aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--bmt/bmt.go178
1 files changed, 89 insertions, 89 deletions
diff --git a/bmt/bmt.go b/bmt/bmt.go
index 340875867..c29022345 100644
--- a/bmt/bmt.go
+++ b/bmt/bmt.go
@@ -150,29 +150,29 @@ func NewTreePool(hasher BaseHasher, segmentCount, capacity int) *TreePool {
}
// Drain drains the pool until it has no more than n resources
-func (self *TreePool) Drain(n int) {
- self.lock.Lock()
- defer self.lock.Unlock()
- for len(self.c) > n {
- <-self.c
- self.count--
+func (p *TreePool) Drain(n int) {
+ p.lock.Lock()
+ defer p.lock.Unlock()
+ for len(p.c) > n {
+ <-p.c
+ p.count--
}
}
// Reserve is blocking until it returns an available Tree
// it reuses free Trees or creates a new one if size is not reached
-func (self *TreePool) Reserve() *Tree {
- self.lock.Lock()
- defer self.lock.Unlock()
+func (p *TreePool) Reserve() *Tree {
+ p.lock.Lock()
+ defer p.lock.Unlock()
var t *Tree
- if self.count == self.Capacity {
- return <-self.c
+ if p.count == p.Capacity {
+ return <-p.c
}
select {
- case t = <-self.c:
+ case t = <-p.c:
default:
- t = NewTree(self.hasher, self.SegmentSize, self.SegmentCount)
- self.count++
+ t = NewTree(p.hasher, p.SegmentSize, p.SegmentCount)
+ p.count++
}
return t
}
@@ -180,8 +180,8 @@ func (self *TreePool) Reserve() *Tree {
// Release gives back a Tree to the pool.
// This Tree is guaranteed to be in reusable state
// does not need locking
-func (self *TreePool) Release(t *Tree) {
- self.c <- t // can never fail but...
+func (p *TreePool) Release(t *Tree) {
+ p.c <- t // can never fail but...
}
// Tree is a reusable control structure representing a BMT
@@ -193,17 +193,17 @@ type Tree struct {
}
// Draw draws the BMT (badly)
-func (self *Tree) Draw(hash []byte, d int) string {
+func (t *Tree) Draw(hash []byte, d int) string {
var left, right []string
var anc []*Node
- for i, n := range self.leaves {
+ for i, n := range t.leaves {
left = append(left, fmt.Sprintf("%v", hashstr(n.left)))
if i%2 == 0 {
anc = append(anc, n.parent)
}
right = append(right, fmt.Sprintf("%v", hashstr(n.right)))
}
- anc = self.leaves
+ anc = t.leaves
var hashes [][]string
for l := 0; len(anc) > 0; l++ {
var nodes []*Node
@@ -277,42 +277,42 @@ func NewTree(hasher BaseHasher, segmentSize, segmentCount int) *Tree {
// methods needed by hash.Hash
// Size returns the size
-func (self *Hasher) Size() int {
- return self.size
+func (h *Hasher) Size() int {
+ return h.size
}
// BlockSize returns the block size
-func (self *Hasher) BlockSize() int {
- return self.blocksize
+func (h *Hasher) BlockSize() int {
+ return h.blocksize
}
// Sum returns the hash of the buffer
// hash.Hash interface Sum method appends the byte slice to the underlying
// data before it calculates and returns the hash of the chunk
-func (self *Hasher) Sum(b []byte) (r []byte) {
- t := self.bmt
- i := self.cur
+func (h *Hasher) Sum(b []byte) (r []byte) {
+ t := h.bmt
+ i := h.cur
n := t.leaves[i]
j := i
// must run strictly before all nodes calculate
// datanodes are guaranteed to have a parent
- if len(self.segment) > self.size && i > 0 && n.parent != nil {
+ if len(h.segment) > h.size && i > 0 && n.parent != nil {
n = n.parent
} else {
i *= 2
}
- d := self.finalise(n, i)
- self.writeSegment(j, self.segment, d)
- c := <-self.result
- self.releaseTree()
+ d := h.finalise(n, i)
+ h.writeSegment(j, h.segment, d)
+ c := <-h.result
+ h.releaseTree()
// sha3(length + BMT(pure_chunk))
- if self.blockLength == nil {
+ if h.blockLength == nil {
return c
}
- res := self.pool.hasher()
+ res := h.pool.hasher()
res.Reset()
- res.Write(self.blockLength)
+ res.Write(h.blockLength)
res.Write(c)
return res.Sum(nil)
}
@@ -321,8 +321,8 @@ func (self *Hasher) Sum(b []byte) (r []byte) {
// Hash waits for the hasher result and returns it
// caller must call this on a BMT Hasher being written to
-func (self *Hasher) Hash() []byte {
- return <-self.result
+func (h *Hasher) Hash() []byte {
+ return <-h.result
}
// Hasher implements the io.Writer interface
@@ -330,16 +330,16 @@ func (self *Hasher) Hash() []byte {
// Write fills the buffer to hash
// with every full segment complete launches a hasher go routine
// that shoots up the BMT
-func (self *Hasher) Write(b []byte) (int, error) {
+func (h *Hasher) Write(b []byte) (int, error) {
l := len(b)
if l <= 0 {
return 0, nil
}
- s := self.segment
- i := self.cur
- count := (self.count + 1) / 2
- need := self.count*self.size - self.cur*2*self.size
- size := self.size
+ s := h.segment
+ i := h.cur
+ count := (h.count + 1) / 2
+ need := h.count*h.size - h.cur*2*h.size
+ size := h.size
if need > size {
size *= 2
}
@@ -356,7 +356,7 @@ func (self *Hasher) Write(b []byte) (int, error) {
// read full segments and the last possibly partial segment
for need > 0 && i < count-1 {
// push all finished chunks we read
- self.writeSegment(i, s, self.depth)
+ h.writeSegment(i, s, h.depth)
need -= size
if need < 0 {
size += need
@@ -365,8 +365,8 @@ func (self *Hasher) Write(b []byte) (int, error) {
rest += size
i++
}
- self.segment = s
- self.cur = i
+ h.segment = s
+ h.cur = i
// otherwise, we can assume len(s) == 0, so all buffer is read and chunk is not yet full
return l, nil
}
@@ -376,8 +376,8 @@ func (self *Hasher) Write(b []byte) (int, error) {
// ReadFrom reads from io.Reader and appends to the data to hash using Write
// it reads so that chunk to hash is maximum length or reader reaches EOF
// caller must Reset the hasher prior to call
-func (self *Hasher) ReadFrom(r io.Reader) (m int64, err error) {
- bufsize := self.size*self.count - self.size*self.cur - len(self.segment)
+func (h *Hasher) ReadFrom(r io.Reader) (m int64, err error) {
+ bufsize := h.size*h.count - h.size*h.cur - len(h.segment)
buf := make([]byte, bufsize)
var read int
for {
@@ -385,7 +385,7 @@ func (self *Hasher) ReadFrom(r io.Reader) (m int64, err error) {
n, err = r.Read(buf)
read += n
if err == io.EOF || read == len(buf) {
- hash := self.Sum(buf[:n])
+ hash := h.Sum(buf[:n])
if read == len(buf) {
err = NewEOC(hash)
}
@@ -394,7 +394,7 @@ func (self *Hasher) ReadFrom(r io.Reader) (m int64, err error) {
if err != nil {
break
}
- n, err = self.Write(buf[:n])
+ n, err = h.Write(buf[:n])
if err != nil {
break
}
@@ -403,9 +403,9 @@ func (self *Hasher) ReadFrom(r io.Reader) (m int64, err error) {
}
// Reset needs to be called before writing to the hasher
-func (self *Hasher) Reset() {
- self.getTree()
- self.blockLength = nil
+func (h *Hasher) Reset() {
+ h.getTree()
+ h.blockLength = nil
}
// Hasher implements the SwarmHash interface
@@ -413,52 +413,52 @@ func (self *Hasher) Reset() {
// ResetWithLength needs to be called before writing to the hasher
// the argument is supposed to be the byte slice binary representation of
// the length of the data subsumed under the hash
-func (self *Hasher) ResetWithLength(l []byte) {
- self.Reset()
- self.blockLength = l
+func (h *Hasher) ResetWithLength(l []byte) {
+ h.Reset()
+ h.blockLength = l
}
// Release gives back the Tree to the pool whereby it unlocks
// it resets tree, segment and index
-func (self *Hasher) releaseTree() {
- if self.bmt != nil {
- n := self.bmt.leaves[self.cur]
+func (h *Hasher) releaseTree() {
+ if h.bmt != nil {
+ n := h.bmt.leaves[h.cur]
for ; n != nil; n = n.parent {
n.unbalanced = false
if n.parent != nil {
n.root = false
}
}
- self.pool.Release(self.bmt)
- self.bmt = nil
+ h.pool.Release(h.bmt)
+ h.bmt = nil
}
- self.cur = 0
- self.segment = nil
+ h.cur = 0
+ h.segment = nil
}
-func (self *Hasher) writeSegment(i int, s []byte, d int) {
- h := self.pool.hasher()
- n := self.bmt.leaves[i]
+func (h *Hasher) writeSegment(i int, s []byte, d int) {
+ hash := h.pool.hasher()
+ n := h.bmt.leaves[i]
- if len(s) > self.size && n.parent != nil {
+ if len(s) > h.size && n.parent != nil {
go func() {
- h.Reset()
- h.Write(s)
- s = h.Sum(nil)
+ hash.Reset()
+ hash.Write(s)
+ s = hash.Sum(nil)
if n.root {
- self.result <- s
+ h.result <- s
return
}
- self.run(n.parent, h, d, n.index, s)
+ h.run(n.parent, hash, d, n.index, s)
}()
return
}
- go self.run(n, h, d, i*2, s)
+ go h.run(n, hash, d, i*2, s)
}
-func (self *Hasher) run(n *Node, h hash.Hash, d int, i int, s []byte) {
+func (h *Hasher) run(n *Node, hash hash.Hash, d int, i int, s []byte) {
isLeft := i%2 == 0
for {
if isLeft {
@@ -470,18 +470,18 @@ func (self *Hasher) run(n *Node, h hash.Hash, d int, i int, s []byte) {
return
}
if !n.unbalanced || !isLeft || i == 0 && d == 0 {
- h.Reset()
- h.Write(n.left)
- h.Write(n.right)
- s = h.Sum(nil)
+ hash.Reset()
+ hash.Write(n.left)
+ hash.Write(n.right)
+ s = hash.Sum(nil)
} else {
s = append(n.left, n.right...)
}
- self.hash = s
+ h.hash = s
if n.root {
- self.result <- s
+ h.result <- s
return
}
@@ -492,20 +492,20 @@ func (self *Hasher) run(n *Node, h hash.Hash, d int, i int, s []byte) {
}
// getTree obtains a BMT resource by reserving one from the pool
-func (self *Hasher) getTree() *Tree {
- if self.bmt != nil {
- return self.bmt
+func (h *Hasher) getTree() *Tree {
+ if h.bmt != nil {
+ return h.bmt
}
- t := self.pool.Reserve()
- self.bmt = t
+ t := h.pool.Reserve()
+ h.bmt = t
return t
}
// atomic bool toggle implementing a concurrent reusable 2-state object
// atomic addint with %2 implements atomic bool toggle
// it returns true if the toggler just put it in the active/waiting state
-func (self *Node) toggle() bool {
- return atomic.AddInt32(&self.state, 1)%2 == 1
+func (n *Node) toggle() bool {
+ return atomic.AddInt32(&n.state, 1)%2 == 1
}
func hashstr(b []byte) string {
@@ -525,7 +525,7 @@ func depth(n int) (d int) {
// finalise is following the zigzags on the tree belonging
// to the final datasegment
-func (self *Hasher) finalise(n *Node, i int) (d int) {
+func (h *Hasher) finalise(n *Node, i int) (d int) {
isLeft := i%2 == 0
for {
// when the final segment's path is going via left segments
@@ -550,8 +550,8 @@ type EOC struct {
}
// Error returns the error string
-func (self *EOC) Error() string {
- return fmt.Sprintf("hasher limit reached, chunk hash: %x", self.Hash)
+func (e *EOC) Error() string {
+ return fmt.Sprintf("hasher limit reached, chunk hash: %x", e.Hash)
}
// NewEOC creates new end of chunk error with the hash