aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/bn256/google/twist.go
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn256/google/twist.go')
-rw-r--r--crypto/bn256/google/twist.go255
1 files changed, 255 insertions, 0 deletions
diff --git a/crypto/bn256/google/twist.go b/crypto/bn256/google/twist.go
new file mode 100644
index 000000000..1f5a4d9de
--- /dev/null
+++ b/crypto/bn256/google/twist.go
@@ -0,0 +1,255 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+import (
+ "math/big"
+)
+
+// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
+// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
+// n-torsion points of this curve over GF(p²) (where n = Order)
+type twistPoint struct {
+ x, y, z, t *gfP2
+}
+
+var twistB = &gfP2{
+ bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"),
+ bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
+}
+
+// twistGen is the generator of group G₂.
+var twistGen = &twistPoint{
+ &gfP2{
+ bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"),
+ bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
+ },
+ &gfP2{
+ bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"),
+ bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
+ },
+ &gfP2{
+ bigFromBase10("0"),
+ bigFromBase10("1"),
+ },
+ &gfP2{
+ bigFromBase10("0"),
+ bigFromBase10("1"),
+ },
+}
+
+func newTwistPoint(pool *bnPool) *twistPoint {
+ return &twistPoint{
+ newGFp2(pool),
+ newGFp2(pool),
+ newGFp2(pool),
+ newGFp2(pool),
+ }
+}
+
+func (c *twistPoint) String() string {
+ return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
+}
+
+func (c *twistPoint) Put(pool *bnPool) {
+ c.x.Put(pool)
+ c.y.Put(pool)
+ c.z.Put(pool)
+ c.t.Put(pool)
+}
+
+func (c *twistPoint) Set(a *twistPoint) {
+ c.x.Set(a.x)
+ c.y.Set(a.y)
+ c.z.Set(a.z)
+ c.t.Set(a.t)
+}
+
+// IsOnCurve returns true iff c is on the curve where c must be in affine form.
+func (c *twistPoint) IsOnCurve() bool {
+ pool := new(bnPool)
+ yy := newGFp2(pool).Square(c.y, pool)
+ xxx := newGFp2(pool).Square(c.x, pool)
+ xxx.Mul(xxx, c.x, pool)
+ yy.Sub(yy, xxx)
+ yy.Sub(yy, twistB)
+ yy.Minimal()
+
+ if yy.x.Sign() != 0 || yy.y.Sign() != 0 {
+ return false
+ }
+ cneg := newTwistPoint(pool)
+ cneg.Mul(c, Order, pool)
+ return cneg.z.IsZero()
+}
+
+func (c *twistPoint) SetInfinity() {
+ c.z.SetZero()
+}
+
+func (c *twistPoint) IsInfinity() bool {
+ return c.z.IsZero()
+}
+
+func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
+ // For additional comments, see the same function in curve.go.
+
+ if a.IsInfinity() {
+ c.Set(b)
+ return
+ }
+ if b.IsInfinity() {
+ c.Set(a)
+ return
+ }
+
+ // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
+ z1z1 := newGFp2(pool).Square(a.z, pool)
+ z2z2 := newGFp2(pool).Square(b.z, pool)
+ u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
+ u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
+
+ t := newGFp2(pool).Mul(b.z, z2z2, pool)
+ s1 := newGFp2(pool).Mul(a.y, t, pool)
+
+ t.Mul(a.z, z1z1, pool)
+ s2 := newGFp2(pool).Mul(b.y, t, pool)
+
+ h := newGFp2(pool).Sub(u2, u1)
+ xEqual := h.IsZero()
+
+ t.Add(h, h)
+ i := newGFp2(pool).Square(t, pool)
+ j := newGFp2(pool).Mul(h, i, pool)
+
+ t.Sub(s2, s1)
+ yEqual := t.IsZero()
+ if xEqual && yEqual {
+ c.Double(a, pool)
+ return
+ }
+ r := newGFp2(pool).Add(t, t)
+
+ v := newGFp2(pool).Mul(u1, i, pool)
+
+ t4 := newGFp2(pool).Square(r, pool)
+ t.Add(v, v)
+ t6 := newGFp2(pool).Sub(t4, j)
+ c.x.Sub(t6, t)
+
+ t.Sub(v, c.x) // t7
+ t4.Mul(s1, j, pool) // t8
+ t6.Add(t4, t4) // t9
+ t4.Mul(r, t, pool) // t10
+ c.y.Sub(t4, t6)
+
+ t.Add(a.z, b.z) // t11
+ t4.Square(t, pool) // t12
+ t.Sub(t4, z1z1) // t13
+ t4.Sub(t, z2z2) // t14
+ c.z.Mul(t4, h, pool)
+
+ z1z1.Put(pool)
+ z2z2.Put(pool)
+ u1.Put(pool)
+ u2.Put(pool)
+ t.Put(pool)
+ s1.Put(pool)
+ s2.Put(pool)
+ h.Put(pool)
+ i.Put(pool)
+ j.Put(pool)
+ r.Put(pool)
+ v.Put(pool)
+ t4.Put(pool)
+ t6.Put(pool)
+}
+
+func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
+ // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
+ A := newGFp2(pool).Square(a.x, pool)
+ B := newGFp2(pool).Square(a.y, pool)
+ C_ := newGFp2(pool).Square(B, pool)
+
+ t := newGFp2(pool).Add(a.x, B)
+ t2 := newGFp2(pool).Square(t, pool)
+ t.Sub(t2, A)
+ t2.Sub(t, C_)
+ d := newGFp2(pool).Add(t2, t2)
+ t.Add(A, A)
+ e := newGFp2(pool).Add(t, A)
+ f := newGFp2(pool).Square(e, pool)
+
+ t.Add(d, d)
+ c.x.Sub(f, t)
+
+ t.Add(C_, C_)
+ t2.Add(t, t)
+ t.Add(t2, t2)
+ c.y.Sub(d, c.x)
+ t2.Mul(e, c.y, pool)
+ c.y.Sub(t2, t)
+
+ t.Mul(a.y, a.z, pool)
+ c.z.Add(t, t)
+
+ A.Put(pool)
+ B.Put(pool)
+ C_.Put(pool)
+ t.Put(pool)
+ t2.Put(pool)
+ d.Put(pool)
+ e.Put(pool)
+ f.Put(pool)
+}
+
+func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
+ sum := newTwistPoint(pool)
+ sum.SetInfinity()
+ t := newTwistPoint(pool)
+
+ for i := scalar.BitLen(); i >= 0; i-- {
+ t.Double(sum, pool)
+ if scalar.Bit(i) != 0 {
+ sum.Add(t, a, pool)
+ } else {
+ sum.Set(t)
+ }
+ }
+
+ c.Set(sum)
+ sum.Put(pool)
+ t.Put(pool)
+ return c
+}
+
+func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
+ if c.z.IsOne() {
+ return c
+ }
+
+ zInv := newGFp2(pool).Invert(c.z, pool)
+ t := newGFp2(pool).Mul(c.y, zInv, pool)
+ zInv2 := newGFp2(pool).Square(zInv, pool)
+ c.y.Mul(t, zInv2, pool)
+ t.Mul(c.x, zInv2, pool)
+ c.x.Set(t)
+ c.z.SetOne()
+ c.t.SetOne()
+
+ zInv.Put(pool)
+ t.Put(pool)
+ zInv2.Put(pool)
+
+ return c
+}
+
+func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
+ c.x.Set(a.x)
+ c.y.SetZero()
+ c.y.Sub(c.y, a.y)
+ c.z.Set(a.z)
+ c.t.SetZero()
+}