diff options
Diffstat (limited to 'crypto/bn256/google/twist.go')
-rw-r--r-- | crypto/bn256/google/twist.go | 255 |
1 files changed, 255 insertions, 0 deletions
diff --git a/crypto/bn256/google/twist.go b/crypto/bn256/google/twist.go new file mode 100644 index 000000000..1f5a4d9de --- /dev/null +++ b/crypto/bn256/google/twist.go @@ -0,0 +1,255 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +import ( + "math/big" +) + +// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are +// kept in Jacobian form and t=z² when valid. The group G₂ is the set of +// n-torsion points of this curve over GF(p²) (where n = Order) +type twistPoint struct { + x, y, z, t *gfP2 +} + +var twistB = &gfP2{ + bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"), + bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"), +} + +// twistGen is the generator of group G₂. +var twistGen = &twistPoint{ + &gfP2{ + bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"), + bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"), + }, + &gfP2{ + bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"), + bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"), + }, + &gfP2{ + bigFromBase10("0"), + bigFromBase10("1"), + }, + &gfP2{ + bigFromBase10("0"), + bigFromBase10("1"), + }, +} + +func newTwistPoint(pool *bnPool) *twistPoint { + return &twistPoint{ + newGFp2(pool), + newGFp2(pool), + newGFp2(pool), + newGFp2(pool), + } +} + +func (c *twistPoint) String() string { + return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")" +} + +func (c *twistPoint) Put(pool *bnPool) { + c.x.Put(pool) + c.y.Put(pool) + c.z.Put(pool) + c.t.Put(pool) +} + +func (c *twistPoint) Set(a *twistPoint) { + c.x.Set(a.x) + c.y.Set(a.y) + c.z.Set(a.z) + c.t.Set(a.t) +} + +// IsOnCurve returns true iff c is on the curve where c must be in affine form. +func (c *twistPoint) IsOnCurve() bool { + pool := new(bnPool) + yy := newGFp2(pool).Square(c.y, pool) + xxx := newGFp2(pool).Square(c.x, pool) + xxx.Mul(xxx, c.x, pool) + yy.Sub(yy, xxx) + yy.Sub(yy, twistB) + yy.Minimal() + + if yy.x.Sign() != 0 || yy.y.Sign() != 0 { + return false + } + cneg := newTwistPoint(pool) + cneg.Mul(c, Order, pool) + return cneg.z.IsZero() +} + +func (c *twistPoint) SetInfinity() { + c.z.SetZero() +} + +func (c *twistPoint) IsInfinity() bool { + return c.z.IsZero() +} + +func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) { + // For additional comments, see the same function in curve.go. + + if a.IsInfinity() { + c.Set(b) + return + } + if b.IsInfinity() { + c.Set(a) + return + } + + // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 + z1z1 := newGFp2(pool).Square(a.z, pool) + z2z2 := newGFp2(pool).Square(b.z, pool) + u1 := newGFp2(pool).Mul(a.x, z2z2, pool) + u2 := newGFp2(pool).Mul(b.x, z1z1, pool) + + t := newGFp2(pool).Mul(b.z, z2z2, pool) + s1 := newGFp2(pool).Mul(a.y, t, pool) + + t.Mul(a.z, z1z1, pool) + s2 := newGFp2(pool).Mul(b.y, t, pool) + + h := newGFp2(pool).Sub(u2, u1) + xEqual := h.IsZero() + + t.Add(h, h) + i := newGFp2(pool).Square(t, pool) + j := newGFp2(pool).Mul(h, i, pool) + + t.Sub(s2, s1) + yEqual := t.IsZero() + if xEqual && yEqual { + c.Double(a, pool) + return + } + r := newGFp2(pool).Add(t, t) + + v := newGFp2(pool).Mul(u1, i, pool) + + t4 := newGFp2(pool).Square(r, pool) + t.Add(v, v) + t6 := newGFp2(pool).Sub(t4, j) + c.x.Sub(t6, t) + + t.Sub(v, c.x) // t7 + t4.Mul(s1, j, pool) // t8 + t6.Add(t4, t4) // t9 + t4.Mul(r, t, pool) // t10 + c.y.Sub(t4, t6) + + t.Add(a.z, b.z) // t11 + t4.Square(t, pool) // t12 + t.Sub(t4, z1z1) // t13 + t4.Sub(t, z2z2) // t14 + c.z.Mul(t4, h, pool) + + z1z1.Put(pool) + z2z2.Put(pool) + u1.Put(pool) + u2.Put(pool) + t.Put(pool) + s1.Put(pool) + s2.Put(pool) + h.Put(pool) + i.Put(pool) + j.Put(pool) + r.Put(pool) + v.Put(pool) + t4.Put(pool) + t6.Put(pool) +} + +func (c *twistPoint) Double(a *twistPoint, pool *bnPool) { + // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 + A := newGFp2(pool).Square(a.x, pool) + B := newGFp2(pool).Square(a.y, pool) + C_ := newGFp2(pool).Square(B, pool) + + t := newGFp2(pool).Add(a.x, B) + t2 := newGFp2(pool).Square(t, pool) + t.Sub(t2, A) + t2.Sub(t, C_) + d := newGFp2(pool).Add(t2, t2) + t.Add(A, A) + e := newGFp2(pool).Add(t, A) + f := newGFp2(pool).Square(e, pool) + + t.Add(d, d) + c.x.Sub(f, t) + + t.Add(C_, C_) + t2.Add(t, t) + t.Add(t2, t2) + c.y.Sub(d, c.x) + t2.Mul(e, c.y, pool) + c.y.Sub(t2, t) + + t.Mul(a.y, a.z, pool) + c.z.Add(t, t) + + A.Put(pool) + B.Put(pool) + C_.Put(pool) + t.Put(pool) + t2.Put(pool) + d.Put(pool) + e.Put(pool) + f.Put(pool) +} + +func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint { + sum := newTwistPoint(pool) + sum.SetInfinity() + t := newTwistPoint(pool) + + for i := scalar.BitLen(); i >= 0; i-- { + t.Double(sum, pool) + if scalar.Bit(i) != 0 { + sum.Add(t, a, pool) + } else { + sum.Set(t) + } + } + + c.Set(sum) + sum.Put(pool) + t.Put(pool) + return c +} + +func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint { + if c.z.IsOne() { + return c + } + + zInv := newGFp2(pool).Invert(c.z, pool) + t := newGFp2(pool).Mul(c.y, zInv, pool) + zInv2 := newGFp2(pool).Square(zInv, pool) + c.y.Mul(t, zInv2, pool) + t.Mul(c.x, zInv2, pool) + c.x.Set(t) + c.z.SetOne() + c.t.SetOne() + + zInv.Put(pool) + t.Put(pool) + zInv2.Put(pool) + + return c +} + +func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) { + c.x.Set(a.x) + c.y.SetZero() + c.y.Sub(c.y, a.y) + c.z.Set(a.z) + c.t.SetZero() +} |