diff options
Diffstat (limited to 'bmt/bmt.go')
-rw-r--r-- | bmt/bmt.go | 560 |
1 files changed, 0 insertions, 560 deletions
diff --git a/bmt/bmt.go b/bmt/bmt.go deleted file mode 100644 index c29022345..000000000 --- a/bmt/bmt.go +++ /dev/null @@ -1,560 +0,0 @@ -// Copyright 2017 The go-ethereum Authors -// This file is part of the go-ethereum library. -// -// The go-ethereum library is free software: you can redistribute it and/or modify -// it under the terms of the GNU Lesser General Public License as published by -// the Free Software Foundation, either version 3 of the License, or -// (at your option) any later version. -// -// The go-ethereum library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU Lesser General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public License -// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. - -// Package bmt provides a binary merkle tree implementation -package bmt - -import ( - "fmt" - "hash" - "io" - "strings" - "sync" - "sync/atomic" -) - -/* -Binary Merkle Tree Hash is a hash function over arbitrary datachunks of limited size -It is defined as the root hash of the binary merkle tree built over fixed size segments -of the underlying chunk using any base hash function (e.g keccak 256 SHA3) - -It is used as the chunk hash function in swarm which in turn is the basis for the -128 branching swarm hash http://swarm-guide.readthedocs.io/en/latest/architecture.html#swarm-hash - -The BMT is optimal for providing compact inclusion proofs, i.e. prove that a -segment is a substring of a chunk starting at a particular offset -The size of the underlying segments is fixed at 32 bytes (called the resolution -of the BMT hash), the EVM word size to optimize for on-chain BMT verification -as well as the hash size optimal for inclusion proofs in the merkle tree of the swarm hash. - -Two implementations are provided: - -* RefHasher is optimized for code simplicity and meant as a reference implementation -* Hasher is optimized for speed taking advantage of concurrency with minimalistic - control structure to coordinate the concurrent routines - It implements the ChunkHash interface as well as the go standard hash.Hash interface - -*/ - -const ( - // DefaultSegmentCount is the maximum number of segments of the underlying chunk - DefaultSegmentCount = 128 // Should be equal to storage.DefaultBranches - // DefaultPoolSize is the maximum number of bmt trees used by the hashers, i.e, - // the maximum number of concurrent BMT hashing operations performed by the same hasher - DefaultPoolSize = 8 -) - -// BaseHasher is a hash.Hash constructor function used for the base hash of the BMT. -type BaseHasher func() hash.Hash - -// Hasher a reusable hasher for fixed maximum size chunks representing a BMT -// implements the hash.Hash interface -// reuse pool of Tree-s for amortised memory allocation and resource control -// supports order-agnostic concurrent segment writes -// as well as sequential read and write -// can not be called concurrently on more than one chunk -// can be further appended after Sum -// Reset gives back the Tree to the pool and guaranteed to leave -// the tree and itself in a state reusable for hashing a new chunk -type Hasher struct { - pool *TreePool // BMT resource pool - bmt *Tree // prebuilt BMT resource for flowcontrol and proofs - blocksize int // segment size (size of hash) also for hash.Hash - count int // segment count - size int // for hash.Hash same as hashsize - cur int // cursor position for rightmost currently open chunk - segment []byte // the rightmost open segment (not complete) - depth int // index of last level - result chan []byte // result channel - hash []byte // to record the result - max int32 // max segments for SegmentWriter interface - blockLength []byte // The block length that needes to be added in Sum -} - -// New creates a reusable Hasher -// implements the hash.Hash interface -// pulls a new Tree from a resource pool for hashing each chunk -func New(p *TreePool) *Hasher { - return &Hasher{ - pool: p, - depth: depth(p.SegmentCount), - size: p.SegmentSize, - blocksize: p.SegmentSize, - count: p.SegmentCount, - result: make(chan []byte), - } -} - -// Node is a reuseable segment hasher representing a node in a BMT -// it allows for continued writes after a Sum -// and is left in completely reusable state after Reset -type Node struct { - level, index int // position of node for information/logging only - initial bool // first and last node - root bool // whether the node is root to a smaller BMT - isLeft bool // whether it is left side of the parent double segment - unbalanced bool // indicates if a node has only the left segment - parent *Node // BMT connections - state int32 // atomic increment impl concurrent boolean toggle - left, right []byte -} - -// NewNode constructor for segment hasher nodes in the BMT -func NewNode(level, index int, parent *Node) *Node { - return &Node{ - parent: parent, - level: level, - index: index, - initial: index == 0, - isLeft: index%2 == 0, - } -} - -// TreePool provides a pool of Trees used as resources by Hasher -// a Tree popped from the pool is guaranteed to have clean state -// for hashing a new chunk -// Hasher Reset releases the Tree to the pool -type TreePool struct { - lock sync.Mutex - c chan *Tree - hasher BaseHasher - SegmentSize int - SegmentCount int - Capacity int - count int -} - -// NewTreePool creates a Tree pool with hasher, segment size, segment count and capacity -// on GetTree it reuses free Trees or creates a new one if size is not reached -func NewTreePool(hasher BaseHasher, segmentCount, capacity int) *TreePool { - return &TreePool{ - c: make(chan *Tree, capacity), - hasher: hasher, - SegmentSize: hasher().Size(), - SegmentCount: segmentCount, - Capacity: capacity, - } -} - -// Drain drains the pool until it has no more than n resources -func (p *TreePool) Drain(n int) { - p.lock.Lock() - defer p.lock.Unlock() - for len(p.c) > n { - <-p.c - p.count-- - } -} - -// Reserve is blocking until it returns an available Tree -// it reuses free Trees or creates a new one if size is not reached -func (p *TreePool) Reserve() *Tree { - p.lock.Lock() - defer p.lock.Unlock() - var t *Tree - if p.count == p.Capacity { - return <-p.c - } - select { - case t = <-p.c: - default: - t = NewTree(p.hasher, p.SegmentSize, p.SegmentCount) - p.count++ - } - return t -} - -// Release gives back a Tree to the pool. -// This Tree is guaranteed to be in reusable state -// does not need locking -func (p *TreePool) Release(t *Tree) { - p.c <- t // can never fail but... -} - -// Tree is a reusable control structure representing a BMT -// organised in a binary tree -// Hasher uses a TreePool to pick one for each chunk hash -// the Tree is 'locked' while not in the pool -type Tree struct { - leaves []*Node -} - -// Draw draws the BMT (badly) -func (t *Tree) Draw(hash []byte, d int) string { - var left, right []string - var anc []*Node - for i, n := range t.leaves { - left = append(left, fmt.Sprintf("%v", hashstr(n.left))) - if i%2 == 0 { - anc = append(anc, n.parent) - } - right = append(right, fmt.Sprintf("%v", hashstr(n.right))) - } - anc = t.leaves - var hashes [][]string - for l := 0; len(anc) > 0; l++ { - var nodes []*Node - hash := []string{""} - for i, n := range anc { - hash = append(hash, fmt.Sprintf("%v|%v", hashstr(n.left), hashstr(n.right))) - if i%2 == 0 && n.parent != nil { - nodes = append(nodes, n.parent) - } - } - hash = append(hash, "") - hashes = append(hashes, hash) - anc = nodes - } - hashes = append(hashes, []string{"", fmt.Sprintf("%v", hashstr(hash)), ""}) - total := 60 - del := " " - var rows []string - for i := len(hashes) - 1; i >= 0; i-- { - var textlen int - hash := hashes[i] - for _, s := range hash { - textlen += len(s) - } - if total < textlen { - total = textlen + len(hash) - } - delsize := (total - textlen) / (len(hash) - 1) - if delsize > len(del) { - delsize = len(del) - } - row := fmt.Sprintf("%v: %v", len(hashes)-i-1, strings.Join(hash, del[:delsize])) - rows = append(rows, row) - - } - rows = append(rows, strings.Join(left, " ")) - rows = append(rows, strings.Join(right, " ")) - return strings.Join(rows, "\n") + "\n" -} - -// NewTree initialises the Tree by building up the nodes of a BMT -// segment size is stipulated to be the size of the hash -// segmentCount needs to be positive integer and does not need to be -// a power of two and can even be an odd number -// segmentSize * segmentCount determines the maximum chunk size -// hashed using the tree -func NewTree(hasher BaseHasher, segmentSize, segmentCount int) *Tree { - n := NewNode(0, 0, nil) - n.root = true - prevlevel := []*Node{n} - // iterate over levels and creates 2^level nodes - level := 1 - count := 2 - for d := 1; d <= depth(segmentCount); d++ { - nodes := make([]*Node, count) - for i := 0; i < len(nodes); i++ { - parent := prevlevel[i/2] - t := NewNode(level, i, parent) - nodes[i] = t - } - prevlevel = nodes - level++ - count *= 2 - } - // the datanode level is the nodes on the last level where - return &Tree{ - leaves: prevlevel, - } -} - -// methods needed by hash.Hash - -// Size returns the size -func (h *Hasher) Size() int { - return h.size -} - -// BlockSize returns the block size -func (h *Hasher) BlockSize() int { - return h.blocksize -} - -// Sum returns the hash of the buffer -// hash.Hash interface Sum method appends the byte slice to the underlying -// data before it calculates and returns the hash of the chunk -func (h *Hasher) Sum(b []byte) (r []byte) { - t := h.bmt - i := h.cur - n := t.leaves[i] - j := i - // must run strictly before all nodes calculate - // datanodes are guaranteed to have a parent - if len(h.segment) > h.size && i > 0 && n.parent != nil { - n = n.parent - } else { - i *= 2 - } - d := h.finalise(n, i) - h.writeSegment(j, h.segment, d) - c := <-h.result - h.releaseTree() - - // sha3(length + BMT(pure_chunk)) - if h.blockLength == nil { - return c - } - res := h.pool.hasher() - res.Reset() - res.Write(h.blockLength) - res.Write(c) - return res.Sum(nil) -} - -// Hasher implements the SwarmHash interface - -// Hash waits for the hasher result and returns it -// caller must call this on a BMT Hasher being written to -func (h *Hasher) Hash() []byte { - return <-h.result -} - -// Hasher implements the io.Writer interface - -// Write fills the buffer to hash -// with every full segment complete launches a hasher go routine -// that shoots up the BMT -func (h *Hasher) Write(b []byte) (int, error) { - l := len(b) - if l <= 0 { - return 0, nil - } - s := h.segment - i := h.cur - count := (h.count + 1) / 2 - need := h.count*h.size - h.cur*2*h.size - size := h.size - if need > size { - size *= 2 - } - if l < need { - need = l - } - // calculate missing bit to complete current open segment - rest := size - len(s) - if need < rest { - rest = need - } - s = append(s, b[:rest]...) - need -= rest - // read full segments and the last possibly partial segment - for need > 0 && i < count-1 { - // push all finished chunks we read - h.writeSegment(i, s, h.depth) - need -= size - if need < 0 { - size += need - } - s = b[rest : rest+size] - rest += size - i++ - } - h.segment = s - h.cur = i - // otherwise, we can assume len(s) == 0, so all buffer is read and chunk is not yet full - return l, nil -} - -// Hasher implements the io.ReaderFrom interface - -// ReadFrom reads from io.Reader and appends to the data to hash using Write -// it reads so that chunk to hash is maximum length or reader reaches EOF -// caller must Reset the hasher prior to call -func (h *Hasher) ReadFrom(r io.Reader) (m int64, err error) { - bufsize := h.size*h.count - h.size*h.cur - len(h.segment) - buf := make([]byte, bufsize) - var read int - for { - var n int - n, err = r.Read(buf) - read += n - if err == io.EOF || read == len(buf) { - hash := h.Sum(buf[:n]) - if read == len(buf) { - err = NewEOC(hash) - } - break - } - if err != nil { - break - } - n, err = h.Write(buf[:n]) - if err != nil { - break - } - } - return int64(read), err -} - -// Reset needs to be called before writing to the hasher -func (h *Hasher) Reset() { - h.getTree() - h.blockLength = nil -} - -// Hasher implements the SwarmHash interface - -// ResetWithLength needs to be called before writing to the hasher -// the argument is supposed to be the byte slice binary representation of -// the length of the data subsumed under the hash -func (h *Hasher) ResetWithLength(l []byte) { - h.Reset() - h.blockLength = l -} - -// Release gives back the Tree to the pool whereby it unlocks -// it resets tree, segment and index -func (h *Hasher) releaseTree() { - if h.bmt != nil { - n := h.bmt.leaves[h.cur] - for ; n != nil; n = n.parent { - n.unbalanced = false - if n.parent != nil { - n.root = false - } - } - h.pool.Release(h.bmt) - h.bmt = nil - - } - h.cur = 0 - h.segment = nil -} - -func (h *Hasher) writeSegment(i int, s []byte, d int) { - hash := h.pool.hasher() - n := h.bmt.leaves[i] - - if len(s) > h.size && n.parent != nil { - go func() { - hash.Reset() - hash.Write(s) - s = hash.Sum(nil) - - if n.root { - h.result <- s - return - } - h.run(n.parent, hash, d, n.index, s) - }() - return - } - go h.run(n, hash, d, i*2, s) -} - -func (h *Hasher) run(n *Node, hash hash.Hash, d int, i int, s []byte) { - isLeft := i%2 == 0 - for { - if isLeft { - n.left = s - } else { - n.right = s - } - if !n.unbalanced && n.toggle() { - return - } - if !n.unbalanced || !isLeft || i == 0 && d == 0 { - hash.Reset() - hash.Write(n.left) - hash.Write(n.right) - s = hash.Sum(nil) - - } else { - s = append(n.left, n.right...) - } - - h.hash = s - if n.root { - h.result <- s - return - } - - isLeft = n.isLeft - n = n.parent - i++ - } -} - -// getTree obtains a BMT resource by reserving one from the pool -func (h *Hasher) getTree() *Tree { - if h.bmt != nil { - return h.bmt - } - t := h.pool.Reserve() - h.bmt = t - return t -} - -// atomic bool toggle implementing a concurrent reusable 2-state object -// atomic addint with %2 implements atomic bool toggle -// it returns true if the toggler just put it in the active/waiting state -func (n *Node) toggle() bool { - return atomic.AddInt32(&n.state, 1)%2 == 1 -} - -func hashstr(b []byte) string { - end := len(b) - if end > 4 { - end = 4 - } - return fmt.Sprintf("%x", b[:end]) -} - -func depth(n int) (d int) { - for l := (n - 1) / 2; l > 0; l /= 2 { - d++ - } - return d -} - -// finalise is following the zigzags on the tree belonging -// to the final datasegment -func (h *Hasher) finalise(n *Node, i int) (d int) { - isLeft := i%2 == 0 - for { - // when the final segment's path is going via left segments - // the incoming data is pushed to the parent upon pulling the left - // we do not need toggle the state since this condition is - // detectable - n.unbalanced = isLeft - n.right = nil - if n.initial { - n.root = true - return d - } - isLeft = n.isLeft - n = n.parent - d++ - } -} - -// EOC (end of chunk) implements the error interface -type EOC struct { - Hash []byte // read the hash of the chunk off the error -} - -// Error returns the error string -func (e *EOC) Error() string { - return fmt.Sprintf("hasher limit reached, chunk hash: %x", e.Hash) -} - -// NewEOC creates new end of chunk error with the hash -func NewEOC(hash []byte) *EOC { - return &EOC{hash} -} |