diff options
Diffstat (limited to 'crypto/bn256/cloudflare/optate.go')
-rw-r--r-- | crypto/bn256/cloudflare/optate.go | 271 |
1 files changed, 271 insertions, 0 deletions
diff --git a/crypto/bn256/cloudflare/optate.go b/crypto/bn256/cloudflare/optate.go new file mode 100644 index 000000000..b71e50e3a --- /dev/null +++ b/crypto/bn256/cloudflare/optate.go @@ -0,0 +1,271 @@ +package bn256 + +func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2) (a, b, c *gfP2, rOut *twistPoint) { + // See the mixed addition algorithm from "Faster Computation of the + // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf + B := (&gfP2{}).Mul(&p.x, &r.t) + + D := (&gfP2{}).Add(&p.y, &r.z) + D.Square(D).Sub(D, r2).Sub(D, &r.t).Mul(D, &r.t) + + H := (&gfP2{}).Sub(B, &r.x) + I := (&gfP2{}).Square(H) + + E := (&gfP2{}).Add(I, I) + E.Add(E, E) + + J := (&gfP2{}).Mul(H, E) + + L1 := (&gfP2{}).Sub(D, &r.y) + L1.Sub(L1, &r.y) + + V := (&gfP2{}).Mul(&r.x, E) + + rOut = &twistPoint{} + rOut.x.Square(L1).Sub(&rOut.x, J).Sub(&rOut.x, V).Sub(&rOut.x, V) + + rOut.z.Add(&r.z, H).Square(&rOut.z).Sub(&rOut.z, &r.t).Sub(&rOut.z, I) + + t := (&gfP2{}).Sub(V, &rOut.x) + t.Mul(t, L1) + t2 := (&gfP2{}).Mul(&r.y, J) + t2.Add(t2, t2) + rOut.y.Sub(t, t2) + + rOut.t.Square(&rOut.z) + + t.Add(&p.y, &rOut.z).Square(t).Sub(t, r2).Sub(t, &rOut.t) + + t2.Mul(L1, &p.x) + t2.Add(t2, t2) + a = (&gfP2{}).Sub(t2, t) + + c = (&gfP2{}).MulScalar(&rOut.z, &q.y) + c.Add(c, c) + + b = (&gfP2{}).Neg(L1) + b.MulScalar(b, &q.x).Add(b, b) + + return +} + +func lineFunctionDouble(r *twistPoint, q *curvePoint) (a, b, c *gfP2, rOut *twistPoint) { + // See the doubling algorithm for a=0 from "Faster Computation of the + // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf + A := (&gfP2{}).Square(&r.x) + B := (&gfP2{}).Square(&r.y) + C := (&gfP2{}).Square(B) + + D := (&gfP2{}).Add(&r.x, B) + D.Square(D).Sub(D, A).Sub(D, C).Add(D, D) + + E := (&gfP2{}).Add(A, A) + E.Add(E, A) + + G := (&gfP2{}).Square(E) + + rOut = &twistPoint{} + rOut.x.Sub(G, D).Sub(&rOut.x, D) + + rOut.z.Add(&r.y, &r.z).Square(&rOut.z).Sub(&rOut.z, B).Sub(&rOut.z, &r.t) + + rOut.y.Sub(D, &rOut.x).Mul(&rOut.y, E) + t := (&gfP2{}).Add(C, C) + t.Add(t, t).Add(t, t) + rOut.y.Sub(&rOut.y, t) + + rOut.t.Square(&rOut.z) + + t.Mul(E, &r.t).Add(t, t) + b = (&gfP2{}).Neg(t) + b.MulScalar(b, &q.x) + + a = (&gfP2{}).Add(&r.x, E) + a.Square(a).Sub(a, A).Sub(a, G) + t.Add(B, B).Add(t, t) + a.Sub(a, t) + + c = (&gfP2{}).Mul(&rOut.z, &r.t) + c.Add(c, c).MulScalar(c, &q.y) + + return +} + +func mulLine(ret *gfP12, a, b, c *gfP2) { + a2 := &gfP6{} + a2.y.Set(a) + a2.z.Set(b) + a2.Mul(a2, &ret.x) + t3 := (&gfP6{}).MulScalar(&ret.y, c) + + t := (&gfP2{}).Add(b, c) + t2 := &gfP6{} + t2.y.Set(a) + t2.z.Set(t) + ret.x.Add(&ret.x, &ret.y) + + ret.y.Set(t3) + + ret.x.Mul(&ret.x, t2).Sub(&ret.x, a2).Sub(&ret.x, &ret.y) + a2.MulTau(a2) + ret.y.Add(&ret.y, a2) +} + +// sixuPlus2NAF is 6u+2 in non-adjacent form. +var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, + 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1, + 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, + 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1} + +// miller implements the Miller loop for calculating the Optimal Ate pairing. +// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf +func miller(q *twistPoint, p *curvePoint) *gfP12 { + ret := (&gfP12{}).SetOne() + + aAffine := &twistPoint{} + aAffine.Set(q) + aAffine.MakeAffine() + + bAffine := &curvePoint{} + bAffine.Set(p) + bAffine.MakeAffine() + + minusA := &twistPoint{} + minusA.Neg(aAffine) + + r := &twistPoint{} + r.Set(aAffine) + + r2 := (&gfP2{}).Square(&aAffine.y) + + for i := len(sixuPlus2NAF) - 1; i > 0; i-- { + a, b, c, newR := lineFunctionDouble(r, bAffine) + if i != len(sixuPlus2NAF)-1 { + ret.Square(ret) + } + + mulLine(ret, a, b, c) + r = newR + + switch sixuPlus2NAF[i-1] { + case 1: + a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2) + case -1: + a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2) + default: + continue + } + + mulLine(ret, a, b, c) + r = newR + } + + // In order to calculate Q1 we have to convert q from the sextic twist + // to the full GF(p^12) group, apply the Frobenius there, and convert + // back. + // + // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just + // x for a moment, then after applying the Frobenius, we have x̄ω^(2p) + // where x̄ is the conjugate of x. If we are going to apply the inverse + // isomorphism we need a value with a single coefficient of ω² so we + // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of + // p, 2p-2 is a multiple of six. Therefore we can rewrite as + // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the + // ω². + // + // A similar argument can be made for the y value. + + q1 := &twistPoint{} + q1.x.Conjugate(&aAffine.x).Mul(&q1.x, xiToPMinus1Over3) + q1.y.Conjugate(&aAffine.y).Mul(&q1.y, xiToPMinus1Over2) + q1.z.SetOne() + q1.t.SetOne() + + // For Q2 we are applying the p² Frobenius. The two conjugations cancel + // out and we are left only with the factors from the isomorphism. In + // the case of x, we end up with a pure number which is why + // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We + // ignore this to end up with -Q2. + + minusQ2 := &twistPoint{} + minusQ2.x.MulScalar(&aAffine.x, xiToPSquaredMinus1Over3) + minusQ2.y.Set(&aAffine.y) + minusQ2.z.SetOne() + minusQ2.t.SetOne() + + r2.Square(&q1.y) + a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2) + mulLine(ret, a, b, c) + r = newR + + r2.Square(&minusQ2.y) + a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2) + mulLine(ret, a, b, c) + r = newR + + return ret +} + +// finalExponentiation computes the (p¹²-1)/Order-th power of an element of +// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from +// http://cryptojedi.org/papers/dclxvi-20100714.pdf) +func finalExponentiation(in *gfP12) *gfP12 { + t1 := &gfP12{} + + // This is the p^6-Frobenius + t1.x.Neg(&in.x) + t1.y.Set(&in.y) + + inv := &gfP12{} + inv.Invert(in) + t1.Mul(t1, inv) + + t2 := (&gfP12{}).FrobeniusP2(t1) + t1.Mul(t1, t2) + + fp := (&gfP12{}).Frobenius(t1) + fp2 := (&gfP12{}).FrobeniusP2(t1) + fp3 := (&gfP12{}).Frobenius(fp2) + + fu := (&gfP12{}).Exp(t1, u) + fu2 := (&gfP12{}).Exp(fu, u) + fu3 := (&gfP12{}).Exp(fu2, u) + + y3 := (&gfP12{}).Frobenius(fu) + fu2p := (&gfP12{}).Frobenius(fu2) + fu3p := (&gfP12{}).Frobenius(fu3) + y2 := (&gfP12{}).FrobeniusP2(fu2) + + y0 := &gfP12{} + y0.Mul(fp, fp2).Mul(y0, fp3) + + y1 := (&gfP12{}).Conjugate(t1) + y5 := (&gfP12{}).Conjugate(fu2) + y3.Conjugate(y3) + y4 := (&gfP12{}).Mul(fu, fu2p) + y4.Conjugate(y4) + + y6 := (&gfP12{}).Mul(fu3, fu3p) + y6.Conjugate(y6) + + t0 := (&gfP12{}).Square(y6) + t0.Mul(t0, y4).Mul(t0, y5) + t1.Mul(y3, y5).Mul(t1, t0) + t0.Mul(t0, y2) + t1.Square(t1).Mul(t1, t0).Square(t1) + t0.Mul(t1, y1) + t1.Mul(t1, y0) + t0.Square(t0).Mul(t0, t1) + + return t0 +} + +func optimalAte(a *twistPoint, b *curvePoint) *gfP12 { + e := miller(a, b) + ret := finalExponentiation(e) + + if a.IsInfinity() || b.IsInfinity() { + ret.SetOne() + } + return ret +} |