ extract(p2);
+ sumadd_fast(m3);
+ muladd_fast(m6, SECP256K1_N_C_1);
+ sumadd_fast(m5);
+ extract_fast(p3);
+ p4 = c0 + m6;
+ VERIFY_CHECK(p4 <= 2);
+
+ /* Reduce 258 bits into 256. */
+ /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
+ c = p0 + (uint128_t)SECP256K1_N_C_0 * p4;
+ r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
+ c += p1 + (uint128_t)SECP256K1_N_C_1 * p4;
+ r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
+ c += p2 + (uint128_t)p4;
+ r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
+ c += p3;
+ r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
+#endif
+
+ /* Final reduction of r. */
+ secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
+}
+
+static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) {
+#ifdef USE_ASM_X86_64
+ const uint64_t *pb = b->d;
+ __asm__ __volatile__(
+ /* Preload */
+ "movq 0(%%rdi), %%r15\n"
+ "movq 8(%%rdi), %%rbx\n"
+ "movq 16(%%rdi), %%rcx\n"
+ "movq 0(%%rdx), %%r11\n"
+ "movq 8(%%rdx), %%r12\n"
+ "movq 16(%%rdx), %%r13\n"
+ "movq 24(%%rdx), %%r14\n"
+ /* (rax,rdx) = a0 * b0 */
+ "movq %%r15, %%rax\n"
+ "mulq %%r11\n"
+ /* Extract l0 */
+ "movq %%rax, 0(%%rsi)\n"
+ /* (r8,r9,r10) = (rdx) */
+ "movq %%rdx, %%r8\n"
+ "xorq %%r9, %%r9\n"
+ "xorq %%r10, %%r10\n"
+ /* (r8,r9,r10) += a0 * b1 */
+ "movq %%r15, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r8,r9,r10) += a1 * b0 */
+ "movq %%rbx, %%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* Extract l1 */
+ "movq %%r8, 8(%%rsi)\n"
+ "xorq %%r8, %%r8\n"
+ /* (r9,r10,r8) += a0 * b2 */
+ "movq %%r15, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* (r9,r10,r8) += a1 * b1 */
+ "movq %%rbx, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* (r9,r10,r8) += a2 * b0 */
+ "movq %%rcx, %%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* Extract l2 */
+ "movq %%r9, 16(%%rsi)\n"
+ "xorq %%r9, %%r9\n"
+ /* (r10,r8,r9) += a0 * b3 */
+ "movq %%r15, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* Preload a3 */
+ "movq 24(%%rdi), %%r15\n"
+ /* (r10,r8,r9) += a1 * b2 */
+ "movq %%rbx, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += a2 * b1 */
+ "movq %%rcx, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += a3 * b0 */
+ "movq %%r15, %%rax\n"
+ "mulq %%r11\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* Extract l3 */
+ "movq %%r10, 24(%%rsi)\n"
+ "xorq %%r10, %%r10\n"
+ /* (r8,r9,r10) += a1 * b3 */
+ "movq %%rbx, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r8,r9,r10) += a2 * b2 */
+ "movq %%rcx, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r8,r9,r10) += a3 * b1 */
+ "movq %%r15, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* Extract l4 */
+ "movq %%r8, 32(%%rsi)\n"
+ "xorq %%r8, %%r8\n"
+ /* (r9,r10,r8) += a2 * b3 */
+ "movq %%rcx, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* (r9,r10,r8) += a3 * b2 */
+ "movq %%r15, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* Extract l5 */
+ "movq %%r9, 40(%%rsi)\n"
+ /* (r10,r8) += a3 * b3 */
+ "movq %%r15, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ /* Extract l6 */
+ "movq %%r10, 48(%%rsi)\n"
+ /* Extract l7 */
+ "movq %%r8, 56(%%rsi)\n"
+ : "+d"(pb)
+ : "S"(l), "D"(a->d)
+ : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory");
+#else
+ /* 160 bit accumulator. */
+ uint64_t c0 = 0, c1 = 0;
+ uint32_t c2 = 0;
+
+ /* l[0..7] = a[0..3] * b[0..3]. */
+ muladd_fast(a->d[0], b->d[0]);
+ extract_fast(l[0]);
+ muladd(a->d[0], b->d[1]);
+ muladd(a->d[1], b->d[0]);
+ extract(l[1]);
+ muladd(a->d[0], b->d[2]);
+ muladd(a->d[1], b->d[1]);
+ muladd(a->d[2], b->d[0]);
+ extract(l[2]);
+ muladd(a->d[0], b->d[3]);
+ muladd(a->d[1], b->d[2]);
+ muladd(a->d[2], b->d[1]);
+ muladd(a->d[3], b->d[0]);
+ extract(l[3]);
+ muladd(a->d[1], b->d[3]);
+ muladd(a->d[2], b->d[2]);
+ muladd(a->d[3], b->d[1]);
+ extract(l[4]);
+ muladd(a->d[2], b->d[3]);
+ muladd(a->d[3], b->d[2]);
+ extract(l[5]);
+ muladd_fast(a->d[3], b->d[3]);
+ extract_fast(l[6]);
+ VERIFY_CHECK(c1 == 0);
+ l[7] = c0;
+#endif
+}
+
+static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) {
+#ifdef USE_ASM_X86_64
+ __asm__ __volatile__(
+ /* Preload */
+ "movq 0(%%rdi), %%r11\n"
+ "movq 8(%%rdi), %%r12\n"
+ "movq 16(%%rdi), %%r13\n"
+ "movq 24(%%rdi), %%r14\n"
+ /* (rax,rdx) = a0 * a0 */
+ "movq %%r11, %%rax\n"
+ "mulq %%r11\n"
+ /* Extract l0 */
+ "movq %%rax, 0(%%rsi)\n"
+ /* (r8,r9,r10) = (rdx,0) */
+ "movq %%rdx, %%r8\n"
+ "xorq %%r9, %%r9\n"
+ "xorq %%r10, %%r10\n"
+ /* (r8,r9,r10) += 2 * a0 * a1 */
+ "movq %%r11, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* Extract l1 */
+ "movq %%r8, 8(%%rsi)\n"
+ "xorq %%r8, %%r8\n"
+ /* (r9,r10,r8) += 2 * a0 * a2 */
+ "movq %%r11, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* (r9,r10,r8) += a1 * a1 */
+ "movq %%r12, %%rax\n"
+ "mulq %%r12\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* Extract l2 */
+ "movq %%r9, 16(%%rsi)\n"
+ "xorq %%r9, %%r9\n"
+ /* (r10,r8,r9) += 2 * a0 * a3 */
+ "movq %%r11, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* (r10,r8,r9) += 2 * a1 * a2 */
+ "movq %%r12, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ "adcq $0, %%r9\n"
+ /* Extract l3 */
+ "movq %%r10, 24(%%rsi)\n"
+ "xorq %%r10, %%r10\n"
+ /* (r8,r9,r10) += 2 * a1 * a3 */
+ "movq %%r12, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* (r8,r9,r10) += a2 * a2 */
+ "movq %%r13, %%rax\n"
+ "mulq %%r13\n"
+ "addq %%rax, %%r8\n"
+ "adcq %%rdx, %%r9\n"
+ "adcq $0, %%r10\n"
+ /* Extract l4 */
+ "movq %%r8, 32(%%rsi)\n"
+ "xorq %%r8, %%r8\n"
+ /* (r9,r10,r8) += 2 * a2 * a3 */
+ "movq %%r13, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ "addq %%rax, %%r9\n"
+ "adcq %%rdx, %%r10\n"
+ "adcq $0, %%r8\n"
+ /* Extract l5 */
+ "movq %%r9, 40(%%rsi)\n"
+ /* (r10,r8) += a3 * a3 */
+ "movq %%r14, %%rax\n"
+ "mulq %%r14\n"
+ "addq %%rax, %%r10\n"
+ "adcq %%rdx, %%r8\n"
+ /* Extract l6 */
+ "movq %%r10, 48(%%rsi)\n"
+ /* Extract l7 */
+ "movq %%r8, 56(%%rsi)\n"
+ :
+ : "S"(l), "D"(a->d)
+ : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc", "memory");
+#else
+ /* 160 bit accumulator. */
+ uint64_t c0 = 0, c1 = 0;
+ uint32_t c2 = 0;
+
+ /* l[0..7] = a[0..3] * b[0..3]. */
+ muladd_fast(a->d[0], a->d[0]);
+ extract_fast(l[0]);
+ muladd2(a->d[0], a->d[1]);
+ extract(l[1]);
+ muladd2(a->d[0], a->d[2]);
+ muladd(a->d[1], a->d[1]);
+ extract(l[2]);
+ muladd2(a->d[0], a->d[3]);
+ muladd2(a->d[1], a->d[2]);
+ extract(l[3]);
+ muladd2(a->d[1], a->d[3]);
+ muladd(a->d[2], a->d[2]);
+ extract(l[4]);
+ muladd2(a->d[2], a->d[3]);
+ extract(l[5]);
+ muladd_fast(a->d[3], a->d[3]);
+ extract_fast(l[6]);
+ VERIFY_CHECK(c1 == 0);
+ l[7] = c0;
+#endif
+}
+
+#undef sumadd
+#undef sumadd_fast
+#undef muladd
+#undef muladd_fast
+#undef muladd2
+#undef extract
+#undef extract_fast
+
+static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ uint64_t l[8];
+ secp256k1_scalar_mul_512(l, a, b);
+ secp256k1_scalar_reduce_512(r, l);
+}
+
+static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
+ int ret;
+ VERIFY_CHECK(n > 0);
+ VERIFY_CHECK(n < 16);
+ ret = r->d[0] & ((1 << n) - 1);
+ r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n));
+ r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n));
+ r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n));
+ r->d[3] = (r->d[3] >> n);
+ return ret;
+}
+
+static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
+ uint64_t l[8];
+ secp256k1_scalar_sqr_512(l, a);
+ secp256k1_scalar_reduce_512(r, l);
+}
+
+static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
+ r1->d[0] = a->d[0];
+ r1->d[1] = a->d[1];
+ r1->d[2] = 0;
+ r1->d[3] = 0;
+ r2->d[0] = a->d[2];
+ r2->d[1] = a->d[3];
+ r2->d[2] = 0;
+ r2->d[3] = 0;
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
+}
+
+SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
+ uint64_t l[8];
+ unsigned int shiftlimbs;
+ unsigned int shiftlow;
+ unsigned int shifthigh;
+ VERIFY_CHECK(shift >= 256);
+ secp256k1_scalar_mul_512(l, a, b);
+ shiftlimbs = shift >> 6;
+ shiftlow = shift & 0x3F;
+ shifthigh = 64 - shiftlow;
+ r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
+ secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h b/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h
new file mode 100644
index 000000000..1319664f6
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h
@@ -0,0 +1,19 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_REPR_
+#define _SECP256K1_SCALAR_REPR_
+
+#include <stdint.h>
+
+/** A scalar modulo the group order of the secp256k1 curve. */
+typedef struct {
+ uint32_t d[8];
+} secp256k1_scalar;
+
+#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h
new file mode 100644
index 000000000..aae4f35c0
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h
@@ -0,0 +1,721 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_REPR_IMPL_H_
+#define _SECP256K1_SCALAR_REPR_IMPL_H_
+
+/* Limbs of the secp256k1 order. */
+#define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
+#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
+#define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL)
+#define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL)
+#define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL)
+#define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL)
+#define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL)
+#define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL)
+
+/* Limbs of 2^256 minus the secp256k1 order. */
+#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
+#define SECP256K1_N_C_1 (~SECP256K1_N_1)
+#define SECP256K1_N_C_2 (~SECP256K1_N_2)
+#define SECP256K1_N_C_3 (~SECP256K1_N_3)
+#define SECP256K1_N_C_4 (1)
+
+/* Limbs of half the secp256k1 order. */
+#define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL)
+#define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL)
+#define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL)
+#define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL)
+#define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL)
+#define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL)
+#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
+#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
+
+SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
+ r->d[0] = 0;
+ r->d[1] = 0;
+ r->d[2] = 0;
+ r->d[3] = 0;
+ r->d[4] = 0;
+ r->d[5] = 0;
+ r->d[6] = 0;
+ r->d[7] = 0;
+}
+
+SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
+ r->d[0] = v;
+ r->d[1] = 0;
+ r->d[2] = 0;
+ r->d[3] = 0;
+ r->d[4] = 0;
+ r->d[5] = 0;
+ r->d[6] = 0;
+ r->d[7] = 0;
+}
+
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
+ VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
+ return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
+}
+
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
+ VERIFY_CHECK(count < 32);
+ VERIFY_CHECK(offset + count <= 256);
+ if ((offset + count - 1) >> 5 == offset >> 5) {
+ return secp256k1_scalar_get_bits(a, offset, count);
+ } else {
+ VERIFY_CHECK((offset >> 5) + 1 < 8);
+ return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & ((((uint32_t)1) << count) - 1);
+ }
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
+ int yes = 0;
+ int no = 0;
+ no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
+ no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */
+ no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */
+ no |= (a->d[4] < SECP256K1_N_4);
+ yes |= (a->d[4] > SECP256K1_N_4) & ~no;
+ no |= (a->d[3] < SECP256K1_N_3) & ~yes;
+ yes |= (a->d[3] > SECP256K1_N_3) & ~no;
+ no |= (a->d[2] < SECP256K1_N_2) & ~yes;
+ yes |= (a->d[2] > SECP256K1_N_2) & ~no;
+ no |= (a->d[1] < SECP256K1_N_1) & ~yes;
+ yes |= (a->d[1] > SECP256K1_N_1) & ~no;
+ yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
+ return yes;
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
+ uint64_t t;
+ VERIFY_CHECK(overflow <= 1);
+ t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
+ r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
+ t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
+ r->d[1] = t & 0xFFFFFFFFUL; t >>= 32;
+ t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2;
+ r->d[2] = t & 0xFFFFFFFFUL; t >>= 32;
+ t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3;
+ r->d[3] = t & 0xFFFFFFFFUL; t >>= 32;
+ t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4;
+ r->d[4] = t & 0xFFFFFFFFUL; t >>= 32;
+ t += (uint64_t)r->d[5];
+ r->d[5] = t & 0xFFFFFFFFUL; t >>= 32;
+ t += (uint64_t)r->d[6];
+ r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
+ t += (uint64_t)r->d[7];
+ r->d[7] = t & 0xFFFFFFFFUL;
+ return overflow;
+}
+
+static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ int overflow;
+ uint64_t t = (uint64_t)a->d[0] + b->d[0];
+ r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)a->d[1] + b->d[1];
+ r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)a->d[2] + b->d[2];
+ r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)a->d[3] + b->d[3];
+ r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)a->d[4] + b->d[4];
+ r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)a->d[5] + b->d[5];
+ r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)a->d[6] + b->d[6];
+ r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)a->d[7] + b->d[7];
+ r->d[7] = t & 0xFFFFFFFFULL; t >>= 32;
+ overflow = t + secp256k1_scalar_check_overflow(r);
+ VERIFY_CHECK(overflow == 0 || overflow == 1);
+ secp256k1_scalar_reduce(r, overflow);
+ return overflow;
+}
+
+static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
+ uint64_t t;
+ VERIFY_CHECK(bit < 256);
+ bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
+ t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
+ r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
+ r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
+ r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
+ r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
+ r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
+ r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
+ r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
+ t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
+ r->d[7] = t & 0xFFFFFFFFULL;
+#ifdef VERIFY
+ VERIFY_CHECK((t >> 32) == 0);
+ VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
+#endif
+}
+
+static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
+ int over;
+ r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
+ r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
+ r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
+ r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
+ r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
+ r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
+ r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
+ r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
+ over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
+ if (overflow) {
+ *overflow = over;
+ }
+}
+
+static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
+ bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
+ bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
+ bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
+ bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4];
+ bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3];
+ bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2];
+ bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1];
+ bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
+ return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
+}
+
+static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
+ uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
+ uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
+ r->d[0] = t & nonzero; t >>= 32;
+ t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
+ r->d[1] = t & nonzero; t >>= 32;
+ t += (uint64_t)(~a->d[2]) + SECP256K1_N_2;
+ r->d[2] = t & nonzero; t >>= 32;
+ t += (uint64_t)(~a->d[3]) + SECP256K1_N_3;
+ r->d[3] = t & nonzero; t >>= 32;
+ t += (uint64_t)(~a->d[4]) + SECP256K1_N_4;
+ r->d[4] = t & nonzero; t >>= 32;
+ t += (uint64_t)(~a->d[5]) + SECP256K1_N_5;
+ r->d[5] = t & nonzero; t >>= 32;
+ t += (uint64_t)(~a->d[6]) + SECP256K1_N_6;
+ r->d[6] = t & nonzero; t >>= 32;
+ t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
+ r->d[7] = t & nonzero;
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
+ return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
+}
+
+static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
+ int yes = 0;
+ int no = 0;
+ no |= (a->d[7] < SECP256K1_N_H_7);
+ yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
+ no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
+ no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */
+ no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */
+ no |= (a->d[3] < SECP256K1_N_H_3) & ~yes;
+ yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
+ no |= (a->d[2] < SECP256K1_N_H_2) & ~yes;
+ yes |= (a->d[2] > SECP256K1_N_H_2) & ~no;
+ no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
+ yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
+ yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
+ return yes;
+}
+
+static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
+ /* If we are flag = 0, mask = 00...00 and this is a no-op;
+ * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
+ uint32_t mask = !flag - 1;
+ uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
+ uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
+ r->d[0] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
+ r->d[1] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
+ r->d[2] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
+ r->d[3] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
+ r->d[4] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
+ r->d[5] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
+ r->d[6] = t & nonzero; t >>= 32;
+ t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
+ r->d[7] = t & nonzero;
+ return 2 * (mask == 0) - 1;
+}
+
+
+/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
+
+/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
+#define muladd(a,b) { \
+ uint32_t tl, th; \
+ { \
+ uint64_t t = (uint64_t)a * b; \
+ th = t >> 32; /* at most 0xFFFFFFFE */ \
+ tl = t; \
+ } \
+ c0 += tl; /* overflow is handled on the next line */ \
+ th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
+ c1 += th; /* overflow is handled on the next line */ \
+ c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
+ VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
+}
+
+/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
+#define muladd_fast(a,b) { \
+ uint32_t tl, th; \
+ { \
+ uint64_t t = (uint64_t)a * b; \
+ th = t >> 32; /* at most 0xFFFFFFFE */ \
+ tl = t; \
+ } \
+ c0 += tl; /* overflow is handled on the next line */ \
+ th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
+ c1 += th; /* never overflows by contract (verified in the next line) */ \
+ VERIFY_CHECK(c1 >= th); \
+}
+
+/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
+#define muladd2(a,b) { \
+ uint32_t tl, th, th2, tl2; \
+ { \
+ uint64_t t = (uint64_t)a * b; \
+ th = t >> 32; /* at most 0xFFFFFFFE */ \
+ tl = t; \
+ } \
+ th2 = th + th; /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \
+ c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
+ tl2 = tl + tl; /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \
+ th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
+ c0 += tl2; /* overflow is handled on the next line */ \
+ th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
+ c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
+ VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
+ c1 += th2; /* overflow is handled on the next line */ \
+ c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
+}
+
+/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
+#define sumadd(a) { \
+ unsigned int over; \
+ c0 += (a); /* overflow is handled on the next line */ \
+ over = (c0 < (a)) ? 1 : 0; \
+ c1 += over; /* overflow is handled on the next line */ \
+ c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
+}
+
+/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
+#define sumadd_fast(a) { \
+ c0 += (a); /* overflow is handled on the next line */ \
+ c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
+ VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
+ VERIFY_CHECK(c2 == 0); \
+}
+
+/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. */
+#define extract(n) { \
+ (n) = c0; \
+ c0 = c1; \
+ c1 = c2; \
+ c2 = 0; \
+}
+
+/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. c2 is required to be zero. */
+#define extract_fast(n) { \
+ (n) = c0; \
+ c0 = c1; \
+ c1 = 0; \
+ VERIFY_CHECK(c2 == 0); \
+}
+
+static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
+ uint64_t c;
+ uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
+ uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
+ uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;
+
+ /* 96 bit accumulator. */
+ uint32_t c0, c1, c2;
+
+ /* Reduce 512 bits into 385. */
+ /* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */
+ c0 = l[0]; c1 = 0; c2 = 0;
+ muladd_fast(n0, SECP256K1_N_C_0);
+ extract_fast(m0);
+ sumadd_fast(l[1]);
+ muladd(n1, SECP256K1_N_C_0);
+ muladd(n0, SECP256K1_N_C_1);
+ extract(m1);
+ sumadd(l[2]);
+ muladd(n2, SECP256K1_N_C_0);
+ muladd(n1, SECP256K1_N_C_1);
+ muladd(n0, SECP256K1_N_C_2);
+ extract(m2);
+ sumadd(l[3]);
+ muladd(n3, SECP256K1_N_C_0);
+ muladd(n2, SECP256K1_N_C_1);
+ muladd(n1, SECP256K1_N_C_2);
+ muladd(n0, SECP256K1_N_C_3);
+ extract(m3);
+ sumadd(l[4]);
+ muladd(n4, SECP256K1_N_C_0);
+ muladd(n3, SECP256K1_N_C_1);
+ muladd(n2, SECP256K1_N_C_2);
+ muladd(n1, SECP256K1_N_C_3);
+ sumadd(n0);
+ extract(m4);
+ sumadd(l[5]);
+ muladd(n5, SECP256K1_N_C_0);
+ muladd(n4, SECP256K1_N_C_1);
+ muladd(n3, SECP256K1_N_C_2);
+ muladd(n2, SECP256K1_N_C_3);
+ sumadd(n1);
+ extract(m5);
+ sumadd(l[6]);
+ muladd(n6, SECP256K1_N_C_0);
+ muladd(n5, SECP256K1_N_C_1);
+ muladd(n4, SECP256K1_N_C_2);
+ muladd(n3, SECP256K1_N_C_3);
+ sumadd(n2);
+ extract(m6);
+ sumadd(l[7]);
+ muladd(n7, SECP256K1_N_C_0);
+ muladd(n6, SECP256K1_N_C_1);
+ muladd(n5, SECP256K1_N_C_2);
+ muladd(n4, SECP256K1_N_C_3);
+ sumadd(n3);
+ extract(m7);
+ muladd(n7, SECP256K1_N_C_1);
+ muladd(n6, SECP256K1_N_C_2);
+ muladd(n5, SECP256K1_N_C_3);
+ sumadd(n4);
+ extract(m8);
+ muladd(n7, SECP256K1_N_C_2);
+ muladd(n6, SECP256K1_N_C_3);
+ sumadd(n5);
+ extract(m9);
+ muladd(n7, SECP256K1_N_C_3);
+ sumadd(n6);
+ extract(m10);
+ sumadd_fast(n7);
+ extract_fast(m11);
+ VERIFY_CHECK(c0 <= 1);
+ m12 = c0;
+
+ /* Reduce 385 bits into 258. */
+ /* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */
+ c0 = m0; c1 = 0; c2 = 0;
+ muladd_fast(m8, SECP256K1_N_C_0);
+ extract_fast(p0);
+ sumadd_fast(m1);
+ muladd(m9, SECP256K1_N_C_0);
+ muladd(m8, SECP256K1_N_C_1);
+ extract(p1);
+ sumadd(m2);
+ muladd(m10, SECP256K1_N_C_0);
+ muladd(m9, SECP256K1_N_C_1);
+ muladd(m8, SECP256K1_N_C_2);
+ extract(p2);
+ sumadd(m3);
+ muladd(m11, SECP256K1_N_C_0);
+ muladd(m10, SECP256K1_N_C_1);
+ muladd(m9, SECP256K1_N_C_2);
+ muladd(m8, SECP256K1_N_C_3);
+ extract(p3);
+ sumadd(m4);
+ muladd(m12, SECP256K1_N_C_0);
+ muladd(m11, SECP256K1_N_C_1);
+ muladd(m10, SECP256K1_N_C_2);
+ muladd(m9, SECP256K1_N_C_3);
+ sumadd(m8);
+ extract(p4);
+ sumadd(m5);
+ muladd(m12, SECP256K1_N_C_1);
+ muladd(m11, SECP256K1_N_C_2);
+ muladd(m10, SECP256K1_N_C_3);
+ sumadd(m9);
+ extract(p5);
+ sumadd(m6);
+ muladd(m12, SECP256K1_N_C_2);
+ muladd(m11, SECP256K1_N_C_3);
+ sumadd(m10);
+ extract(p6);
+ sumadd_fast(m7);
+ muladd_fast(m12, SECP256K1_N_C_3);
+ sumadd_fast(m11);
+ extract_fast(p7);
+ p8 = c0 + m12;
+ VERIFY_CHECK(p8 <= 2);
+
+ /* Reduce 258 bits into 256. */
+ /* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */
+ c = p0 + (uint64_t)SECP256K1_N_C_0 * p8;
+ r->d[0] = c & 0xFFFFFFFFUL; c >>= 32;
+ c += p1 + (uint64_t)SECP256K1_N_C_1 * p8;
+ r->d[1] = c & 0xFFFFFFFFUL; c >>= 32;
+ c += p2 + (uint64_t)SECP256K1_N_C_2 * p8;
+ r->d[2] = c & 0xFFFFFFFFUL; c >>= 32;
+ c += p3 + (uint64_t)SECP256K1_N_C_3 * p8;
+ r->d[3] = c & 0xFFFFFFFFUL; c >>= 32;
+ c += p4 + (uint64_t)p8;
+ r->d[4] = c & 0xFFFFFFFFUL; c >>= 32;
+ c += p5;
+ r->d[5] = c & 0xFFFFFFFFUL; c >>= 32;
+ c += p6;
+ r->d[6] = c & 0xFFFFFFFFUL; c >>= 32;
+ c += p7;
+ r->d[7] = c & 0xFFFFFFFFUL; c >>= 32;
+
+ /* Final reduction of r. */
+ secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
+}
+
+static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ /* 96 bit accumulator. */
+ uint32_t c0 = 0, c1 = 0, c2 = 0;
+
+ /* l[0..15] = a[0..7] * b[0..7]. */
+ muladd_fast(a->d[0], b->d[0]);
+ extract_fast(l[0]);
+ muladd(a->d[0], b->d[1]);
+ muladd(a->d[1], b->d[0]);
+ extract(l[1]);
+ muladd(a->d[0], b->d[2]);
+ muladd(a->d[1], b->d[1]);
+ muladd(a->d[2], b->d[0]);
+ extract(l[2]);
+ muladd(a->d[0], b->d[3]);
+ muladd(a->d[1], b->d[2]);
+ muladd(a->d[2], b->d[1]);
+ muladd(a->d[3], b->d[0]);
+ extract(l[3]);
+ muladd(a->d[0], b->d[4]);
+ muladd(a->d[1], b->d[3]);
+ muladd(a->d[2], b->d[2]);
+ muladd(a->d[3], b->d[1]);
+ muladd(a->d[4], b->d[0]);
+ extract(l[4]);
+ muladd(a->d[0], b->d[5]);
+ muladd(a->d[1], b->d[4]);
+ muladd(a->d[2], b->d[3]);
+ muladd(a->d[3], b->d[2]);
+ muladd(a->d[4], b->d[1]);
+ muladd(a->d[5], b->d[0]);
+ extract(l[5]);
+ muladd(a->d[0], b->d[6]);
+ muladd(a->d[1], b->d[5]);
+ muladd(a->d[2], b->d[4]);
+ muladd(a->d[3], b->d[3]);
+ muladd(a->d[4], b->d[2]);
+ muladd(a->d[5], b->d[1]);
+ muladd(a->d[6], b->d[0]);
+ extract(l[6]);
+ muladd(a->d[0], b->d[7]);
+ muladd(a->d[1], b->d[6]);
+ muladd(a->d[2], b->d[5]);
+ muladd(a->d[3], b->d[4]);
+ muladd(a->d[4], b->d[3]);
+ muladd(a->d[5], b->d[2]);
+ muladd(a->d[6], b->d[1]);
+ muladd(a->d[7], b->d[0]);
+ extract(l[7]);
+ muladd(a->d[1], b->d[7]);
+ muladd(a->d[2], b->d[6]);
+ muladd(a->d[3], b->d[5]);
+ muladd(a->d[4], b->d[4]);
+ muladd(a->d[5], b->d[3]);
+ muladd(a->d[6], b->d[2]);
+ muladd(a->d[7], b->d[1]);
+ extract(l[8]);
+ muladd(a->d[2], b->d[7]);
+ muladd(a->d[3], b->d[6]);
+ muladd(a->d[4], b->d[5]);
+ muladd(a->d[5], b->d[4]);
+ muladd(a->d[6], b->d[3]);
+ muladd(a->d[7], b->d[2]);
+ extract(l[9]);
+ muladd(a->d[3], b->d[7]);
+ muladd(a->d[4], b->d[6]);
+ muladd(a->d[5], b->d[5]);
+ muladd(a->d[6], b->d[4]);
+ muladd(a->d[7], b->d[3]);
+ extract(l[10]);
+ muladd(a->d[4], b->d[7]);
+ muladd(a->d[5], b->d[6]);
+ muladd(a->d[6], b->d[5]);
+ muladd(a->d[7], b->d[4]);
+ extract(l[11]);
+ muladd(a->d[5], b->d[7]);
+ muladd(a->d[6], b->d[6]);
+ muladd(a->d[7], b->d[5]);
+ extract(l[12]);
+ muladd(a->d[6], b->d[7]);
+ muladd(a->d[7], b->d[6]);
+ extract(l[13]);
+ muladd_fast(a->d[7], b->d[7]);
+ extract_fast(l[14]);
+ VERIFY_CHECK(c1 == 0);
+ l[15] = c0;
+}
+
+static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) {
+ /* 96 bit accumulator. */
+ uint32_t c0 = 0, c1 = 0, c2 = 0;
+
+ /* l[0..15] = a[0..7]^2. */
+ muladd_fast(a->d[0], a->d[0]);
+ extract_fast(l[0]);
+ muladd2(a->d[0], a->d[1]);
+ extract(l[1]);
+ muladd2(a->d[0], a->d[2]);
+ muladd(a->d[1], a->d[1]);
+ extract(l[2]);
+ muladd2(a->d[0], a->d[3]);
+ muladd2(a->d[1], a->d[2]);
+ extract(l[3]);
+ muladd2(a->d[0], a->d[4]);
+ muladd2(a->d[1], a->d[3]);
+ muladd(a->d[2], a->d[2]);
+ extract(l[4]);
+ muladd2(a->d[0], a->d[5]);
+ muladd2(a->d[1], a->d[4]);
+ muladd2(a->d[2], a->d[3]);
+ extract(l[5]);
+ muladd2(a->d[0], a->d[6]);
+ muladd2(a->d[1], a->d[5]);
+ muladd2(a->d[2], a->d[4]);
+ muladd(a->d[3], a->d[3]);
+ extract(l[6]);
+ muladd2(a->d[0], a->d[7]);
+ muladd2(a->d[1], a->d[6]);
+ muladd2(a->d[2], a->d[5]);
+ muladd2(a->d[3], a->d[4]);
+ extract(l[7]);
+ muladd2(a->d[1], a->d[7]);
+ muladd2(a->d[2], a->d[6]);
+ muladd2(a->d[3], a->d[5]);
+ muladd(a->d[4], a->d[4]);
+ extract(l[8]);
+ muladd2(a->d[2], a->d[7]);
+ muladd2(a->d[3], a->d[6]);
+ muladd2(a->d[4], a->d[5]);
+ extract(l[9]);
+ muladd2(a->d[3], a->d[7]);
+ muladd2(a->d[4], a->d[6]);
+ muladd(a->d[5], a->d[5]);
+ extract(l[10]);
+ muladd2(a->d[4], a->d[7]);
+ muladd2(a->d[5], a->d[6]);
+ extract(l[11]);
+ muladd2(a->d[5], a->d[7]);
+ muladd(a->d[6], a->d[6]);
+ extract(l[12]);
+ muladd2(a->d[6], a->d[7]);
+ extract(l[13]);
+ muladd_fast(a->d[7], a->d[7]);
+ extract_fast(l[14]);
+ VERIFY_CHECK(c1 == 0);
+ l[15] = c0;
+}
+
+#undef sumadd
+#undef sumadd_fast
+#undef muladd
+#undef muladd_fast
+#undef muladd2
+#undef extract
+#undef extract_fast
+
+static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ uint32_t l[16];
+ secp256k1_scalar_mul_512(l, a, b);
+ secp256k1_scalar_reduce_512(r, l);
+}
+
+static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
+ int ret;
+ VERIFY_CHECK(n > 0);
+ VERIFY_CHECK(n < 16);
+ ret = r->d[0] & ((1 << n) - 1);
+ r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n));
+ r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n));
+ r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n));
+ r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n));
+ r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n));
+ r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n));
+ r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n));
+ r->d[7] = (r->d[7] >> n);
+ return ret;
+}
+
+static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
+ uint32_t l[16];
+ secp256k1_scalar_sqr_512(l, a);
+ secp256k1_scalar_reduce_512(r, l);
+}
+
+#ifdef USE_ENDOMORPHISM
+static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
+ r1->d[0] = a->d[0];
+ r1->d[1] = a->d[1];
+ r1->d[2] = a->d[2];
+ r1->d[3] = a->d[3];
+ r1->d[4] = 0;
+ r1->d[5] = 0;
+ r1->d[6] = 0;
+ r1->d[7] = 0;
+ r2->d[0] = a->d[4];
+ r2->d[1] = a->d[5];
+ r2->d[2] = a->d[6];
+ r2->d[3] = a->d[7];
+ r2->d[4] = 0;
+ r2->d[5] = 0;
+ r2->d[6] = 0;
+ r2->d[7] = 0;
+}
+#endif
+
+SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
+}
+
+SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
+ uint32_t l[16];
+ unsigned int shiftlimbs;
+ unsigned int shiftlow;
+ unsigned int shifthigh;
+ VERIFY_CHECK(shift >= 256);
+ secp256k1_scalar_mul_512(l, a, b);
+ shiftlimbs = shift >> 5;
+ shiftlow = shift & 0x1F;
+ shifthigh = 32 - shiftlow;
+ r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
+ r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
+ secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
new file mode 100644
index 000000000..88ea97de8
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
@@ -0,0 +1,337 @@
+/**********************************************************************
+ * Copyright (c) 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_IMPL_H_
+#define _SECP256K1_SCALAR_IMPL_H_
+
+#include <string.h>
+
+#include "group.h"
+#include "scalar.h"
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#if defined(USE_SCALAR_4X64)
+#include "scalar_4x64_impl.h"
+#elif defined(USE_SCALAR_8X32)
+#include "scalar_8x32_impl.h"
+#else
+#error "Please select scalar implementation"
+#endif
+
+#ifndef USE_NUM_NONE
+static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
+ unsigned char c[32];
+ secp256k1_scalar_get_b32(c, a);
+ secp256k1_num_set_bin(r, c, 32);
+}
+
+/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
+static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
+ static const unsigned char order[32] = {
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
+ 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
+ 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
+ };
+ secp256k1_num_set_bin(r, order, 32);
+}
+#endif
+
+static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
+ secp256k1_scalar *t;
+ int i;
+ /* First compute x ^ (2^N - 1) for some values of N. */
+ secp256k1_scalar x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
+
+ secp256k1_scalar_sqr(&x2, x);
+ secp256k1_scalar_mul(&x2, &x2, x);
+
+ secp256k1_scalar_sqr(&x3, &x2);
+ secp256k1_scalar_mul(&x3, &x3, x);
+
+ secp256k1_scalar_sqr(&x4, &x3);
+ secp256k1_scalar_mul(&x4, &x4, x);
+
+ secp256k1_scalar_sqr(&x6, &x4);
+ secp256k1_scalar_sqr(&x6, &x6);
+ secp256k1_scalar_mul(&x6, &x6, &x2);
+
+ secp256k1_scalar_sqr(&x7, &x6);
+ secp256k1_scalar_mul(&x7, &x7, x);
+
+ secp256k1_scalar_sqr(&x8, &x7);
+ secp256k1_scalar_mul(&x8, &x8, x);
+
+ secp256k1_scalar_sqr(&x15, &x8);
+ for (i = 0; i < 6; i++) {
+ secp256k1_scalar_sqr(&x15, &x15);
+ }
+ secp256k1_scalar_mul(&x15, &x15, &x7);
+
+ secp256k1_scalar_sqr(&x30, &x15);
+ for (i = 0; i < 14; i++) {
+ secp256k1_scalar_sqr(&x30, &x30);
+ }
+ secp256k1_scalar_mul(&x30, &x30, &x15);
+
+ secp256k1_scalar_sqr(&x60, &x30);
+ for (i = 0; i < 29; i++) {
+ secp256k1_scalar_sqr(&x60, &x60);
+ }
+ secp256k1_scalar_mul(&x60, &x60, &x30);
+
+ secp256k1_scalar_sqr(&x120, &x60);
+ for (i = 0; i < 59; i++) {
+ secp256k1_scalar_sqr(&x120, &x120);
+ }
+ secp256k1_scalar_mul(&x120, &x120, &x60);
+
+ secp256k1_scalar_sqr(&x127, &x120);
+ for (i = 0; i < 6; i++) {
+ secp256k1_scalar_sqr(&x127, &x127);
+ }
+ secp256k1_scalar_mul(&x127, &x127, &x7);
+
+ /* Then accumulate the final result (t starts at x127). */
+ t = &x127;
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 4; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 4; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 3; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 4; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 5; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 4; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 5; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x4); /* 1111 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 3; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 4; i++) { /* 000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 10; i++) { /* 0000000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 4; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x3); /* 111 */
+ for (i = 0; i < 9; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 3; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 3; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 5; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x4); /* 1111 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 5; i++) { /* 000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 4; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 2; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 8; i++) { /* 000000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 3; i++) { /* 0 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, &x2); /* 11 */
+ for (i = 0; i < 3; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 6; i++) { /* 00000 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(t, t, x); /* 1 */
+ for (i = 0; i < 8; i++) { /* 00 */
+ secp256k1_scalar_sqr(t, t);
+ }
+ secp256k1_scalar_mul(r, t, &x6); /* 111111 */
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
+ /* d[0] is present and is the lowest word for all representations */
+ return !(a->d[0] & 1);
+}
+
+static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
+#if defined(USE_SCALAR_INV_BUILTIN)
+ secp256k1_scalar_inverse(r, x);
+#elif defined(USE_SCALAR_INV_NUM)
+ unsigned char b[32];
+ secp256k1_num n, m;
+ secp256k1_scalar t = *x;
+ secp256k1_scalar_get_b32(b, &t);
+ secp256k1_num_set_bin(&n, b, 32);
+ secp256k1_scalar_order_get_num(&m);
+ secp256k1_num_mod_inverse(&n, &n, &m);
+ secp256k1_num_get_bin(b, 32, &n);
+ secp256k1_scalar_set_b32(r, b, NULL);
+ /* Verify that the inverse was computed correctly, without GMP code. */
+ secp256k1_scalar_mul(&t, &t, r);
+ CHECK(secp256k1_scalar_is_one(&t));
+#else
+#error "Please select scalar inverse implementation"
+#endif
+}
+
+#ifdef USE_ENDOMORPHISM
+/**
+ * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
+ * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
+ * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
+ *
+ * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
+ * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
+ * and k2 have a small size.
+ * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
+ *
+ * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
+ * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
+ * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
+ * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
+ *
+ * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
+ * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
+ * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
+ *
+ * g1, g2 are precomputed constants used to replace division with a rounded multiplication
+ * when decomposing the scalar for an endomorphism-based point multiplication.
+ *
+ * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
+ * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
+ *
+ * The derivation is described in the paper "Efficient Software Implementation of Public-Key
+ * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
+ * Section 4.3 (here we use a somewhat higher-precision estimate):
+ * d = a1*b2 - b1*a2
+ * g1 = round((2^272)*b2/d)
+ * g2 = round((2^272)*b1/d)
+ *
+ * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
+ * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
+ *
+ * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
+ */
+
+static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
+ secp256k1_scalar c1, c2;
+ static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
+ 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
+ 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
+ );
+ static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
+ 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
+ );
+ static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
+ 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
+ );
+ static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
+ 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
+ );
+ static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
+ 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
+ );
+ VERIFY_CHECK(r1 != a);
+ VERIFY_CHECK(r2 != a);
+ /* these _var calls are constant time since the shift amount is constant */
+ secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
+ secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
+ secp256k1_scalar_mul(&c1, &c1, &minus_b1);
+ secp256k1_scalar_mul(&c2, &c2, &minus_b2);
+ secp256k1_scalar_add(r2, &c1, &c2);
+ secp256k1_scalar_mul(r1, r2, &minus_lambda);
+ secp256k1_scalar_add(r1, r1, a);
+}
+#endif
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/secp256k1.c b/crypto/secp256k1/libsecp256k1/src/secp256k1.c
new file mode 100644
index 000000000..203f880af
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/secp256k1.c
@@ -0,0 +1,513 @@
+/**********************************************************************
+ * Copyright (c) 2013-2015 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#define SECP256K1_BUILD (1)
+
+#include "include/secp256k1.h"
+
+#include "util.h"
+#include "num_impl.h"
+#include "field_impl.h"
+#include "scalar_impl.h"
+#include "group_impl.h"
+#include "ecmult_impl.h"
+#include "ecmult_const_impl.h"
+#include "ecmult_gen_impl.h"
+#include "ecdsa_impl.h"
+#include "eckey_impl.h"
+#include "hash_impl.h"
+
+#define ARG_CHECK(cond) do { \
+ if (EXPECT(!(cond), 0)) { \
+ secp256k1_callback_call(&ctx->illegal_callback, #cond); \
+ return 0; \
+ } \
+} while(0)
+
+static void default_illegal_callback_fn(const char* str, void* data) {
+ (void)data;
+ fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str);
+ abort();
+}
+
+static const secp256k1_callback default_illegal_callback = {
+ default_illegal_callback_fn,
+ NULL
+};
+
+static void default_error_callback_fn(const char* str, void* data) {
+ (void)data;
+ fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
+ abort();
+}
+
+static const secp256k1_callback default_error_callback = {
+ default_error_callback_fn,
+ NULL
+};
+
+
+struct secp256k1_context_struct {
+ secp256k1_ecmult_context ecmult_ctx;
+ secp256k1_ecmult_gen_context ecmult_gen_ctx;
+ secp256k1_callback illegal_callback;
+ secp256k1_callback error_callback;
+};
+
+secp256k1_context* secp256k1_context_create(unsigned int flags) {
+ secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context));
+ ret->illegal_callback = default_illegal_callback;
+ ret->error_callback = default_error_callback;
+
+ secp256k1_ecmult_context_init(&ret->ecmult_ctx);
+ secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx);
+
+ if (flags & SECP256K1_CONTEXT_SIGN) {
+ secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback);
+ }
+ if (flags & SECP256K1_CONTEXT_VERIFY) {
+ secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback);
+ }
+
+ return ret;
+}
+
+secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) {
+ secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context));
+ ret->illegal_callback = ctx->illegal_callback;
+ ret->error_callback = ctx->error_callback;
+ secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback);
+ secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback);
+ return ret;
+}
+
+void secp256k1_context_destroy(secp256k1_context* ctx) {
+ if (ctx != NULL) {
+ secp256k1_ecmult_context_clear(&ctx->ecmult_ctx);
+ secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx);
+
+ free(ctx);
+ }
+}
+
+void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
+ if (fun == NULL) {
+ fun = default_illegal_callback_fn;
+ }
+ ctx->illegal_callback.fn = fun;
+ ctx->illegal_callback.data = data;
+}
+
+void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
+ if (fun == NULL) {
+ fun = default_error_callback_fn;
+ }
+ ctx->error_callback.fn = fun;
+ ctx->error_callback.data = data;
+}
+
+static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
+ if (sizeof(secp256k1_ge_storage) == 64) {
+ /* When the secp256k1_ge_storage type is exactly 64 byte, use its
+ * representation inside secp256k1_pubkey, as conversion is very fast.
+ * Note that secp256k1_pubkey_save must use the same representation. */
+ secp256k1_ge_storage s;
+ memcpy(&s, &pubkey->data[0], 64);
+ secp256k1_ge_from_storage(ge, &s);
+ } else {
+ /* Otherwise, fall back to 32-byte big endian for X and Y. */
+ secp256k1_fe x, y;
+ secp256k1_fe_set_b32(&x, pubkey->data);
+ secp256k1_fe_set_b32(&y, pubkey->data + 32);
+ secp256k1_ge_set_xy(ge, &x, &y);
+ }
+ ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
+ return 1;
+}
+
+static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
+ if (sizeof(secp256k1_ge_storage) == 64) {
+ secp256k1_ge_storage s;
+ secp256k1_ge_to_storage(&s, ge);
+ memcpy(&pubkey->data[0], &s, 64);
+ } else {
+ VERIFY_CHECK(!secp256k1_ge_is_infinity(ge));
+ secp256k1_fe_normalize_var(&ge->x);
+ secp256k1_fe_normalize_var(&ge->y);
+ secp256k1_fe_get_b32(pubkey->data, &ge->x);
+ secp256k1_fe_get_b32(pubkey->data + 32, &ge->y);
+ }
+}
+
+int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
+ secp256k1_ge Q;
+
+ (void)ctx;
+ if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
+ memset(pubkey, 0, sizeof(*pubkey));
+ return 0;
+ }
+ secp256k1_pubkey_save(pubkey, &Q);
+ secp256k1_ge_clear(&Q);
+ return 1;
+}
+
+int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
+ secp256k1_ge Q;
+
+ (void)ctx;
+ return (secp256k1_pubkey_load(ctx, &Q, pubkey) &&
+ secp256k1_eckey_pubkey_serialize(&Q, output, outputlen, flags));
+}
+
+static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
+ (void)ctx;
+ if (sizeof(secp256k1_scalar) == 32) {
+ /* When the secp256k1_scalar type is exactly 32 byte, use its
+ * representation inside secp256k1_ecdsa_signature, as conversion is very fast.
+ * Note that secp256k1_ecdsa_signature_save must use the same representation. */
+ memcpy(r, &sig->data[0], 32);
+ memcpy(s, &sig->data[32], 32);
+ } else {
+ secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
+ secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
+ }
+}
+
+static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) {
+ if (sizeof(secp256k1_scalar) == 32) {
+ memcpy(&sig->data[0], r, 32);
+ memcpy(&sig->data[32], s, 32);
+ } else {
+ secp256k1_scalar_get_b32(&sig->data[0], r);
+ secp256k1_scalar_get_b32(&sig->data[32], s);
+ }
+}
+
+int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
+ secp256k1_scalar r, s;
+
+ (void)ctx;
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(input != NULL);
+
+ if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) {
+ secp256k1_ecdsa_signature_save(sig, &r, &s);
+ return 1;
+ } else {
+ memset(sig, 0, sizeof(*sig));
+ return 0;
+ }
+}
+
+int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
+ secp256k1_scalar r, s;
+
+ (void)ctx;
+ ARG_CHECK(output != NULL);
+ ARG_CHECK(outputlen != NULL);
+ ARG_CHECK(sig != NULL);
+
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
+ return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
+}
+
+int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
+ secp256k1_ge q;
+ secp256k1_scalar r, s;
+ secp256k1_scalar m;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(pubkey != NULL);
+
+ secp256k1_scalar_set_b32(&m, msg32, NULL);
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
+ return (secp256k1_pubkey_load(ctx, &q, pubkey) &&
+ secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m));
+}
+
+static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
+ unsigned char keydata[112];
+ int keylen = 64;
+ secp256k1_rfc6979_hmac_sha256_t rng;
+ unsigned int i;
+ /* We feed a byte array to the PRNG as input, consisting of:
+ * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d.
+ * - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data.
+ * - optionally 16 extra bytes with the algorithm name (the extra data bytes
+ * are set to zeroes when not present, while the algorithm name is).
+ */
+ memcpy(keydata, key32, 32);
+ memcpy(keydata + 32, msg32, 32);
+ if (data != NULL) {
+ memcpy(keydata + 64, data, 32);
+ keylen = 96;
+ }
+ if (algo16 != NULL) {
+ memset(keydata + keylen, 0, 96 - keylen);
+ memcpy(keydata + 96, algo16, 16);
+ keylen = 112;
+ }
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen);
+ memset(keydata, 0, sizeof(keydata));
+ for (i = 0; i <= counter; i++) {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
+ }
+ secp256k1_rfc6979_hmac_sha256_finalize(&rng);
+ return 1;
+}
+
+const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
+const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979;
+
+int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
+ secp256k1_scalar r, s;
+ secp256k1_scalar sec, non, msg;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(msg32 != NULL);
+ ARG_CHECK(signature != NULL);
+ ARG_CHECK(seckey != NULL);
+ if (noncefp == NULL) {
+ noncefp = secp256k1_nonce_function_default;
+ }
+
+ secp256k1_scalar_set_b32(&sec, seckey, &overflow);
+ /* Fail if the secret key is invalid. */
+ if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
+ unsigned int count = 0;
+ secp256k1_scalar_set_b32(&msg, msg32, NULL);
+ while (1) {
+ unsigned char nonce32[32];
+ ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
+ if (!ret) {
+ break;
+ }
+ secp256k1_scalar_set_b32(&non, nonce32, &overflow);
+ memset(nonce32, 0, 32);
+ if (!overflow && !secp256k1_scalar_is_zero(&non)) {
+ if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) {
+ break;
+ }
+ }
+ count++;
+ }
+ secp256k1_scalar_clear(&msg);
+ secp256k1_scalar_clear(&non);
+ secp256k1_scalar_clear(&sec);
+ }
+ if (ret) {
+ secp256k1_ecdsa_signature_save(signature, &r, &s);
+ } else {
+ memset(signature, 0, sizeof(*signature));
+ }
+ return ret;
+}
+
+int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) {
+ secp256k1_scalar sec;
+ int ret;
+ int overflow;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ (void)ctx;
+
+ secp256k1_scalar_set_b32(&sec, seckey, &overflow);
+ ret = !overflow && !secp256k1_scalar_is_zero(&sec);
+ secp256k1_scalar_clear(&sec);
+ return ret;
+}
+
+int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
+ secp256k1_gej pj;
+ secp256k1_ge p;
+ secp256k1_scalar sec;
+ int overflow;
+ int ret = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(seckey != NULL);
+
+ secp256k1_scalar_set_b32(&sec, seckey, &overflow);
+ ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec));
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
+ secp256k1_ge_set_gej(&p, &pj);
+ secp256k1_pubkey_save(pubkey, &p);
+ secp256k1_scalar_clear(&sec);
+ if (!ret) {
+ memset(pubkey, 0, sizeof(*pubkey));
+ }
+ return ret;
+}
+
+int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
+ secp256k1_scalar term;
+ secp256k1_scalar sec;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ ARG_CHECK(tweak != NULL);
+ (void)ctx;
+
+ secp256k1_scalar_set_b32(&term, tweak, &overflow);
+ secp256k1_scalar_set_b32(&sec, seckey, NULL);
+
+ ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term);
+ if (ret) {
+ secp256k1_scalar_get_b32(seckey, &sec);
+ }
+
+ secp256k1_scalar_clear(&sec);
+ secp256k1_scalar_clear(&term);
+ return ret;
+}
+
+int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
+ secp256k1_ge p;
+ secp256k1_scalar term;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(tweak != NULL);
+
+ secp256k1_scalar_set_b32(&term, tweak, &overflow);
+ if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) {
+ ret = secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term);
+ if (ret) {
+ secp256k1_pubkey_save(pubkey, &p);
+ } else {
+ memset(pubkey, 0, sizeof(*pubkey));
+ }
+ }
+
+ return ret;
+}
+
+int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
+ secp256k1_scalar factor;
+ secp256k1_scalar sec;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ ARG_CHECK(tweak != NULL);
+ (void)ctx;
+
+ secp256k1_scalar_set_b32(&factor, tweak, &overflow);
+ secp256k1_scalar_set_b32(&sec, seckey, NULL);
+ ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor);
+ if (ret) {
+ secp256k1_scalar_get_b32(seckey, &sec);
+ }
+
+ secp256k1_scalar_clear(&sec);
+ secp256k1_scalar_clear(&factor);
+ return ret;
+}
+
+int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
+ secp256k1_ge p;
+ secp256k1_scalar factor;
+ int ret = 0;
+ int overflow = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(tweak != NULL);
+
+ secp256k1_scalar_set_b32(&factor, tweak, &overflow);
+ if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) {
+ ret = secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor);
+ if (ret) {
+ secp256k1_pubkey_save(pubkey, &p);
+ } else {
+ memset(pubkey, 0, sizeof(*pubkey));
+ }
+ }
+
+ return ret;
+}
+
+int secp256k1_ec_privkey_export(const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, unsigned int flags) {
+ secp256k1_scalar key;
+ int ret = 0;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ ARG_CHECK(privkey != NULL);
+ ARG_CHECK(privkeylen != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+
+ secp256k1_scalar_set_b32(&key, seckey, NULL);
+ ret = secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, privkeylen, &key, flags);
+ secp256k1_scalar_clear(&key);
+ return ret;
+}
+
+int secp256k1_ec_privkey_import(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen) {
+ secp256k1_scalar key;
+ int ret = 0;
+ ARG_CHECK(seckey != NULL);
+ ARG_CHECK(privkey != NULL);
+ (void)ctx;
+
+ ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen);
+ if (ret) {
+ secp256k1_scalar_get_b32(seckey, &key);
+ }
+ secp256k1_scalar_clear(&key);
+ return ret;
+}
+
+int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) {
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
+ return 1;
+}
+
+int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, int n) {
+ int i;
+ secp256k1_gej Qj;
+ secp256k1_ge Q;
+
+ ARG_CHECK(pubnonce != NULL);
+ ARG_CHECK(n >= 1);
+ ARG_CHECK(pubnonces != NULL);
+
+ secp256k1_gej_set_infinity(&Qj);
+
+ for (i = 0; i < n; i++) {
+ secp256k1_pubkey_load(ctx, &Q, pubnonces[i]);
+ secp256k1_gej_add_ge(&Qj, &Qj, &Q);
+ }
+ if (secp256k1_gej_is_infinity(&Qj)) {
+ memset(pubnonce, 0, sizeof(*pubnonce));
+ return 0;
+ }
+ secp256k1_ge_set_gej(&Q, &Qj);
+ secp256k1_pubkey_save(pubnonce, &Q);
+ return 1;
+}
+
+#ifdef ENABLE_MODULE_ECDH
+# include "modules/ecdh/main_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_SCHNORR
+# include "modules/schnorr/main_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_RECOVERY
+# include "modules/recovery/main_impl.h"
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/testrand.h b/crypto/secp256k1/libsecp256k1/src/testrand.h
new file mode 100644
index 000000000..041bb92c4
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/testrand.h
@@ -0,0 +1,28 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_TESTRAND_H_
+#define _SECP256K1_TESTRAND_H_
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+/* A non-cryptographic RNG used only for test infrastructure. */
+
+/** Seed the pseudorandom number generator for testing. */
+SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16);
+
+/** Generate a pseudorandom 32-bit number. */
+static uint32_t secp256k1_rand32(void);
+
+/** Generate a pseudorandom 32-byte array. */
+static void secp256k1_rand256(unsigned char *b32);
+
+/** Generate a pseudorandom 32-byte array with long sequences of zero and one bits. */
+static void secp256k1_rand256_test(unsigned char *b32);
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/testrand_impl.h b/crypto/secp256k1/libsecp256k1/src/testrand_impl.h
new file mode 100644
index 000000000..7c3554266
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/testrand_impl.h
@@ -0,0 +1,60 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_TESTRAND_IMPL_H_
+#define _SECP256K1_TESTRAND_IMPL_H_
+
+#include <stdint.h>
+#include <string.h>
+
+#include "testrand.h"
+#include "hash.h"
+
+static secp256k1_rfc6979_hmac_sha256_t secp256k1_test_rng;
+static uint32_t secp256k1_test_rng_precomputed[8];
+static int secp256k1_test_rng_precomputed_used = 8;
+
+SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16) {
+ secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, seed16, 16);
+}
+
+SECP256K1_INLINE static uint32_t secp256k1_rand32(void) {
+ if (secp256k1_test_rng_precomputed_used == 8) {
+ secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, (unsigned char*)(&secp256k1_test_rng_precomputed[0]), sizeof(secp256k1_test_rng_precomputed));
+ secp256k1_test_rng_precomputed_used = 0;
+ }
+ return secp256k1_test_rng_precomputed[secp256k1_test_rng_precomputed_used++];
+}
+
+static void secp256k1_rand256(unsigned char *b32) {
+ secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, b32, 32);
+}
+
+static void secp256k1_rand256_test(unsigned char *b32) {
+ int bits=0;
+ uint64_t ent = 0;
+ int entleft = 0;
+ memset(b32, 0, 32);
+ while (bits < 256) {
+ int now;
+ uint32_t val;
+ if (entleft < 12) {
+ ent |= ((uint64_t)secp256k1_rand32()) << entleft;
+ entleft += 32;
+ }
+ now = 1 + ((ent % 64)*((ent >> 6) % 32)+16)/31;
+ val = 1 & (ent >> 11);
+ ent >>= 12;
+ entleft -= 12;
+ while (now > 0 && bits < 256) {
+ b32[bits / 8] |= val << (bits % 8);
+ now--;
+ bits++;
+ }
+ }
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/tests.c b/crypto/secp256k1/libsecp256k1/src/tests.c
new file mode 100644
index 000000000..3366d90fc
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/tests.c
@@ -0,0 +1,2357 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#include <stdio.h>
+#include <stdlib.h>
+
+#include <time.h>
+
+#include "include/secp256k1.h"
+#include "secp256k1.c"
+#include "testrand_impl.h"
+
+#ifdef ENABLE_OPENSSL_TESTS
+#include "openssl/bn.h"
+#include "openssl/ec.h"
+#include "openssl/ecdsa.h"
+#include "openssl/obj_mac.h"
+#endif
+
+static int count = 64;
+static secp256k1_context *ctx = NULL;
+
+void random_field_element_test(secp256k1_fe *fe) {
+ do {
+ unsigned char b32[32];
+ secp256k1_rand256_test(b32);
+ if (secp256k1_fe_set_b32(fe, b32)) {
+ break;
+ }
+ } while(1);
+}
+
+void random_field_element_magnitude(secp256k1_fe *fe) {
+ secp256k1_fe zero;
+ int n = secp256k1_rand32() % 9;
+ secp256k1_fe_normalize(fe);
+ if (n == 0) {
+ return;
+ }
+ secp256k1_fe_clear(&zero);
+ secp256k1_fe_negate(&zero, &zero, 0);
+ secp256k1_fe_mul_int(&zero, n - 1);
+ secp256k1_fe_add(fe, &zero);
+ VERIFY_CHECK(fe->magnitude == n);
+}
+
+void random_group_element_test(secp256k1_ge *ge) {
+ secp256k1_fe fe;
+ do {
+ random_field_element_test(&fe);
+ if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand32() & 1)) {
+ secp256k1_fe_normalize(&ge->y);
+ break;
+ }
+ } while(1);
+}
+
+void random_group_element_jacobian_test(secp256k1_gej *gej, const secp256k1_ge *ge) {
+ secp256k1_fe z2, z3;
+ do {
+ random_field_element_test(&gej->z);
+ if (!secp256k1_fe_is_zero(&gej->z)) {
+ break;
+ }
+ } while(1);
+ secp256k1_fe_sqr(&z2, &gej->z);
+ secp256k1_fe_mul(&z3, &z2, &gej->z);
+ secp256k1_fe_mul(&gej->x, &ge->x, &z2);
+ secp256k1_fe_mul(&gej->y, &ge->y, &z3);
+ gej->infinity = ge->infinity;
+}
+
+void random_scalar_order_test(secp256k1_scalar *num) {
+ do {
+ unsigned char b32[32];
+ int overflow = 0;
+ secp256k1_rand256_test(b32);
+ secp256k1_scalar_set_b32(num, b32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(num)) {
+ continue;
+ }
+ break;
+ } while(1);
+}
+
+void random_scalar_order(secp256k1_scalar *num) {
+ do {
+ unsigned char b32[32];
+ int overflow = 0;
+ secp256k1_rand256(b32);
+ secp256k1_scalar_set_b32(num, b32, &overflow);
+ if (overflow || secp256k1_scalar_is_zero(num)) {
+ continue;
+ }
+ break;
+ } while(1);
+}
+
+void run_context_tests(void) {
+ secp256k1_context *none = secp256k1_context_create(0);
+ secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
+ secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+
+ secp256k1_gej pubj;
+ secp256k1_ge pub;
+ secp256k1_scalar msg, key, nonce;
+ secp256k1_scalar sigr, sigs;
+
+ /*** clone and destroy all of them to make sure cloning was complete ***/
+ {
+ secp256k1_context *ctx_tmp;
+
+ ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_destroy(ctx_tmp);
+ }
+
+ /*** attempt to use them ***/
+ random_scalar_order_test(&msg);
+ random_scalar_order_test(&key);
+ secp256k1_ecmult_gen(&both->ecmult_gen_ctx, &pubj, &key);
+ secp256k1_ge_set_gej(&pub, &pubj);
+
+ /* obtain a working nonce */
+ do {
+ random_scalar_order_test(&nonce);
+ } while(!secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
+
+ /* try signing */
+ CHECK(secp256k1_ecdsa_sig_sign(&sign->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
+ CHECK(secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
+
+ /* try verifying */
+ CHECK(secp256k1_ecdsa_sig_verify(&vrfy->ecmult_ctx, &sigr, &sigs, &pub, &msg));
+ CHECK(secp256k1_ecdsa_sig_verify(&both->ecmult_ctx, &sigr, &sigs, &pub, &msg));
+
+ /* cleanup */
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(vrfy);
+ secp256k1_context_destroy(both);
+}
+
+/***** HASH TESTS *****/
+
+void run_sha256_tests(void) {
+ static const char *inputs[8] = {
+ "", "abc", "message digest", "secure hash algorithm", "SHA256 is considered to be safe",
+ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
+ "For this sample, this 63-byte string will be used as input data",
+ "This is exactly 64 bytes long, not counting the terminating byte"
+ };
+ static const unsigned char outputs[8][32] = {
+ {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55},
+ {0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad},
+ {0xf7, 0x84, 0x6f, 0x55, 0xcf, 0x23, 0xe1, 0x4e, 0xeb, 0xea, 0xb5, 0xb4, 0xe1, 0x55, 0x0c, 0xad, 0x5b, 0x50, 0x9e, 0x33, 0x48, 0xfb, 0xc4, 0xef, 0xa3, 0xa1, 0x41, 0x3d, 0x39, 0x3c, 0xb6, 0x50},
+ {0xf3, 0x0c, 0xeb, 0x2b, 0xb2, 0x82, 0x9e, 0x79, 0xe4, 0xca, 0x97, 0x53, 0xd3, 0x5a, 0x8e, 0xcc, 0x00, 0x26, 0x2d, 0x16, 0x4c, 0xc0, 0x77, 0x08, 0x02, 0x95, 0x38, 0x1c, 0xbd, 0x64, 0x3f, 0x0d},
+ {0x68, 0x19, 0xd9, 0x15, 0xc7, 0x3f, 0x4d, 0x1e, 0x77, 0xe4, 0xe1, 0xb5, 0x2d, 0x1f, 0xa0, 0xf9, 0xcf, 0x9b, 0xea, 0xea, 0xd3, 0x93, 0x9f, 0x15, 0x87, 0x4b, 0xd9, 0x88, 0xe2, 0xa2, 0x36, 0x30},
+ {0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1},
+ {0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42},
+ {0xab, 0x64, 0xef, 0xf7, 0xe8, 0x8e, 0x2e, 0x46, 0x16, 0x5e, 0x29, 0xf2, 0xbc, 0xe4, 0x18, 0x26, 0xbd, 0x4c, 0x7b, 0x35, 0x52, 0xf6, 0xb3, 0x82, 0xa9, 0xe7, 0xd3, 0xaf, 0x47, 0xc2, 0x45, 0xf8}
+ };
+ int i;
+ for (i = 0; i < 8; i++) {
+ unsigned char out[32];
+ secp256k1_sha256_t hasher;
+ secp256k1_sha256_initialize(&hasher);
+ secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
+ secp256k1_sha256_finalize(&hasher, out);
+ CHECK(memcmp(out, outputs[i], 32) == 0);
+ if (strlen(inputs[i]) > 0) {
+ int split = secp256k1_rand32() % strlen(inputs[i]);
+ secp256k1_sha256_initialize(&hasher);
+ secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
+ secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
+ secp256k1_sha256_finalize(&hasher, out);
+ CHECK(memcmp(out, outputs[i], 32) == 0);
+ }
+ }
+}
+
+void run_hmac_sha256_tests(void) {
+ static const char *keys[6] = {
+ "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
+ "\x4a\x65\x66\x65",
+ "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
+ "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19",
+ "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
+ "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
+ };
+ static const char *inputs[6] = {
+ "\x48\x69\x20\x54\x68\x65\x72\x65",
+ "\x77\x68\x61\x74\x20\x64\x6f\x20\x79\x61\x20\x77\x61\x6e\x74\x20\x66\x6f\x72\x20\x6e\x6f\x74\x68\x69\x6e\x67\x3f",
+ "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd",
+ "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd",
+ "\x54\x65\x73\x74\x20\x55\x73\x69\x6e\x67\x20\x4c\x61\x72\x67\x65\x72\x20\x54\x68\x61\x6e\x20\x42\x6c\x6f\x63\x6b\x2d\x53\x69\x7a\x65\x20\x4b\x65\x79\x20\x2d\x20\x48\x61\x73\x68\x20\x4b\x65\x79\x20\x46\x69\x72\x73\x74",
+ "\x54\x68\x69\x73\x20\x69\x73\x20\x61\x20\x74\x65\x73\x74\x20\x75\x73\x69\x6e\x67\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x6b\x65\x79\x20\x61\x6e\x64\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x64\x61\x74\x61\x2e\x20\x54\x68\x65\x20\x6b\x65\x79\x20\x6e\x65\x65\x64\x73\x20\x74\x6f\x20\x62\x65\x20\x68\x61\x73\x68\x65\x64\x20\x62\x65\x66\x6f\x72\x65\x20\x62\x65\x69\x6e\x67\x20\x75\x73\x65\x64\x20\x62\x79\x20\x74\x68\x65\x20\x48\x4d\x41\x43\x20\x61\x6c\x67\x6f\x72\x69\x74\x68\x6d\x2e"
+ };
+ static const unsigned char outputs[6][32] = {
+ {0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53, 0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0x0b, 0xf1, 0x2b, 0x88, 0x1d, 0xc2, 0x00, 0xc9, 0x83, 0x3d, 0xa7, 0x26, 0xe9, 0x37, 0x6c, 0x2e, 0x32, 0xcf, 0xf7},
+ {0x5b, 0xdc, 0xc1, 0x46, 0xbf, 0x60, 0x75, 0x4e, 0x6a, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xc7, 0x5a, 0x00, 0x3f, 0x08, 0x9d, 0x27, 0x39, 0x83, 0x9d, 0xec, 0x58, 0xb9, 0x64, 0xec, 0x38, 0x43},
+ {0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8, 0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8, 0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe},
+ {0x82, 0x55, 0x8a, 0x38, 0x9a, 0x44, 0x3c, 0x0e, 0xa4, 0xcc, 0x81, 0x98, 0x99, 0xf2, 0x08, 0x3a, 0x85, 0xf0, 0xfa, 0xa3, 0xe5, 0x78, 0xf8, 0x07, 0x7a, 0x2e, 0x3f, 0xf4, 0x67, 0x29, 0x66, 0x5b},
+ {0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54},
+ {0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2}
+ };
+ int i;
+ for (i = 0; i < 6; i++) {
+ secp256k1_hmac_sha256_t hasher;
+ unsigned char out[32];
+ secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
+ secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
+ secp256k1_hmac_sha256_finalize(&hasher, out);
+ CHECK(memcmp(out, outputs[i], 32) == 0);
+ if (strlen(inputs[i]) > 0) {
+ int split = secp256k1_rand32() % strlen(inputs[i]);
+ secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
+ secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
+ secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
+ secp256k1_hmac_sha256_finalize(&hasher, out);
+ CHECK(memcmp(out, outputs[i], 32) == 0);
+ }
+ }
+}
+
+void run_rfc6979_hmac_sha256_tests(void) {
+ static const unsigned char key1[65] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a, 0};
+ static const unsigned char out1[3][32] = {
+ {0x4f, 0xe2, 0x95, 0x25, 0xb2, 0x08, 0x68, 0x09, 0x15, 0x9a, 0xcd, 0xf0, 0x50, 0x6e, 0xfb, 0x86, 0xb0, 0xec, 0x93, 0x2c, 0x7b, 0xa4, 0x42, 0x56, 0xab, 0x32, 0x1e, 0x42, 0x1e, 0x67, 0xe9, 0xfb},
+ {0x2b, 0xf0, 0xff, 0xf1, 0xd3, 0xc3, 0x78, 0xa2, 0x2d, 0xc5, 0xde, 0x1d, 0x85, 0x65, 0x22, 0x32, 0x5c, 0x65, 0xb5, 0x04, 0x49, 0x1a, 0x0c, 0xbd, 0x01, 0xcb, 0x8f, 0x3a, 0xa6, 0x7f, 0xfd, 0x4a},
+ {0xf5, 0x28, 0xb4, 0x10, 0xcb, 0x54, 0x1f, 0x77, 0x00, 0x0d, 0x7a, 0xfb, 0x6c, 0x5b, 0x53, 0xc5, 0xc4, 0x71, 0xea, 0xb4, 0x3e, 0x46, 0x6d, 0x9a, 0xc5, 0x19, 0x0c, 0x39, 0xc8, 0x2f, 0xd8, 0x2e}
+ };
+
+ static const unsigned char key2[64] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
+ static const unsigned char out2[3][32] = {
+ {0x9c, 0x23, 0x6c, 0x16, 0x5b, 0x82, 0xae, 0x0c, 0xd5, 0x90, 0x65, 0x9e, 0x10, 0x0b, 0x6b, 0xab, 0x30, 0x36, 0xe7, 0xba, 0x8b, 0x06, 0x74, 0x9b, 0xaf, 0x69, 0x81, 0xe1, 0x6f, 0x1a, 0x2b, 0x95},
+ {0xdf, 0x47, 0x10, 0x61, 0x62, 0x5b, 0xc0, 0xea, 0x14, 0xb6, 0x82, 0xfe, 0xee, 0x2c, 0x9c, 0x02, 0xf2, 0x35, 0xda, 0x04, 0x20, 0x4c, 0x1d, 0x62, 0xa1, 0x53, 0x6c, 0x6e, 0x17, 0xae, 0xd7, 0xa9},
+ {0x75, 0x97, 0x88, 0x7c, 0xbd, 0x76, 0x32, 0x1f, 0x32, 0xe3, 0x04, 0x40, 0x67, 0x9a, 0x22, 0xcf, 0x7f, 0x8d, 0x9d, 0x2e, 0xac, 0x39, 0x0e, 0x58, 0x1f, 0xea, 0x09, 0x1c, 0xe2, 0x02, 0xba, 0x94}
+ };
+
+ secp256k1_rfc6979_hmac_sha256_t rng;
+ unsigned char out[32];
+ int i;
+
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 64);
+ for (i = 0; i < 3; i++) {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
+ CHECK(memcmp(out, out1[i], 32) == 0);
+ }
+ secp256k1_rfc6979_hmac_sha256_finalize(&rng);
+
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 65);
+ for (i = 0; i < 3; i++) {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
+ CHECK(memcmp(out, out1[i], 32) != 0);
+ }
+ secp256k1_rfc6979_hmac_sha256_finalize(&rng);
+
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 64);
+ for (i = 0; i < 3; i++) {
+ secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
+ CHECK(memcmp(out, out2[i], 32) == 0);
+ }
+ secp256k1_rfc6979_hmac_sha256_finalize(&rng);
+}
+
+/***** NUM TESTS *****/
+
+#ifndef USE_NUM_NONE
+void random_num_negate(secp256k1_num *num) {
+ if (secp256k1_rand32() & 1) {
+ secp256k1_num_negate(num);
+ }
+}
+
+void random_num_order_test(secp256k1_num *num) {
+ secp256k1_scalar sc;
+ random_scalar_order_test(&sc);
+ secp256k1_scalar_get_num(num, &sc);
+}
+
+void random_num_order(secp256k1_num *num) {
+ secp256k1_scalar sc;
+ random_scalar_order(&sc);
+ secp256k1_scalar_get_num(num, &sc);
+}
+
+void test_num_negate(void) {
+ secp256k1_num n1;
+ secp256k1_num n2;
+ random_num_order_test(&n1); /* n1 = R */
+ random_num_negate(&n1);
+ secp256k1_num_copy(&n2, &n1); /* n2 = R */
+ secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */
+ CHECK(secp256k1_num_is_zero(&n1));
+ secp256k1_num_copy(&n1, &n2); /* n1 = R */
+ secp256k1_num_negate(&n1); /* n1 = -R */
+ CHECK(!secp256k1_num_is_zero(&n1));
+ secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */
+ CHECK(secp256k1_num_is_zero(&n1));
+ secp256k1_num_copy(&n1, &n2); /* n1 = R */
+ secp256k1_num_negate(&n1); /* n1 = -R */
+ CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
+ secp256k1_num_negate(&n1); /* n1 = R */
+ CHECK(secp256k1_num_eq(&n1, &n2));
+}
+
+void test_num_add_sub(void) {
+ secp256k1_num n1;
+ secp256k1_num n2;
+ secp256k1_num n1p2, n2p1, n1m2, n2m1;
+ int r = secp256k1_rand32();
+ random_num_order_test(&n1); /* n1 = R1 */
+ if (r & 1) {
+ random_num_negate(&n1);
+ }
+ random_num_order_test(&n2); /* n2 = R2 */
+ if (r & 2) {
+ random_num_negate(&n2);
+ }
+ secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
+ secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */
+ secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */
+ secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */
+ CHECK(secp256k1_num_eq(&n1p2, &n2p1));
+ CHECK(!secp256k1_num_eq(&n1p2, &n1m2));
+ secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */
+ CHECK(secp256k1_num_eq(&n2m1, &n1m2));
+ CHECK(!secp256k1_num_eq(&n2m1, &n1));
+ secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */
+ CHECK(secp256k1_num_eq(&n2m1, &n1));
+ CHECK(!secp256k1_num_eq(&n2p1, &n1));
+ secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
+ CHECK(secp256k1_num_eq(&n2p1, &n1));
+}
+
+void run_num_smalltests(void) {
+ int i;
+ for (i = 0; i < 100*count; i++) {
+ test_num_negate();
+ test_num_add_sub();
+ }
+}
+#endif
+
+/***** SCALAR TESTS *****/
+
+void scalar_test(void) {
+ secp256k1_scalar s;
+ secp256k1_scalar s1;
+ secp256k1_scalar s2;
+#ifndef USE_NUM_NONE
+ secp256k1_num snum, s1num, s2num;
+ secp256k1_num order, half_order;
+#endif
+ unsigned char c[32];
+
+ /* Set 's' to a random scalar, with value 'snum'. */
+ random_scalar_order_test(&s);
+
+ /* Set 's1' to a random scalar, with value 's1num'. */
+ random_scalar_order_test(&s1);
+
+ /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
+ random_scalar_order_test(&s2);
+ secp256k1_scalar_get_b32(c, &s2);
+
+#ifndef USE_NUM_NONE
+ secp256k1_scalar_get_num(&snum, &s);
+ secp256k1_scalar_get_num(&s1num, &s1);
+ secp256k1_scalar_get_num(&s2num, &s2);
+
+ secp256k1_scalar_order_get_num(&order);
+ half_order = order;
+ secp256k1_num_shift(&half_order, 1);
+#endif
+
+ {
+ int i;
+ /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
+ secp256k1_scalar n;
+ secp256k1_scalar_set_int(&n, 0);
+ for (i = 0; i < 256; i += 4) {
+ secp256k1_scalar t;
+ int j;
+ secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
+ for (j = 0; j < 4; j++) {
+ secp256k1_scalar_add(&n, &n, &n);
+ }
+ secp256k1_scalar_add(&n, &n, &t);
+ }
+ CHECK(secp256k1_scalar_eq(&n, &s));
+ }
+
+ {
+ /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
+ secp256k1_scalar n;
+ int i = 0;
+ secp256k1_scalar_set_int(&n, 0);
+ while (i < 256) {
+ secp256k1_scalar t;
+ int j;
+ int now = (secp256k1_rand32() % 15) + 1;
+ if (now + i > 256) {
+ now = 256 - i;
+ }
+ secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now));
+ for (j = 0; j < now; j++) {
+ secp256k1_scalar_add(&n, &n, &n);
+ }
+ secp256k1_scalar_add(&n, &n, &t);
+ i += now;
+ }
+ CHECK(secp256k1_scalar_eq(&n, &s));
+ }
+
+#ifndef USE_NUM_NONE
+ {
+ /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
+ secp256k1_num rnum;
+ secp256k1_num r2num;
+ secp256k1_scalar r;
+ secp256k1_num_add(&rnum, &snum, &s2num);
+ secp256k1_num_mod(&rnum, &order);
+ secp256k1_scalar_add(&r, &s, &s2);
+ secp256k1_scalar_get_num(&r2num, &r);
+ CHECK(secp256k1_num_eq(&rnum, &r2num));
+ }
+
+ {
+ /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
+ secp256k1_scalar r;
+ secp256k1_num r2num;
+ secp256k1_num rnum;
+ secp256k1_num_mul(&rnum, &snum, &s2num);
+ secp256k1_num_mod(&rnum, &order);
+ secp256k1_scalar_mul(&r, &s, &s2);
+ secp256k1_scalar_get_num(&r2num, &r);
+ CHECK(secp256k1_num_eq(&rnum, &r2num));
+ /* The result can only be zero if at least one of the factors was zero. */
+ CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
+ /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
+ CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
+ CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
+ }
+
+ {
+ secp256k1_scalar neg;
+ secp256k1_num negnum;
+ secp256k1_num negnum2;
+ /* Check that comparison with zero matches comparison with zero on the number. */
+ CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
+ /* Check that comparison with the half order is equal to testing for high scalar. */
+ CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0));
+ secp256k1_scalar_negate(&neg, &s);
+ secp256k1_num_sub(&negnum, &order, &snum);
+ secp256k1_num_mod(&negnum, &order);
+ /* Check that comparison with the half order is equal to testing for high scalar after negation. */
+ CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0));
+ /* Negating should change the high property, unless the value was already zero. */
+ CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
+ secp256k1_scalar_get_num(&negnum2, &neg);
+ /* Negating a scalar should be equal to (order - n) mod order on the number. */
+ CHECK(secp256k1_num_eq(&negnum, &negnum2));
+ secp256k1_scalar_add(&neg, &neg, &s);
+ /* Adding a number to its negation should result in zero. */
+ CHECK(secp256k1_scalar_is_zero(&neg));
+ secp256k1_scalar_negate(&neg, &neg);
+ /* Negating zero should still result in zero. */
+ CHECK(secp256k1_scalar_is_zero(&neg));
+ }
+
+ {
+ /* Test secp256k1_scalar_mul_shift_var. */
+ secp256k1_scalar r;
+ secp256k1_num one;
+ secp256k1_num rnum;
+ secp256k1_num rnum2;
+ unsigned char cone[1] = {0x01};
+ unsigned int shift = 256 + (secp256k1_rand32() % 257);
+ secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
+ secp256k1_num_mul(&rnum, &s1num, &s2num);
+ secp256k1_num_shift(&rnum, shift - 1);
+ secp256k1_num_set_bin(&one, cone, 1);
+ secp256k1_num_add(&rnum, &rnum, &one);
+ secp256k1_num_shift(&rnum, 1);
+ secp256k1_scalar_get_num(&rnum2, &r);
+ CHECK(secp256k1_num_eq(&rnum, &rnum2));
+ }
+
+ {
+ /* test secp256k1_scalar_shr_int */
+ secp256k1_scalar r;
+ int i;
+ random_scalar_order_test(&r);
+ for (i = 0; i < 100; ++i) {
+ int low;
+ int shift = 1 + (secp256k1_rand32() % 15);
+ int expected = r.d[0] % (1 << shift);
+ low = secp256k1_scalar_shr_int(&r, shift);
+ CHECK(expected == low);
+ }
+ }
+#endif
+
+ {
+ /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
+ if (!secp256k1_scalar_is_zero(&s)) {
+ secp256k1_scalar inv;
+#ifndef USE_NUM_NONE
+ secp256k1_num invnum;
+ secp256k1_num invnum2;
+#endif
+ secp256k1_scalar_inverse(&inv, &s);
+#ifndef USE_NUM_NONE
+ secp256k1_num_mod_inverse(&invnum, &snum, &order);
+ secp256k1_scalar_get_num(&invnum2, &inv);
+ CHECK(secp256k1_num_eq(&invnum, &invnum2));
+#endif
+ secp256k1_scalar_mul(&inv, &inv, &s);
+ /* Multiplying a scalar with its inverse must result in one. */
+ CHECK(secp256k1_scalar_is_one(&inv));
+ secp256k1_scalar_inverse(&inv, &inv);
+ /* Inverting one must result in one. */
+ CHECK(secp256k1_scalar_is_one(&inv));
+ }
+ }
+
+ {
+ /* Test commutativity of add. */
+ secp256k1_scalar r1, r2;
+ secp256k1_scalar_add(&r1, &s1, &s2);
+ secp256k1_scalar_add(&r2, &s2, &s1);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ secp256k1_scalar r1, r2;
+ secp256k1_scalar b;
+ int i;
+ /* Test add_bit. */
+ int bit = secp256k1_rand32() % 256;
+ secp256k1_scalar_set_int(&b, 1);
+ CHECK(secp256k1_scalar_is_one(&b));
+ for (i = 0; i < bit; i++) {
+ secp256k1_scalar_add(&b, &b, &b);
+ }
+ r1 = s1;
+ r2 = s1;
+ if (!secp256k1_scalar_add(&r1, &r1, &b)) {
+ /* No overflow happened. */
+ secp256k1_scalar_cadd_bit(&r2, bit, 1);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ /* cadd is a noop when flag is zero */
+ secp256k1_scalar_cadd_bit(&r2, bit, 0);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+ }
+
+ {
+ /* Test commutativity of mul. */
+ secp256k1_scalar r1, r2;
+ secp256k1_scalar_mul(&r1, &s1, &s2);
+ secp256k1_scalar_mul(&r2, &s2, &s1);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test associativity of add. */
+ secp256k1_scalar r1, r2;
+ secp256k1_scalar_add(&r1, &s1, &s2);
+ secp256k1_scalar_add(&r1, &r1, &s);
+ secp256k1_scalar_add(&r2, &s2, &s);
+ secp256k1_scalar_add(&r2, &s1, &r2);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test associativity of mul. */
+ secp256k1_scalar r1, r2;
+ secp256k1_scalar_mul(&r1, &s1, &s2);
+ secp256k1_scalar_mul(&r1, &r1, &s);
+ secp256k1_scalar_mul(&r2, &s2, &s);
+ secp256k1_scalar_mul(&r2, &s1, &r2);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test distributitivity of mul over add. */
+ secp256k1_scalar r1, r2, t;
+ secp256k1_scalar_add(&r1, &s1, &s2);
+ secp256k1_scalar_mul(&r1, &r1, &s);
+ secp256k1_scalar_mul(&r2, &s1, &s);
+ secp256k1_scalar_mul(&t, &s2, &s);
+ secp256k1_scalar_add(&r2, &r2, &t);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test square. */
+ secp256k1_scalar r1, r2;
+ secp256k1_scalar_sqr(&r1, &s1);
+ secp256k1_scalar_mul(&r2, &s1, &s1);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+
+ {
+ /* Test multiplicative identity. */
+ secp256k1_scalar r1, v1;
+ secp256k1_scalar_set_int(&v1,1);
+ secp256k1_scalar_mul(&r1, &s1, &v1);
+ CHECK(secp256k1_scalar_eq(&r1, &s1));
+ }
+
+ {
+ /* Test additive identity. */
+ secp256k1_scalar r1, v0;
+ secp256k1_scalar_set_int(&v0,0);
+ secp256k1_scalar_add(&r1, &s1, &v0);
+ CHECK(secp256k1_scalar_eq(&r1, &s1));
+ }
+
+ {
+ /* Test zero product property. */
+ secp256k1_scalar r1, v0;
+ secp256k1_scalar_set_int(&v0,0);
+ secp256k1_scalar_mul(&r1, &s1, &v0);
+ CHECK(secp256k1_scalar_eq(&r1, &v0));
+ }
+
+}
+
+void run_scalar_tests(void) {
+ int i;
+ for (i = 0; i < 128 * count; i++) {
+ scalar_test();
+ }
+
+ {
+ /* (-1)+1 should be zero. */
+ secp256k1_scalar s, o;
+ secp256k1_scalar_set_int(&s, 1);
+ CHECK(secp256k1_scalar_is_one(&s));
+ secp256k1_scalar_negate(&o, &s);
+ secp256k1_scalar_add(&o, &o, &s);
+ CHECK(secp256k1_scalar_is_zero(&o));
+ secp256k1_scalar_negate(&o, &o);
+ CHECK(secp256k1_scalar_is_zero(&o));
+ }
+
+#ifndef USE_NUM_NONE
+ {
+ /* A scalar with value of the curve order should be 0. */
+ secp256k1_num order;
+ secp256k1_scalar zero;
+ unsigned char bin[32];
+ int overflow = 0;
+ secp256k1_scalar_order_get_num(&order);
+ secp256k1_num_get_bin(bin, 32, &order);
+ secp256k1_scalar_set_b32(&zero, bin, &overflow);
+ CHECK(overflow == 1);
+ CHECK(secp256k1_scalar_is_zero(&zero));
+ }
+#endif
+}
+
+/***** FIELD TESTS *****/
+
+void random_fe(secp256k1_fe *x) {
+ unsigned char bin[32];
+ do {
+ secp256k1_rand256(bin);
+ if (secp256k1_fe_set_b32(x, bin)) {
+ return;
+ }
+ } while(1);
+}
+
+void random_fe_non_zero(secp256k1_fe *nz) {
+ int tries = 10;
+ while (--tries >= 0) {
+ random_fe(nz);
+ secp256k1_fe_normalize(nz);
+ if (!secp256k1_fe_is_zero(nz)) {
+ break;
+ }
+ }
+ /* Infinitesimal probability of spurious failure here */
+ CHECK(tries >= 0);
+}
+
+void random_fe_non_square(secp256k1_fe *ns) {
+ secp256k1_fe r;
+ random_fe_non_zero(ns);
+ if (secp256k1_fe_sqrt_var(&r, ns)) {
+ secp256k1_fe_negate(ns, ns, 1);
+ }
+}
+
+int check_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
+ secp256k1_fe an = *a;
+ secp256k1_fe bn = *b;
+ secp256k1_fe_normalize_weak(&an);
+ secp256k1_fe_normalize_var(&bn);
+ return secp256k1_fe_equal_var(&an, &bn);
+}
+
+int check_fe_inverse(const secp256k1_fe *a, const secp256k1_fe *ai) {
+ secp256k1_fe x;
+ secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_fe_mul(&x, a, ai);
+ return check_fe_equal(&x, &one);
+}
+
+void run_field_convert(void) {
+ static const unsigned char b32[32] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
+ 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
+ 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40
+ };
+ static const secp256k1_fe_storage fes = SECP256K1_FE_STORAGE_CONST(
+ 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
+ 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
+ );
+ static const secp256k1_fe fe = SECP256K1_FE_CONST(
+ 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
+ 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
+ );
+ secp256k1_fe fe2;
+ unsigned char b322[32];
+ secp256k1_fe_storage fes2;
+ /* Check conversions to fe. */
+ CHECK(secp256k1_fe_set_b32(&fe2, b32));
+ CHECK(secp256k1_fe_equal_var(&fe, &fe2));
+ secp256k1_fe_from_storage(&fe2, &fes);
+ CHECK(secp256k1_fe_equal_var(&fe, &fe2));
+ /* Check conversion from fe. */
+ secp256k1_fe_get_b32(b322, &fe);
+ CHECK(memcmp(b322, b32, 32) == 0);
+ secp256k1_fe_to_storage(&fes2, &fe);
+ CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0);
+}
+
+int fe_memcmp(const secp256k1_fe *a, const secp256k1_fe *b) {
+ secp256k1_fe t = *b;
+#ifdef VERIFY
+ t.magnitude = a->magnitude;
+ t.normalized = a->normalized;
+#endif
+ return memcmp(a, &t, sizeof(secp256k1_fe));
+}
+
+void run_field_misc(void) {
+ secp256k1_fe x;
+ secp256k1_fe y;
+ secp256k1_fe z;
+ secp256k1_fe q;
+ secp256k1_fe fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5);
+ int i, j;
+ for (i = 0; i < 5*count; i++) {
+ secp256k1_fe_storage xs, ys, zs;
+ random_fe(&x);
+ random_fe_non_zero(&y);
+ /* Test the fe equality and comparison operations. */
+ CHECK(secp256k1_fe_cmp_var(&x, &x) == 0);
+ CHECK(secp256k1_fe_equal_var(&x, &x));
+ z = x;
+ secp256k1_fe_add(&z,&y);
+ /* Test fe conditional move; z is not normalized here. */
+ q = x;
+ secp256k1_fe_cmov(&x, &z, 0);
+ VERIFY_CHECK(!x.normalized && x.magnitude == z.magnitude);
+ secp256k1_fe_cmov(&x, &x, 1);
+ CHECK(fe_memcmp(&x, &z) != 0);
+ CHECK(fe_memcmp(&x, &q) == 0);
+ secp256k1_fe_cmov(&q, &z, 1);
+ VERIFY_CHECK(!q.normalized && q.magnitude == z.magnitude);
+ CHECK(fe_memcmp(&q, &z) == 0);
+ secp256k1_fe_normalize_var(&x);
+ secp256k1_fe_normalize_var(&z);
+ CHECK(!secp256k1_fe_equal_var(&x, &z));
+ secp256k1_fe_normalize_var(&q);
+ secp256k1_fe_cmov(&q, &z, (i&1));
+ VERIFY_CHECK(q.normalized && q.magnitude == 1);
+ for (j = 0; j < 6; j++) {
+ secp256k1_fe_negate(&z, &z, j+1);
+ secp256k1_fe_normalize_var(&q);
+ secp256k1_fe_cmov(&q, &z, (j&1));
+ VERIFY_CHECK(!q.normalized && q.magnitude == (j+2));
+ }
+ secp256k1_fe_normalize_var(&z);
+ /* Test storage conversion and conditional moves. */
+ secp256k1_fe_to_storage(&xs, &x);
+ secp256k1_fe_to_storage(&ys, &y);
+ secp256k1_fe_to_storage(&zs, &z);
+ secp256k1_fe_storage_cmov(&zs, &xs, 0);
+ secp256k1_fe_storage_cmov(&zs, &zs, 1);
+ CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0);
+ secp256k1_fe_storage_cmov(&ys, &xs, 1);
+ CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0);
+ secp256k1_fe_from_storage(&x, &xs);
+ secp256k1_fe_from_storage(&y, &ys);
+ secp256k1_fe_from_storage(&z, &zs);
+ /* Test that mul_int, mul, and add agree. */
+ secp256k1_fe_add(&y, &x);
+ secp256k1_fe_add(&y, &x);
+ z = x;
+ secp256k1_fe_mul_int(&z, 3);
+ CHECK(check_fe_equal(&y, &z));
+ secp256k1_fe_add(&y, &x);
+ secp256k1_fe_add(&z, &x);
+ CHECK(check_fe_equal(&z, &y));
+ z = x;
+ secp256k1_fe_mul_int(&z, 5);
+ secp256k1_fe_mul(&q, &x, &fe5);
+ CHECK(check_fe_equal(&z, &q));
+ secp256k1_fe_negate(&x, &x, 1);
+ secp256k1_fe_add(&z, &x);
+ secp256k1_fe_add(&q, &x);
+ CHECK(check_fe_equal(&y, &z));
+ CHECK(check_fe_equal(&q, &y));
+ }
+}
+
+void run_field_inv(void) {
+ secp256k1_fe x, xi, xii;
+ int i;
+ for (i = 0; i < 10*count; i++) {
+ random_fe_non_zero(&x);
+ secp256k1_fe_inv(&xi, &x);
+ CHECK(check_fe_inverse(&x, &xi));
+ secp256k1_fe_inv(&xii, &xi);
+ CHECK(check_fe_equal(&x, &xii));
+ }
+}
+
+void run_field_inv_var(void) {
+ secp256k1_fe x, xi, xii;
+ int i;
+ for (i = 0; i < 10*count; i++) {
+ random_fe_non_zero(&x);
+ secp256k1_fe_inv_var(&xi, &x);
+ CHECK(check_fe_inverse(&x, &xi));
+ secp256k1_fe_inv_var(&xii, &xi);
+ CHECK(check_fe_equal(&x, &xii));
+ }
+}
+
+void run_field_inv_all_var(void) {
+ secp256k1_fe x[16], xi[16], xii[16];
+ int i;
+ /* Check it's safe to call for 0 elements */
+ secp256k1_fe_inv_all_var(0, xi, x);
+ for (i = 0; i < count; i++) {
+ size_t j;
+ size_t len = (secp256k1_rand32() & 15) + 1;
+ for (j = 0; j < len; j++) {
+ random_fe_non_zero(&x[j]);
+ }
+ secp256k1_fe_inv_all_var(len, xi, x);
+ for (j = 0; j < len; j++) {
+ CHECK(check_fe_inverse(&x[j], &xi[j]));
+ }
+ secp256k1_fe_inv_all_var(len, xii, xi);
+ for (j = 0; j < len; j++) {
+ CHECK(check_fe_equal(&x[j], &xii[j]));
+ }
+ }
+}
+
+void run_sqr(void) {
+ secp256k1_fe x, s;
+
+ {
+ int i;
+ secp256k1_fe_set_int(&x, 1);
+ secp256k1_fe_negate(&x, &x, 1);
+
+ for (i = 1; i <= 512; ++i) {
+ secp256k1_fe_mul_int(&x, 2);
+ secp256k1_fe_normalize(&x);
+ secp256k1_fe_sqr(&s, &x);
+ }
+ }
+}
+
+void test_sqrt(const secp256k1_fe *a, const secp256k1_fe *k) {
+ secp256k1_fe r1, r2;
+ int v = secp256k1_fe_sqrt_var(&r1, a);
+ CHECK((v == 0) == (k == NULL));
+
+ if (k != NULL) {
+ /* Check that the returned root is +/- the given known answer */
+ secp256k1_fe_negate(&r2, &r1, 1);
+ secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
+ secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
+ CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
+ }
+}
+
+void run_sqrt(void) {
+ secp256k1_fe ns, x, s, t;
+ int i;
+
+ /* Check sqrt(0) is 0 */
+ secp256k1_fe_set_int(&x, 0);
+ secp256k1_fe_sqr(&s, &x);
+ test_sqrt(&s, &x);
+
+ /* Check sqrt of small squares (and their negatives) */
+ for (i = 1; i <= 100; i++) {
+ secp256k1_fe_set_int(&x, i);
+ secp256k1_fe_sqr(&s, &x);
+ test_sqrt(&s, &x);
+ secp256k1_fe_negate(&t, &s, 1);
+ test_sqrt(&t, NULL);
+ }
+
+ /* Consistency checks for large random values */
+ for (i = 0; i < 10; i++) {
+ int j;
+ random_fe_non_square(&ns);
+ for (j = 0; j < count; j++) {
+ random_fe(&x);
+ secp256k1_fe_sqr(&s, &x);
+ test_sqrt(&s, &x);
+ secp256k1_fe_negate(&t, &s, 1);
+ test_sqrt(&t, NULL);
+ secp256k1_fe_mul(&t, &s, &ns);
+ test_sqrt(&t, NULL);
+ }
+ }
+}
+
+/***** GROUP TESTS *****/
+
+void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
+ CHECK(a->infinity == b->infinity);
+ if (a->infinity) {
+ return;
+ }
+ CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
+ CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
+}
+
+/* This compares jacobian points including their Z, not just their geometric meaning. */
+int gej_xyz_equals_gej(const secp256k1_gej *a, const secp256k1_gej *b) {
+ secp256k1_gej a2;
+ secp256k1_gej b2;
+ int ret = 1;
+ ret &= a->infinity == b->infinity;
+ if (ret && !a->infinity) {
+ a2 = *a;
+ b2 = *b;
+ secp256k1_fe_normalize(&a2.x);
+ secp256k1_fe_normalize(&a2.y);
+ secp256k1_fe_normalize(&a2.z);
+ secp256k1_fe_normalize(&b2.x);
+ secp256k1_fe_normalize(&b2.y);
+ secp256k1_fe_normalize(&b2.z);
+ ret &= secp256k1_fe_cmp_var(&a2.x, &b2.x) == 0;
+ ret &= secp256k1_fe_cmp_var(&a2.y, &b2.y) == 0;
+ ret &= secp256k1_fe_cmp_var(&a2.z, &b2.z) == 0;
+ }
+ return ret;
+}
+
+void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
+ secp256k1_fe z2s;
+ secp256k1_fe u1, u2, s1, s2;
+ CHECK(a->infinity == b->infinity);
+ if (a->infinity) {
+ return;
+ }
+ /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
+ secp256k1_fe_sqr(&z2s, &b->z);
+ secp256k1_fe_mul(&u1, &a->x, &z2s);
+ u2 = b->x; secp256k1_fe_normalize_weak(&u2);
+ secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
+ s2 = b->y; secp256k1_fe_normalize_weak(&s2);
+ CHECK(secp256k1_fe_equal_var(&u1, &u2));
+ CHECK(secp256k1_fe_equal_var(&s1, &s2));
+}
+
+void test_ge(void) {
+ int i, i1;
+#ifdef USE_ENDOMORPHISM
+ int runs = 6;
+#else
+ int runs = 4;
+#endif
+ /* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4).
+ * The second in each pair of identical points uses a random Z coordinate in the Jacobian form.
+ * All magnitudes are randomized.
+ * All 17*17 combinations of points are added to eachother, using all applicable methods.
+ *
+ * When the endomorphism code is compiled in, p5 = lambda*p1 and p6 = lambda^2*p1 are added as well.
+ */
+ secp256k1_ge *ge = (secp256k1_ge *)malloc(sizeof(secp256k1_ge) * (1 + 4 * runs));
+ secp256k1_gej *gej = (secp256k1_gej *)malloc(sizeof(secp256k1_gej) * (1 + 4 * runs));
+ secp256k1_fe *zinv = (secp256k1_fe *)malloc(sizeof(secp256k1_fe) * (1 + 4 * runs));
+ secp256k1_fe zf;
+ secp256k1_fe zfi2, zfi3;
+
+ secp256k1_gej_set_infinity(&gej[0]);
+ secp256k1_ge_clear(&ge[0]);
+ secp256k1_ge_set_gej_var(&ge[0], &gej[0]);
+ for (i = 0; i < runs; i++) {
+ int j;
+ secp256k1_ge g;
+ random_group_element_test(&g);
+#ifdef USE_ENDOMORPHISM
+ if (i >= runs - 2) {
+ secp256k1_ge_mul_lambda(&g, &ge[1]);
+ }
+ if (i >= runs - 1) {
+ secp256k1_ge_mul_lambda(&g, &g);
+ }
+#endif
+ ge[1 + 4 * i] = g;
+ ge[2 + 4 * i] = g;
+ secp256k1_ge_neg(&ge[3 + 4 * i], &g);
+ secp256k1_ge_neg(&ge[4 + 4 * i], &g);
+ secp256k1_gej_set_ge(&gej[1 + 4 * i], &ge[1 + 4 * i]);
+ random_group_element_jacobian_test(&gej[2 + 4 * i], &ge[2 + 4 * i]);
+ secp256k1_gej_set_ge(&gej[3 + 4 * i], &ge[3 + 4 * i]);
+ random_group_element_jacobian_test(&gej[4 + 4 * i], &ge[4 + 4 * i]);
+ for (j = 0; j < 4; j++) {
+ random_field_element_magnitude(&ge[1 + j + 4 * i].x);
+ random_field_element_magnitude(&ge[1 + j + 4 * i].y);
+ random_field_element_magnitude(&gej[1 + j + 4 * i].x);
+ random_field_element_magnitude(&gej[1 + j + 4 * i].y);
+ random_field_element_magnitude(&gej[1 + j + 4 * i].z);
+ }
+ }
+
+ /* Compute z inverses. */
+ {
+ secp256k1_fe *zs = malloc(sizeof(secp256k1_fe) * (1 + 4 * runs));
+ for (i = 0; i < 4 * runs + 1; i++) {
+ if (i == 0) {
+ /* The point at infinity does not have a meaningful z inverse. Any should do. */
+ do {
+ random_field_element_test(&zs[i]);
+ } while(secp256k1_fe_is_zero(&zs[i]));
+ } else {
+ zs[i] = gej[i].z;
+ }
+ }
+ secp256k1_fe_inv_all_var(4 * runs + 1, zinv, zs);
+ free(zs);
+ }
+
+ /* Generate random zf, and zfi2 = 1/zf^2, zfi3 = 1/zf^3 */
+ do {
+ random_field_element_test(&zf);
+ } while(secp256k1_fe_is_zero(&zf));
+ random_field_element_magnitude(&zf);
+ secp256k1_fe_inv_var(&zfi3, &zf);
+ secp256k1_fe_sqr(&zfi2, &zfi3);
+ secp256k1_fe_mul(&zfi3, &zfi3, &zfi2);
+
+ for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
+ int i2;
+ for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
+ /* Compute reference result using gej + gej (var). */
+ secp256k1_gej refj, resj;
+ secp256k1_ge ref;
+ secp256k1_fe zr;
+ secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr);
+ /* Check Z ratio. */
+ if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&refj)) {
+ secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z);
+ CHECK(secp256k1_fe_equal_var(&zrz, &refj.z));
+ }
+ secp256k1_ge_set_gej_var(&ref, &refj);
+
+ /* Test gej + ge with Z ratio result (var). */
+ secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr);
+ ge_equals_gej(&ref, &resj);
+ if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&resj)) {
+ secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z);
+ CHECK(secp256k1_fe_equal_var(&zrz, &resj.z));
+ }
+
+ /* Test gej + ge (var, with additional Z factor). */
+ {
+ secp256k1_ge ge2_zfi = ge[i2]; /* the second term with x and y rescaled for z = 1/zf */
+ secp256k1_fe_mul(&ge2_zfi.x, &ge2_zfi.x, &zfi2);
+ secp256k1_fe_mul(&ge2_zfi.y, &ge2_zfi.y, &zfi3);
+ random_field_element_magnitude(&ge2_zfi.x);
+ random_field_element_magnitude(&ge2_zfi.y);
+ secp256k1_gej_add_zinv_var(&resj, &gej[i1], &ge2_zfi, &zf);
+ ge_equals_gej(&ref, &resj);
+ }
+
+ /* Test gej + ge (const). */
+ if (i2 != 0) {
+ /* secp256k1_gej_add_ge does not support its second argument being infinity. */
+ secp256k1_gej_add_ge(&resj, &gej[i1], &ge[i2]);
+ ge_equals_gej(&ref, &resj);
+ }
+
+ /* Test doubling (var). */
+ if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 == ((i2 + 3)%4)/2)) {
+ secp256k1_fe zr2;
+ /* Normal doubling with Z ratio result. */
+ secp256k1_gej_double_var(&resj, &gej[i1], &zr2);
+ ge_equals_gej(&ref, &resj);
+ /* Check Z ratio. */
+ secp256k1_fe_mul(&zr2, &zr2, &gej[i1].z);
+ CHECK(secp256k1_fe_equal_var(&zr2, &resj.z));
+ /* Normal doubling. */
+ secp256k1_gej_double_var(&resj, &gej[i2], NULL);
+ ge_equals_gej(&ref, &resj);
+ }
+
+ /* Test adding opposites. */
+ if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 != ((i2 + 3)%4)/2)) {
+ CHECK(secp256k1_ge_is_infinity(&ref));
+ }
+
+ /* Test adding infinity. */
+ if (i1 == 0) {
+ CHECK(secp256k1_ge_is_infinity(&ge[i1]));
+ CHECK(secp256k1_gej_is_infinity(&gej[i1]));
+ ge_equals_gej(&ref, &gej[i2]);
+ }
+ if (i2 == 0) {
+ CHECK(secp256k1_ge_is_infinity(&ge[i2]));
+ CHECK(secp256k1_gej_is_infinity(&gej[i2]));
+ ge_equals_gej(&ref, &gej[i1]);
+ }
+ }
+ }
+
+ /* Test adding all points together in random order equals infinity. */
+ {
+ secp256k1_gej sum = SECP256K1_GEJ_CONST_INFINITY;
+ secp256k1_gej *gej_shuffled = (secp256k1_gej *)malloc((4 * runs + 1) * sizeof(secp256k1_gej));
+ for (i = 0; i < 4 * runs + 1; i++) {
+ gej_shuffled[i] = gej[i];
+ }
+ for (i = 0; i < 4 * runs + 1; i++) {
+ int swap = i + secp256k1_rand32() % (4 * runs + 1 - i);
+ if (swap != i) {
+ secp256k1_gej t = gej_shuffled[i];
+ gej_shuffled[i] = gej_shuffled[swap];
+ gej_shuffled[swap] = t;
+ }
+ }
+ for (i = 0; i < 4 * runs + 1; i++) {
+ secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i], NULL);
+ }
+ CHECK(secp256k1_gej_is_infinity(&sum));
+ free(gej_shuffled);
+ }
+
+ /* Test batch gej -> ge conversion with and without known z ratios. */
+ {
+ secp256k1_fe *zr = (secp256k1_fe *)malloc((4 * runs + 1) * sizeof(secp256k1_fe));
+ secp256k1_ge *ge_set_table = (secp256k1_ge *)malloc((4 * runs + 1) * sizeof(secp256k1_ge));
+ secp256k1_ge *ge_set_all = (secp256k1_ge *)malloc((4 * runs + 1) * sizeof(secp256k1_ge));
+ for (i = 0; i < 4 * runs + 1; i++) {
+ /* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */
+ if (i < 4 * runs) {
+ secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z);
+ }
+ }
+ secp256k1_ge_set_table_gej_var(4 * runs + 1, ge_set_table, gej, zr);
+ secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej, &ctx->error_callback);
+ for (i = 0; i < 4 * runs + 1; i++) {
+ secp256k1_fe s;
+ random_fe_non_zero(&s);
+ secp256k1_gej_rescale(&gej[i], &s);
+ ge_equals_gej(&ge_set_table[i], &gej[i]);
+ ge_equals_gej(&ge_set_all[i], &gej[i]);
+ }
+ free(ge_set_table);
+ free(ge_set_all);
+ free(zr);
+ }
+
+ free(ge);
+ free(gej);
+ free(zinv);
+}
+
+void test_add_neg_y_diff_x(void) {
+ /* The point of this test is to check that we can add two points
+ * whose y-coordinates are negatives of each other but whose x
+ * coordinates differ. If the x-coordinates were the same, these
+ * points would be negatives of each other and their sum is
+ * infinity. This is cool because it "covers up" any degeneracy
+ * in the addition algorithm that would cause the xy coordinates
+ * of the sum to be wrong (since infinity has no xy coordinates).
+ * HOWEVER, if the x-coordinates are different, infinity is the
+ * wrong answer, and such degeneracies are exposed. This is the
+ * root of https://github.com/bitcoin/secp256k1/issues/257 which
+ * this test is a regression test for.
+ *
+ * These points were generated in sage as
+ * # secp256k1 params
+ * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
+ * C = EllipticCurve ([F (0), F (7)])
+ * G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
+ * N = FiniteField(G.order())
+ *
+ * # endomorphism values (lambda is 1^{1/3} in N, beta is 1^{1/3} in F)
+ * x = polygen(N)
+ * lam = (1 - x^3).roots()[1][0]
+ *
+ * # random "bad pair"
+ * P = C.random_element()
+ * Q = -int(lam) * P
+ * print " P: %x %x" % P.xy()
+ * print " Q: %x %x" % Q.xy()
+ * print "P + Q: %x %x" % (P + Q).xy()
+ */
+ secp256k1_gej aj = SECP256K1_GEJ_CONST(
+ 0x8d24cd95, 0x0a355af1, 0x3c543505, 0x44238d30,
+ 0x0643d79f, 0x05a59614, 0x2f8ec030, 0xd58977cb,
+ 0x001e337a, 0x38093dcd, 0x6c0f386d, 0x0b1293a8,
+ 0x4d72c879, 0xd7681924, 0x44e6d2f3, 0x9190117d
+ );
+ secp256k1_gej bj = SECP256K1_GEJ_CONST(
+ 0xc7b74206, 0x1f788cd9, 0xabd0937d, 0x164a0d86,
+ 0x95f6ff75, 0xf19a4ce9, 0xd013bd7b, 0xbf92d2a7,
+ 0xffe1cc85, 0xc7f6c232, 0x93f0c792, 0xf4ed6c57,
+ 0xb28d3786, 0x2897e6db, 0xbb192d0b, 0x6e6feab2
+ );
+ secp256k1_gej sumj = SECP256K1_GEJ_CONST(
+ 0x671a63c0, 0x3efdad4c, 0x389a7798, 0x24356027,
+ 0xb3d69010, 0x278625c3, 0x5c86d390, 0x184a8f7a,
+ 0x5f6409c2, 0x2ce01f2b, 0x511fd375, 0x25071d08,
+ 0xda651801, 0x70e95caf, 0x8f0d893c, 0xbed8fbbe
+ );
+ secp256k1_ge b;
+ secp256k1_gej resj;
+ secp256k1_ge res;
+ secp256k1_ge_set_gej(&b, &bj);
+
+ secp256k1_gej_add_var(&resj, &aj, &bj, NULL);
+ secp256k1_ge_set_gej(&res, &resj);
+ ge_equals_gej(&res, &sumj);
+
+ secp256k1_gej_add_ge(&resj, &aj, &b);
+ secp256k1_ge_set_gej(&res, &resj);
+ ge_equals_gej(&res, &sumj);
+
+ secp256k1_gej_add_ge_var(&resj, &aj, &b, NULL);
+ secp256k1_ge_set_gej(&res, &resj);
+ ge_equals_gej(&res, &sumj);
+}
+
+void run_ge(void) {
+ int i;
+ for (i = 0; i < count * 32; i++) {
+ test_ge();
+ }
+ test_add_neg_y_diff_x();
+}
+
+void test_ec_combine(void) {
+ secp256k1_scalar sum = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ secp256k1_pubkey data[6];
+ const secp256k1_pubkey* d[6];
+ secp256k1_pubkey sd;
+ secp256k1_pubkey sd2;
+ secp256k1_gej Qj;
+ secp256k1_ge Q;
+ int i;
+ for (i = 1; i <= 6; i++) {
+ secp256k1_scalar s;
+ random_scalar_order_test(&s);
+ secp256k1_scalar_add(&sum, &sum, &s);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &s);
+ secp256k1_ge_set_gej(&Q, &Qj);
+ secp256k1_pubkey_save(&data[i - 1], &Q);
+ d[i - 1] = &data[i - 1];
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sum);
+ secp256k1_ge_set_gej(&Q, &Qj);
+ secp256k1_pubkey_save(&sd, &Q);
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &sd2, d, i) == 1);
+ CHECK(memcmp(&sd, &sd2, sizeof(sd)) == 0);
+ }
+}
+
+void run_ec_combine(void) {
+ int i;
+ for (i = 0; i < count * 8; i++) {
+ test_ec_combine();
+ }
+}
+
+/***** ECMULT TESTS *****/
+
+void run_ecmult_chain(void) {
+ /* random starting point A (on the curve) */
+ secp256k1_gej a = SECP256K1_GEJ_CONST(
+ 0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3,
+ 0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004,
+ 0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f,
+ 0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f
+ );
+ /* two random initial factors xn and gn */
+ secp256k1_scalar xn = SECP256K1_SCALAR_CONST(
+ 0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c,
+ 0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407
+ );
+ secp256k1_scalar gn = SECP256K1_SCALAR_CONST(
+ 0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9,
+ 0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de
+ );
+ /* two small multipliers to be applied to xn and gn in every iteration: */
+ static const secp256k1_scalar xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337);
+ static const secp256k1_scalar gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113);
+ /* accumulators with the resulting coefficients to A and G */
+ secp256k1_scalar ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_scalar ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ /* actual points */
+ secp256k1_gej x;
+ secp256k1_gej x2;
+ int i;
+
+ /* the point being computed */
+ x = a;
+ for (i = 0; i < 200*count; i++) {
+ /* in each iteration, compute X = xn*X + gn*G; */
+ secp256k1_ecmult(&ctx->ecmult_ctx, &x, &x, &xn, &gn);
+ /* also compute ae and ge: the actual accumulated factors for A and G */
+ /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */
+ secp256k1_scalar_mul(&ae, &ae, &xn);
+ secp256k1_scalar_mul(&ge, &ge, &xn);
+ secp256k1_scalar_add(&ge, &ge, &gn);
+ /* modify xn and gn */
+ secp256k1_scalar_mul(&xn, &xn, &xf);
+ secp256k1_scalar_mul(&gn, &gn, &gf);
+
+ /* verify */
+ if (i == 19999) {
+ /* expected result after 19999 iterations */
+ secp256k1_gej rp = SECP256K1_GEJ_CONST(
+ 0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE,
+ 0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830,
+ 0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D,
+ 0x3B4F566A, 0xE6580454, 0x07ED6015, 0xEE1B2A88
+ );
+
+ secp256k1_gej_neg(&rp, &rp);
+ secp256k1_gej_add_var(&rp, &rp, &x, NULL);
+ CHECK(secp256k1_gej_is_infinity(&rp));
+ }
+ }
+ /* redo the computation, but directly with the resulting ae and ge coefficients: */
+ secp256k1_ecmult(&ctx->ecmult_ctx, &x2, &a, &ae, &ge);
+ secp256k1_gej_neg(&x2, &x2);
+ secp256k1_gej_add_var(&x2, &x2, &x, NULL);
+ CHECK(secp256k1_gej_is_infinity(&x2));
+}
+
+void test_point_times_order(const secp256k1_gej *point) {
+ /* X * (point + G) + (order-X) * (pointer + G) = 0 */
+ secp256k1_scalar x;
+ secp256k1_scalar nx;
+ secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_gej res1, res2;
+ secp256k1_ge res3;
+ unsigned char pub[65];
+ size_t psize = 65;
+ random_scalar_order_test(&x);
+ secp256k1_scalar_negate(&nx, &x);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &x, &x); /* calc res1 = x * point + x * G; */
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
+ secp256k1_gej_add_var(&res1, &res1, &res2, NULL);
+ CHECK(secp256k1_gej_is_infinity(&res1));
+ CHECK(secp256k1_gej_is_valid_var(&res1) == 0);
+ secp256k1_ge_set_gej(&res3, &res1);
+ CHECK(secp256k1_ge_is_infinity(&res3));
+ CHECK(secp256k1_ge_is_valid_var(&res3) == 0);
+ CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0);
+ psize = 65;
+ CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0);
+ /* check zero/one edge cases */
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &zero);
+ secp256k1_ge_set_gej(&res3, &res1);
+ CHECK(secp256k1_ge_is_infinity(&res3));
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &one, &zero);
+ secp256k1_ge_set_gej(&res3, &res1);
+ ge_equals_gej(&res3, point);
+ secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &one);
+ secp256k1_ge_set_gej(&res3, &res1);
+ ge_equals_ge(&res3, &secp256k1_ge_const_g);
+}
+
+void run_point_times_order(void) {
+ int i;
+ secp256k1_fe x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2);
+ static const secp256k1_fe xr = SECP256K1_FE_CONST(
+ 0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C,
+ 0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45
+ );
+ for (i = 0; i < 500; i++) {
+ secp256k1_ge p;
+ if (secp256k1_ge_set_xo_var(&p, &x, 1)) {
+ secp256k1_gej j;
+ CHECK(secp256k1_ge_is_valid_var(&p));
+ secp256k1_gej_set_ge(&j, &p);
+ CHECK(secp256k1_gej_is_valid_var(&j));
+ test_point_times_order(&j);
+ }
+ secp256k1_fe_sqr(&x, &x);
+ }
+ secp256k1_fe_normalize_var(&x);
+ CHECK(secp256k1_fe_equal_var(&x, &xr));
+}
+
+void ecmult_const_random_mult(void) {
+ /* random starting point A (on the curve) */
+ secp256k1_ge a = SECP256K1_GE_CONST(
+ 0x6d986544, 0x57ff52b8, 0xcf1b8126, 0x5b802a5b,
+ 0xa97f9263, 0xb1e88044, 0x93351325, 0x91bc450a,
+ 0x535c59f7, 0x325e5d2b, 0xc391fbe8, 0x3c12787c,
+ 0x337e4a98, 0xe82a9011, 0x0123ba37, 0xdd769c7d
+ );
+ /* random initial factor xn */
+ secp256k1_scalar xn = SECP256K1_SCALAR_CONST(
+ 0x649d4f77, 0xc4242df7, 0x7f2079c9, 0x14530327,
+ 0xa31b876a, 0xd2d8ce2a, 0x2236d5c6, 0xd7b2029b
+ );
+ /* expected xn * A (from sage) */
+ secp256k1_ge expected_b = SECP256K1_GE_CONST(
+ 0x23773684, 0x4d209dc7, 0x098a786f, 0x20d06fcd,
+ 0x070a38bf, 0xc11ac651, 0x03004319, 0x1e2a8786,
+ 0xed8c3b8e, 0xc06dd57b, 0xd06ea66e, 0x45492b0f,
+ 0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956
+ );
+ secp256k1_gej b;
+ secp256k1_ecmult_const(&b, &a, &xn);
+
+ CHECK(secp256k1_ge_is_valid_var(&a));
+ ge_equals_gej(&expected_b, &b);
+}
+
+void ecmult_const_commutativity(void) {
+ secp256k1_scalar a;
+ secp256k1_scalar b;
+ secp256k1_gej res1;
+ secp256k1_gej res2;
+ secp256k1_ge mid1;
+ secp256k1_ge mid2;
+ random_scalar_order_test(&a);
+ random_scalar_order_test(&b);
+
+ secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a);
+ secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b);
+ secp256k1_ge_set_gej(&mid1, &res1);
+ secp256k1_ge_set_gej(&mid2, &res2);
+ secp256k1_ecmult_const(&res1, &mid1, &b);
+ secp256k1_ecmult_const(&res2, &mid2, &a);
+ secp256k1_ge_set_gej(&mid1, &res1);
+ secp256k1_ge_set_gej(&mid2, &res2);
+ ge_equals_ge(&mid1, &mid2);
+}
+
+void ecmult_const_mult_zero_one(void) {
+ secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ secp256k1_scalar negone;
+ secp256k1_gej res1;
+ secp256k1_ge res2;
+ secp256k1_ge point;
+ secp256k1_scalar_negate(&negone, &one);
+
+ random_group_element_test(&point);
+ secp256k1_ecmult_const(&res1, &point, &zero);
+ secp256k1_ge_set_gej(&res2, &res1);
+ CHECK(secp256k1_ge_is_infinity(&res2));
+ secp256k1_ecmult_const(&res1, &point, &one);
+ secp256k1_ge_set_gej(&res2, &res1);
+ ge_equals_ge(&res2, &point);
+ secp256k1_ecmult_const(&res1, &point, &negone);
+ secp256k1_gej_neg(&res1, &res1);
+ secp256k1_ge_set_gej(&res2, &res1);
+ ge_equals_ge(&res2, &point);
+}
+
+void ecmult_const_chain_multiply(void) {
+ /* Check known result (randomly generated test problem from sage) */
+ const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST(
+ 0x4968d524, 0x2abf9b7a, 0x466abbcf, 0x34b11b6d,
+ 0xcd83d307, 0x827bed62, 0x05fad0ce, 0x18fae63b
+ );
+ const secp256k1_gej expected_point = SECP256K1_GEJ_CONST(
+ 0x5494c15d, 0x32099706, 0xc2395f94, 0x348745fd,
+ 0x757ce30e, 0x4e8c90fb, 0xa2bad184, 0xf883c69f,
+ 0x5d195d20, 0xe191bf7f, 0x1be3e55f, 0x56a80196,
+ 0x6071ad01, 0xf1462f66, 0xc997fa94, 0xdb858435
+ );
+ secp256k1_gej point;
+ secp256k1_ge res;
+ int i;
+
+ secp256k1_gej_set_ge(&point, &secp256k1_ge_const_g);
+ for (i = 0; i < 100; ++i) {
+ secp256k1_ge tmp;
+ secp256k1_ge_set_gej(&tmp, &point);
+ secp256k1_ecmult_const(&point, &tmp, &scalar);
+ }
+ secp256k1_ge_set_gej(&res, &point);
+ ge_equals_gej(&res, &expected_point);
+}
+
+void run_ecmult_const_tests(void) {
+ ecmult_const_mult_zero_one();
+ ecmult_const_random_mult();
+ ecmult_const_commutativity();
+ ecmult_const_chain_multiply();
+}
+
+void test_wnaf(const secp256k1_scalar *number, int w) {
+ secp256k1_scalar x, two, t;
+ int wnaf[256];
+ int zeroes = -1;
+ int i;
+ int bits;
+ secp256k1_scalar_set_int(&x, 0);
+ secp256k1_scalar_set_int(&two, 2);
+ bits = secp256k1_ecmult_wnaf(wnaf, 256, number, w);
+ CHECK(bits <= 256);
+ for (i = bits-1; i >= 0; i--) {
+ int v = wnaf[i];
+ secp256k1_scalar_mul(&x, &x, &two);
+ if (v) {
+ CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */
+ zeroes=0;
+ CHECK((v & 1) == 1); /* check non-zero elements are odd */
+ CHECK(v <= (1 << (w-1)) - 1); /* check range below */
+ CHECK(v >= -(1 << (w-1)) - 1); /* check range above */
+ } else {
+ CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */
+ zeroes++;
+ }
+ if (v >= 0) {
+ secp256k1_scalar_set_int(&t, v);
+ } else {
+ secp256k1_scalar_set_int(&t, -v);
+ secp256k1_scalar_negate(&t, &t);
+ }
+ secp256k1_scalar_add(&x, &x, &t);
+ }
+ CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */
+}
+
+void test_constant_wnaf_negate(const secp256k1_scalar *number) {
+ secp256k1_scalar neg1 = *number;
+ secp256k1_scalar neg2 = *number;
+ int sign1 = 1;
+ int sign2 = 1;
+
+ if (!secp256k1_scalar_get_bits(&neg1, 0, 1)) {
+ secp256k1_scalar_negate(&neg1, &neg1);
+ sign1 = -1;
+ }
+ sign2 = secp256k1_scalar_cond_negate(&neg2, secp256k1_scalar_is_even(&neg2));
+ CHECK(sign1 == sign2);
+ CHECK(secp256k1_scalar_eq(&neg1, &neg2));
+}
+
+void test_constant_wnaf(const secp256k1_scalar *number, int w) {
+ secp256k1_scalar x, shift;
+ int wnaf[256] = {0};
+ int i;
+#ifdef USE_ENDOMORPHISM
+ int skew;
+#endif
+ secp256k1_scalar num = *number;
+
+ secp256k1_scalar_set_int(&x, 0);
+ secp256k1_scalar_set_int(&shift, 1 << w);
+ /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */
+#ifdef USE_ENDOMORPHISM
+ for (i = 0; i < 16; ++i) {
+ secp256k1_scalar_shr_int(&num, 8);
+ }
+ skew = secp256k1_wnaf_const(wnaf, num, w);
+#else
+ secp256k1_wnaf_const(wnaf, num, w);
+#endif
+
+ for (i = WNAF_SIZE(w); i >= 0; --i) {
+ secp256k1_scalar t;
+ int v = wnaf[i];
+ CHECK(v != 0); /* check nonzero */
+ CHECK(v & 1); /* check parity */
+ CHECK(v > -(1 << w)); /* check range above */
+ CHECK(v < (1 << w)); /* check range below */
+
+ secp256k1_scalar_mul(&x, &x, &shift);
+ if (v >= 0) {
+ secp256k1_scalar_set_int(&t, v);
+ } else {
+ secp256k1_scalar_set_int(&t, -v);
+ secp256k1_scalar_negate(&t, &t);
+ }
+ secp256k1_scalar_add(&x, &x, &t);
+ }
+#ifdef USE_ENDOMORPHISM
+ /* Skew num because when encoding 128-bit numbers as odd we use an offset */
+ secp256k1_scalar_cadd_bit(&num, skew == 2, 1);
+#endif
+ CHECK(secp256k1_scalar_eq(&x, &num));
+}
+
+void run_wnaf(void) {
+ int i;
+ secp256k1_scalar n = {{0}};
+
+ /* Sanity check: 1 and 2 are the smallest odd and even numbers and should
+ * have easier-to-diagnose failure modes */
+ n.d[0] = 1;
+ test_constant_wnaf(&n, 4);
+ n.d[0] = 2;
+ test_constant_wnaf(&n, 4);
+ /* Random tests */
+ for (i = 0; i < count; i++) {
+ random_scalar_order(&n);
+ test_wnaf(&n, 4+(i%10));
+ test_constant_wnaf_negate(&n);
+ test_constant_wnaf(&n, 4 + (i % 10));
+ }
+}
+
+void test_ecmult_constants(void) {
+ /* Test ecmult_gen() for [0..36) and [order-36..0). */
+ secp256k1_scalar x;
+ secp256k1_gej r;
+ secp256k1_ge ng;
+ int i;
+ int j;
+ secp256k1_ge_neg(&ng, &secp256k1_ge_const_g);
+ for (i = 0; i < 36; i++ ) {
+ secp256k1_scalar_set_int(&x, i);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x);
+ for (j = 0; j < i; j++) {
+ if (j == i - 1) {
+ ge_equals_gej(&secp256k1_ge_const_g, &r);
+ }
+ secp256k1_gej_add_ge(&r, &r, &ng);
+ }
+ CHECK(secp256k1_gej_is_infinity(&r));
+ }
+ for (i = 1; i <= 36; i++ ) {
+ secp256k1_scalar_set_int(&x, i);
+ secp256k1_scalar_negate(&x, &x);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x);
+ for (j = 0; j < i; j++) {
+ if (j == i - 1) {
+ ge_equals_gej(&ng, &r);
+ }
+ secp256k1_gej_add_ge(&r, &r, &secp256k1_ge_const_g);
+ }
+ CHECK(secp256k1_gej_is_infinity(&r));
+ }
+}
+
+void run_ecmult_constants(void) {
+ test_ecmult_constants();
+}
+
+void test_ecmult_gen_blind(void) {
+ /* Test ecmult_gen() blinding and confirm that the blinding changes, the affline points match, and the z's don't match. */
+ secp256k1_scalar key;
+ secp256k1_scalar b;
+ unsigned char seed32[32];
+ secp256k1_gej pgej;
+ secp256k1_gej pgej2;
+ secp256k1_gej i;
+ secp256k1_ge pge;
+ random_scalar_order_test(&key);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej, &key);
+ secp256k1_rand256(seed32);
+ b = ctx->ecmult_gen_ctx.blind;
+ i = ctx->ecmult_gen_ctx.initial;
+ secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
+ CHECK(!secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind));
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej2, &key);
+ CHECK(!gej_xyz_equals_gej(&pgej, &pgej2));
+ CHECK(!gej_xyz_equals_gej(&i, &ctx->ecmult_gen_ctx.initial));
+ secp256k1_ge_set_gej(&pge, &pgej);
+ ge_equals_gej(&pge, &pgej2);
+}
+
+void test_ecmult_gen_blind_reset(void) {
+ /* Test ecmult_gen() blinding reset and confirm that the blinding is consistent. */
+ secp256k1_scalar b;
+ secp256k1_gej initial;
+ secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0);
+ b = ctx->ecmult_gen_ctx.blind;
+ initial = ctx->ecmult_gen_ctx.initial;
+ secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0);
+ CHECK(secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind));
+ CHECK(gej_xyz_equals_gej(&initial, &ctx->ecmult_gen_ctx.initial));
+}
+
+void run_ecmult_gen_blind(void) {
+ int i;
+ test_ecmult_gen_blind_reset();
+ for (i = 0; i < 10; i++) {
+ test_ecmult_gen_blind();
+ }
+}
+
+#ifdef USE_ENDOMORPHISM
+/***** ENDOMORPHISH TESTS *****/
+void test_scalar_split(void) {
+ secp256k1_scalar full;
+ secp256k1_scalar s1, slam;
+ const unsigned char zero[32] = {0};
+ unsigned char tmp[32];
+
+ random_scalar_order_test(&full);
+ secp256k1_scalar_split_lambda(&s1, &slam, &full);
+
+ /* check that both are <= 128 bits in size */
+ if (secp256k1_scalar_is_high(&s1)) {
+ secp256k1_scalar_negate(&s1, &s1);
+ }
+ if (secp256k1_scalar_is_high(&slam)) {
+ secp256k1_scalar_negate(&slam, &slam);
+ }
+
+ secp256k1_scalar_get_b32(tmp, &s1);
+ CHECK(memcmp(zero, tmp, 16) == 0);
+ secp256k1_scalar_get_b32(tmp, &slam);
+ CHECK(memcmp(zero, tmp, 16) == 0);
+}
+
+void run_endomorphism_tests(void) {
+ test_scalar_split();
+}
+#endif
+
+void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) {
+ secp256k1_scalar nonce;
+ do {
+ random_scalar_order_test(&nonce);
+ } while(!secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, sigr, sigs, key, msg, &nonce, recid));
+}
+
+void test_ecdsa_sign_verify(void) {
+ secp256k1_gej pubj;
+ secp256k1_ge pub;
+ secp256k1_scalar one;
+ secp256k1_scalar msg, key;
+ secp256k1_scalar sigr, sigs;
+ int recid;
+ int getrec;
+ random_scalar_order_test(&msg);
+ random_scalar_order_test(&key);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubj, &key);
+ secp256k1_ge_set_gej(&pub, &pubj);
+ getrec = secp256k1_rand32()&1;
+ random_sign(&sigr, &sigs, &key, &msg, getrec?&recid:NULL);
+ if (getrec) {
+ CHECK(recid >= 0 && recid < 4);
+ }
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg));
+ secp256k1_scalar_set_int(&one, 1);
+ secp256k1_scalar_add(&msg, &msg, &one);
+ CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg));
+}
+
+void run_ecdsa_sign_verify(void) {
+ int i;
+ for (i = 0; i < 10*count; i++) {
+ test_ecdsa_sign_verify();
+ }
+}
+
+/** Dummy nonce generation function that just uses a precomputed nonce, and fails if it is not accepted. Use only for testing. */
+static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
+ (void)msg32;
+ (void)key32;
+ (void)algo16;
+ memcpy(nonce32, data, 32);
+ return (counter == 0);
+}
+
+static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
+ /* Dummy nonce generator that has a fatal error on the first counter value. */
+ if (counter == 0) {
+ return 0;
+ }
+ return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 1);
+}
+
+static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
+ /* Dummy nonce generator that produces unacceptable nonces for the first several counter values. */
+ if (counter < 3) {
+ memset(nonce32, counter==0 ? 0 : 255, 32);
+ if (counter == 2) {
+ nonce32[31]--;
+ }
+ return 1;
+ }
+ if (counter < 5) {
+ static const unsigned char order[] = {
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
+ 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
+ 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
+ };
+ memcpy(nonce32, order, 32);
+ if (counter == 4) {
+ nonce32[31]++;
+ }
+ return 1;
+ }
+ /* Retry rate of 6979 is negligible esp. as we only call this in determinstic tests. */
+ /* If someone does fine a case where it retries for secp256k1, we'd like to know. */
+ if (counter > 5) {
+ return 0;
+ }
+ return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 5);
+}
+
+int is_empty_signature(const secp256k1_ecdsa_signature *sig) {
+ static const unsigned char res[sizeof(secp256k1_ecdsa_signature)] = {0};
+ return memcmp(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0;
+}
+
+void test_ecdsa_end_to_end(void) {
+ unsigned char extra[32] = {0x00};
+ unsigned char privkey[32];
+ unsigned char message[32];
+ unsigned char privkey2[32];
+ secp256k1_ecdsa_signature signature[5];
+ unsigned char sig[74];
+ size_t siglen = 74;
+ unsigned char pubkeyc[65];
+ size_t pubkeyclen = 65;
+ secp256k1_pubkey pubkey;
+ unsigned char seckey[300];
+ size_t seckeylen = 300;
+
+ /* Generate a random key and message. */
+ {
+ secp256k1_scalar msg, key;
+ random_scalar_order_test(&msg);
+ random_scalar_order_test(&key);
+ secp256k1_scalar_get_b32(privkey, &key);
+ secp256k1_scalar_get_b32(message, &msg);
+ }
+
+ /* Construct and verify corresponding public key. */
+ CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
+
+ /* Verify exporting and importing public key. */
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_rand32() % 2) == 1);
+ memset(&pubkey, 0, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1);
+
+ /* Verify private key import and export. */
+ CHECK(secp256k1_ec_privkey_export(ctx, seckey, &seckeylen, privkey, (secp256k1_rand32() % 2) == 1) ? SECP256K1_EC_COMPRESSED : 0);
+ CHECK(secp256k1_ec_privkey_import(ctx, privkey2, seckey, seckeylen) == 1);
+ CHECK(memcmp(privkey, privkey2, 32) == 0);
+
+ /* Optionally tweak the keys using addition. */
+ if (secp256k1_rand32() % 3 == 0) {
+ int ret1;
+ int ret2;
+ unsigned char rnd[32];
+ secp256k1_pubkey pubkey2;
+ secp256k1_rand256_test(rnd);
+ ret1 = secp256k1_ec_privkey_tweak_add(ctx, privkey, rnd);
+ ret2 = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, rnd);
+ CHECK(ret1 == ret2);
+ if (ret1 == 0) {
+ return;
+ }
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
+ CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ }
+
+ /* Optionally tweak the keys using multiplication. */
+ if (secp256k1_rand32() % 3 == 0) {
+ int ret1;
+ int ret2;
+ unsigned char rnd[32];
+ secp256k1_pubkey pubkey2;
+ secp256k1_rand256_test(rnd);
+ ret1 = secp256k1_ec_privkey_tweak_mul(ctx, privkey, rnd);
+ ret2 = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, rnd);
+ CHECK(ret1 == ret2);
+ if (ret1 == 0) {
+ return;
+ }
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
+ CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ }
+
+ /* Sign. */
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[0], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[4], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[1], message, privkey, NULL, extra) == 1);
+ extra[31] = 1;
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[2], message, privkey, NULL, extra) == 1);
+ extra[31] = 0;
+ extra[0] = 1;
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[3], message, privkey, NULL, extra) == 1);
+ CHECK(memcmp(&signature[0], &signature[4], sizeof(signature[0])) == 0);
+ CHECK(memcmp(&signature[0], &signature[1], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[0], &signature[2], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[0], &signature[3], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[1], &signature[2], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[1], &signature[3], sizeof(signature[0])) != 0);
+ CHECK(memcmp(&signature[2], &signature[3], sizeof(signature[0])) != 0);
+ /* Verify. */
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[1], message, &pubkey) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[2], message, &pubkey) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[3], message, &pubkey) == 1);
+
+ /* Serialize/parse DER and verify again */
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
+ memset(&signature[0], 0, sizeof(signature[0]));
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1);
+ /* Serialize/destroy/parse DER and verify again. */
+ siglen = 74;
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
+ sig[secp256k1_rand32() % siglen] += 1 + (secp256k1_rand32() % 255);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 ||
+ secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 0);
+}
+
+void test_random_pubkeys(void) {
+ secp256k1_ge elem;
+ secp256k1_ge elem2;
+ unsigned char in[65];
+ /* Generate some randomly sized pubkeys. */
+ uint32_t r = secp256k1_rand32();
+ size_t len = (r & 3) == 0 ? 65 : 33;
+ r>>=2;
+ if ((r & 3) == 0) {
+ len = (r & 252) >> 3;
+ }
+ r>>=8;
+ if (len == 65) {
+ in[0] = (r & 2) ? 4 : ((r & 1)? 6 : 7);
+ } else {
+ in[0] = (r & 1) ? 2 : 3;
+ }
+ r>>=2;
+ if ((r & 7) == 0) {
+ in[0] = (r & 2040) >> 3;
+ }
+ r>>=11;
+ if (len > 1) {
+ secp256k1_rand256(&in[1]);
+ }
+ if (len > 33) {
+ secp256k1_rand256(&in[33]);
+ }
+ if (secp256k1_eckey_pubkey_parse(&elem, in, len)) {
+ unsigned char out[65];
+ unsigned char firstb;
+ int res;
+ size_t size = len;
+ firstb = in[0];
+ /* If the pubkey can be parsed, it should round-trip... */
+ CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, (len == 33) ? SECP256K1_EC_COMPRESSED : 0));
+ CHECK(size == len);
+ CHECK(memcmp(&in[1], &out[1], len-1) == 0);
+ /* ... except for the type of hybrid inputs. */
+ if ((in[0] != 6) && (in[0] != 7)) {
+ CHECK(in[0] == out[0]);
+ }
+ size = 65;
+ CHECK(secp256k1_eckey_pubkey_serialize(&elem, in, &size, 0));
+ CHECK(size == 65);
+ CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size));
+ ge_equals_ge(&elem,&elem2);
+ /* Check that the X9.62 hybrid type is checked. */
+ in[0] = (r & 1) ? 6 : 7;
+ res = secp256k1_eckey_pubkey_parse(&elem2, in, size);
+ if (firstb == 2 || firstb == 3) {
+ if (in[0] == firstb + 4) {
+ CHECK(res);
+ } else {
+ CHECK(!res);
+ }
+ }
+ if (res) {
+ ge_equals_ge(&elem,&elem2);
+ CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, 0));
+ CHECK(memcmp(&in[1], &out[1], 64) == 0);
+ }
+ }
+}
+
+void run_random_pubkeys(void) {
+ int i;
+ for (i = 0; i < 10*count; i++) {
+ test_random_pubkeys();
+ }
+}
+
+void run_ecdsa_end_to_end(void) {
+ int i;
+ for (i = 0; i < 64*count; i++) {
+ test_ecdsa_end_to_end();
+ }
+}
+
+/* Tests several edge cases. */
+void test_ecdsa_edge_cases(void) {
+ int t;
+ secp256k1_ecdsa_signature sig;
+
+ /* Test the case where ECDSA recomputes a point that is infinity. */
+ {
+ secp256k1_gej keyj;
+ secp256k1_ge key;
+ secp256k1_scalar msg;
+ secp256k1_scalar sr, ss;
+ secp256k1_scalar_set_int(&ss, 1);
+ secp256k1_scalar_negate(&ss, &ss);
+ secp256k1_scalar_inverse(&ss, &ss);
+ secp256k1_scalar_set_int(&sr, 1);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &keyj, &sr);
+ secp256k1_ge_set_gej(&key, &keyj);
+ msg = ss;
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
+ }
+
+ /*Signature where s would be zero.*/
+ {
+ unsigned char signature[72];
+ size_t siglen;
+ const unsigned char nonce[32] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ };
+ static const unsigned char nonce2[32] = {
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
+ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
+ 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
+ 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
+ };
+ const unsigned char key[32] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ };
+ unsigned char msg[32] = {
+ 0x86, 0x41, 0x99, 0x81, 0x06, 0x23, 0x44, 0x53,
+ 0xaa, 0x5f, 0x9d, 0x6a, 0x31, 0x78, 0xf4, 0xf7,
+ 0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62,
+ 0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9,
+ };
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 0);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 0);
+ msg[31] = 0xaa;
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 1);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 1);
+ siglen = 72;
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 1);
+ siglen = 10;
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 0);
+ }
+
+ /* Nonce function corner cases. */
+ for (t = 0; t < 2; t++) {
+ static const unsigned char zero[32] = {0x00};
+ int i;
+ unsigned char key[32];
+ unsigned char msg[32];
+ secp256k1_ecdsa_signature sig2;
+ secp256k1_scalar sr[512], ss;
+ const unsigned char *extra;
+ extra = t == 0 ? NULL : zero;
+ memset(msg, 0, 32);
+ msg[31] = 1;
+ /* High key results in signature failure. */
+ memset(key, 0xFF, 32);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0);
+ CHECK(is_empty_signature(&sig));
+ /* Zero key results in signature failure. */
+ memset(key, 0, 32);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0);
+ CHECK(is_empty_signature(&sig));
+ /* Nonce function failure results in signature failure. */
+ key[31] = 1;
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_fail, extra) == 0);
+ CHECK(is_empty_signature(&sig));
+ /* The retry loop successfully makes its way to the first good value. */
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_retry, extra) == 1);
+ CHECK(!is_empty_signature(&sig));
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, nonce_function_rfc6979, extra) == 1);
+ CHECK(!is_empty_signature(&sig2));
+ CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
+ /* The default nonce function is determinstic. */
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
+ CHECK(!is_empty_signature(&sig2));
+ CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
+ /* The default nonce function changes output with different messages. */
+ for(i = 0; i < 256; i++) {
+ int j;
+ msg[0] = i;
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
+ CHECK(!is_empty_signature(&sig2));
+ secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2);
+ for (j = 0; j < i; j++) {
+ CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j]));
+ }
+ }
+ msg[0] = 0;
+ msg[31] = 2;
+ /* The default nonce function changes output with different keys. */
+ for(i = 256; i < 512; i++) {
+ int j;
+ key[0] = i - 256;
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
+ CHECK(!is_empty_signature(&sig2));
+ secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2);
+ for (j = 0; j < i; j++) {
+ CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j]));
+ }
+ }
+ key[0] = 0;
+ }
+
+ /* Privkey export where pubkey is the point at infinity. */
+ {
+ unsigned char privkey[300];
+ unsigned char seckey[32] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
+ 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
+ 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41,
+ };
+ size_t outlen = 300;
+ CHECK(!secp256k1_ec_privkey_export(ctx, privkey, &outlen, seckey, 0));
+ outlen = 300;
+ CHECK(!secp256k1_ec_privkey_export(ctx, privkey, &outlen, seckey, SECP256K1_EC_COMPRESSED));
+ }
+}
+
+void run_ecdsa_edge_cases(void) {
+ test_ecdsa_edge_cases();
+}
+
+#ifdef ENABLE_OPENSSL_TESTS
+EC_KEY *get_openssl_key(const secp256k1_scalar *key) {
+ unsigned char privkey[300];
+ size_t privkeylen;
+ const unsigned char* pbegin = privkey;
+ int compr = secp256k1_rand32() & 1;
+ EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
+ CHECK(secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, &privkeylen, key, compr ? SECP256K1_EC_COMPRESSED : 0));
+ CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
+ CHECK(EC_KEY_check_key(ec_key));
+ return ec_key;
+}
+
+void test_ecdsa_openssl(void) {
+ secp256k1_gej qj;
+ secp256k1_ge q;
+ secp256k1_scalar sigr, sigs;
+ secp256k1_scalar one;
+ secp256k1_scalar msg2;
+ secp256k1_scalar key, msg;
+ EC_KEY *ec_key;
+ unsigned int sigsize = 80;
+ size_t secp_sigsize = 80;
+ unsigned char message[32];
+ unsigned char signature[80];
+ secp256k1_rand256_test(message);
+ secp256k1_scalar_set_b32(&msg, message, NULL);
+ random_scalar_order_test(&key);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &qj, &key);
+ secp256k1_ge_set_gej(&q, &qj);
+ ec_key = get_openssl_key(&key);
+ CHECK(ec_key != NULL);
+ CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
+ CHECK(secp256k1_ecdsa_sig_parse(&sigr, &sigs, signature, sigsize));
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg));
+ secp256k1_scalar_set_int(&one, 1);
+ secp256k1_scalar_add(&msg2, &msg, &one);
+ CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg2));
+
+ random_sign(&sigr, &sigs, &key, &msg, NULL);
+ CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sigr, &sigs));
+ CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1);
+
+ EC_KEY_free(ec_key);
+}
+
+void run_ecdsa_openssl(void) {
+ int i;
+ for (i = 0; i < 10*count; i++) {
+ test_ecdsa_openssl();
+ }
+}
+#endif
+
+#ifdef ENABLE_MODULE_ECDH
+# include "modules/ecdh/tests_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_SCHNORR
+# include "modules/schnorr/tests_impl.h"
+#endif
+
+#ifdef ENABLE_MODULE_RECOVERY
+# include "modules/recovery/tests_impl.h"
+#endif
+
+int main(int argc, char **argv) {
+ unsigned char seed16[16] = {0};
+ unsigned char run32[32] = {0};
+ /* find iteration count */
+ if (argc > 1) {
+ count = strtol(argv[1], NULL, 0);
+ }
+
+ /* find random seed */
+ if (argc > 2) {
+ int pos = 0;
+ const char* ch = argv[2];
+ while (pos < 16 && ch[0] != 0 && ch[1] != 0) {
+ unsigned short sh;
+ if (sscanf(ch, "%2hx", &sh)) {
+ seed16[pos] = sh;
+ } else {
+ break;
+ }
+ ch += 2;
+ pos++;
+ }
+ } else {
+ FILE *frand = fopen("/dev/urandom", "r");
+ if ((frand == NULL) || !fread(&seed16, sizeof(seed16), 1, frand)) {
+ uint64_t t = time(NULL) * (uint64_t)1337;
+ seed16[0] ^= t;
+ seed16[1] ^= t >> 8;
+ seed16[2] ^= t >> 16;
+ seed16[3] ^= t >> 24;
+ seed16[4] ^= t >> 32;
+ seed16[5] ^= t >> 40;
+ seed16[6] ^= t >> 48;
+ seed16[7] ^= t >> 56;
+ }
+ fclose(frand);
+ }
+ secp256k1_rand_seed(seed16);
+
+ printf("test count = %i\n", count);
+ printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]);
+
+ /* initialize */
+ run_context_tests();
+ ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+
+ if (secp256k1_rand32() & 1) {
+ secp256k1_rand256(run32);
+ CHECK(secp256k1_context_randomize(ctx, (secp256k1_rand32() & 1) ? run32 : NULL));
+ }
+
+ run_sha256_tests();
+ run_hmac_sha256_tests();
+ run_rfc6979_hmac_sha256_tests();
+
+#ifndef USE_NUM_NONE
+ /* num tests */
+ run_num_smalltests();
+#endif
+
+ /* scalar tests */
+ run_scalar_tests();
+
+ /* field tests */
+ run_field_inv();
+ run_field_inv_var();
+ run_field_inv_all_var();
+ run_field_misc();
+ run_field_convert();
+ run_sqr();
+ run_sqrt();
+
+ /* group tests */
+ run_ge();
+
+ /* ecmult tests */
+ run_wnaf();
+ run_point_times_order();
+ run_ecmult_chain();
+ run_ecmult_constants();
+ run_ecmult_gen_blind();
+ run_ecmult_const_tests();
+ run_ec_combine();
+
+ /* endomorphism tests */
+#ifdef USE_ENDOMORPHISM
+ run_endomorphism_tests();
+#endif
+
+#ifdef ENABLE_MODULE_ECDH
+ /* ecdh tests */
+ run_ecdh_tests();
+#endif
+
+ /* ecdsa tests */
+ run_random_pubkeys();
+ run_ecdsa_sign_verify();
+ run_ecdsa_end_to_end();
+ run_ecdsa_edge_cases();
+#ifdef ENABLE_OPENSSL_TESTS
+ run_ecdsa_openssl();
+#endif
+
+#ifdef ENABLE_MODULE_SCHNORR
+ /* Schnorr tests */
+ run_schnorr_tests();
+#endif
+
+#ifdef ENABLE_MODULE_RECOVERY
+ /* ECDSA pubkey recovery tests */
+ run_recovery_tests();
+#endif
+
+ secp256k1_rand256(run32);
+ printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]);
+
+ /* shutdown */
+ secp256k1_context_destroy(ctx);
+
+ printf("no problems found\n");
+ return 0;
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/util.h b/crypto/secp256k1/libsecp256k1/src/util.h
new file mode 100644
index 000000000..4eef4ded4
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/util.h
@@ -0,0 +1,110 @@
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_UTIL_H_
+#define _SECP256K1_UTIL_H_
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#include <stdlib.h>
+#include <stdint.h>
+#include <stdio.h>
+
+typedef struct {
+ void (*fn)(const char *text, void* data);
+ const void* data;
+} secp256k1_callback;
+
+static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * const cb, const char * const text) {
+ cb->fn(text, (void*)cb->data);
+}
+
+#ifdef DETERMINISTIC
+#define TEST_FAILURE(msg) do { \
+ fprintf(stderr, "%s\n", msg); \
+ abort(); \
+} while(0);
+#else
+#define TEST_FAILURE(msg) do { \
+ fprintf(stderr, "%s:%d: %s\n", __FILE__, __LINE__, msg); \
+ abort(); \
+} while(0)
+#endif
+
+#ifdef HAVE_BUILTIN_EXPECT
+#define EXPECT(x,c) __builtin_expect((x),(c))
+#else
+#define EXPECT(x,c) (x)
+#endif
+
+#ifdef DETERMINISTIC
+#define CHECK(cond) do { \
+ if (EXPECT(!(cond), 0)) { \
+ TEST_FAILURE("test condition failed"); \
+ } \
+} while(0)
+#else
+#define CHECK(cond) do { \
+ if (EXPECT(!(cond), 0)) { \
+ TEST_FAILURE("test condition failed: " #cond); \
+ } \
+} while(0)
+#endif
+
+/* Like assert(), but when VERIFY is defined, and side-effect safe. */
+#ifdef VERIFY
+#define VERIFY_CHECK CHECK
+#define VERIFY_SETUP(stmt) do { stmt; } while(0)
+#else
+#define VERIFY_CHECK(cond) do { (void)(cond); } while(0)
+#define VERIFY_SETUP(stmt)
+#endif
+
+static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_t size) {
+ void *ret = malloc(size);
+ if (ret == NULL) {
+ secp256k1_callback_call(cb, "Out of memory");
+ }
+ return ret;
+}
+
+/* Macro for restrict, when available and not in a VERIFY build. */
+#if defined(SECP256K1_BUILD) && defined(VERIFY)
+# define SECP256K1_RESTRICT
+#else
+# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
+# if SECP256K1_GNUC_PREREQ(3,0)
+# define SECP256K1_RESTRICT __restrict__
+# elif (defined(_MSC_VER) && _MSC_VER >= 1400)
+# define SECP256K1_RESTRICT __restrict
+# else
+# define SECP256K1_RESTRICT
+# endif
+# else
+# define SECP256K1_RESTRICT restrict
+# endif
+#endif
+
+#if defined(_WIN32)
+# define I64FORMAT "I64d"
+# define I64uFORMAT "I64u"
+#else
+# define I64FORMAT "lld"
+# define I64uFORMAT "llu"
+#endif
+
+#if defined(HAVE___INT128)
+# if defined(__GNUC__)
+# define SECP256K1_GNUC_EXT __extension__
+# else
+# define SECP256K1_GNUC_EXT
+# endif
+SECP256K1_GNUC_EXT typedef unsigned __int128 uint128_t;
+#endif
+
+#endif