aboutsummaryrefslogtreecommitdiffstats
path: root/swarm/storage/pyramid.go
diff options
context:
space:
mode:
authorZahoor Mohamed <zahoor@zahoor.in>2017-09-22 04:22:51 +0800
committerFelix Lange <fjl@users.noreply.github.com>2017-09-22 04:22:51 +0800
commitd558a595adf4e89bab5b28ffde1448dc1e5768b0 (patch)
tree1316cca927bfd4dfc4a8673ae0b9c2f75724f07e /swarm/storage/pyramid.go
parent3c8656347f67dbc8e57c663ec5c26d24c4151678 (diff)
downloadgo-tangerine-d558a595adf4e89bab5b28ffde1448dc1e5768b0.tar
go-tangerine-d558a595adf4e89bab5b28ffde1448dc1e5768b0.tar.gz
go-tangerine-d558a595adf4e89bab5b28ffde1448dc1e5768b0.tar.bz2
go-tangerine-d558a595adf4e89bab5b28ffde1448dc1e5768b0.tar.lz
go-tangerine-d558a595adf4e89bab5b28ffde1448dc1e5768b0.tar.xz
go-tangerine-d558a595adf4e89bab5b28ffde1448dc1e5768b0.tar.zst
go-tangerine-d558a595adf4e89bab5b28ffde1448dc1e5768b0.zip
swarm/storage: pyramid chunker re-write (#14382)
Diffstat (limited to 'swarm/storage/pyramid.go')
-rw-r--r--swarm/storage/pyramid.go681
1 files changed, 559 insertions, 122 deletions
diff --git a/swarm/storage/pyramid.go b/swarm/storage/pyramid.go
index 74e00a497..e3be2a987 100644
--- a/swarm/storage/pyramid.go
+++ b/swarm/storage/pyramid.go
@@ -18,53 +18,112 @@ package storage
import (
"encoding/binary"
- "fmt"
+ "errors"
"io"
- "math"
- "strings"
"sync"
+ "time"
+)
+
+/*
+ The main idea of a pyramid chunker is to process the input data without knowing the entire size apriori.
+ For this to be achieved, the chunker tree is built from the ground up until the data is exhausted.
+ This opens up new aveneus such as easy append and other sort of modifications to the tree therby avoiding
+ duplication of data chunks.
+
+
+ Below is an example of a two level chunks tree. The leaf chunks are called data chunks and all the above
+ chunks are called tree chunks. The tree chunk above data chunks is level 0 and so on until it reaches
+ the root tree chunk.
+
+
+
+ T10 <- Tree chunk lvl1
+ |
+ __________________________|_____________________________
+ / | | \
+ / | \ \
+ __T00__ ___T01__ ___T02__ ___T03__ <- Tree chunks lvl 0
+ / / \ / / \ / / \ / / \
+ / / \ / / \ / / \ / / \
+ D1 D2 ... D128 D1 D2 ... D128 D1 D2 ... D128 D1 D2 ... D128 <- Data Chunks
+
+
+ The split function continuously read the data and creates data chunks and send them to storage.
+ When certain no of data chunks are created (defaultBranches), a signal is sent to create a tree
+ entry. When the level 0 tree entries reaches certain threshold (defaultBranches), another signal
+ is sent to a tree entry one level up.. and so on... until only the data is exhausted AND only one
+ tree entry is present in certain level. The key of tree entry is given out as the rootKey of the file.
+
+*/
+
+var (
+ errLoadingTreeRootChunk = errors.New("LoadTree Error: Could not load root chunk")
+ errLoadingTreeChunk = errors.New("LoadTree Error: Could not load chunk")
+)
- "github.com/ethereum/go-ethereum/common"
+const (
+ ChunkProcessors = 8
+ DefaultBranches int64 = 128
+ splitTimeout = time.Minute * 5
)
const (
- processors = 8
+ DataChunk = 0
+ TreeChunk = 1
)
-type Tree struct {
- Chunks int64
- Levels []map[int64]*Node
- Lock sync.RWMutex
+type ChunkerParams struct {
+ Branches int64
+ Hash string
+}
+
+func NewChunkerParams() *ChunkerParams {
+ return &ChunkerParams{
+ Branches: DefaultBranches,
+ Hash: SHA3Hash,
+ }
}
-type Node struct {
- Pending int64
- Size uint64
- Children []common.Hash
- Last bool
+// Entry to create a tree node
+type TreeEntry struct {
+ level int
+ branchCount int64
+ subtreeSize uint64
+ chunk []byte
+ key []byte
+ index int // used in append to indicate the index of existing tree entry
+ updatePending bool // indicates if the entry is loaded from existing tree
}
-func (self *Node) String() string {
- var children []string
- for _, node := range self.Children {
- children = append(children, node.Hex())
+func NewTreeEntry(pyramid *PyramidChunker) *TreeEntry {
+ return &TreeEntry{
+ level: 0,
+ branchCount: 0,
+ subtreeSize: 0,
+ chunk: make([]byte, pyramid.chunkSize+8),
+ key: make([]byte, pyramid.hashSize),
+ index: 0,
+ updatePending: false,
}
- return fmt.Sprintf("pending: %v, size: %v, last :%v, children: %v", self.Pending, self.Size, self.Last, strings.Join(children, ", "))
}
-type Task struct {
- Index int64 // Index of the chunk being processed
- Size uint64
- Data []byte // Binary blob of the chunk
- Last bool
+// Used by the hash processor to create a data/tree chunk and send to storage
+type chunkJob struct {
+ key Key
+ chunk []byte
+ size int64
+ parentWg *sync.WaitGroup
+ chunkType int // used to identify the tree related chunks for debugging
+ chunkLvl int // leaf-1 is level 0 and goes upwards until it reaches root
}
type PyramidChunker struct {
- hashFunc Hasher
+ hashFunc SwarmHasher
chunkSize int64
hashSize int64
branches int64
- workerCount int
+ workerCount int64
+ workerLock sync.RWMutex
}
func NewPyramidChunker(params *ChunkerParams) (self *PyramidChunker) {
@@ -73,128 +132,506 @@ func NewPyramidChunker(params *ChunkerParams) (self *PyramidChunker) {
self.branches = params.Branches
self.hashSize = int64(self.hashFunc().Size())
self.chunkSize = self.hashSize * self.branches
- self.workerCount = 1
+ self.workerCount = 0
return
}
-func (self *PyramidChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) {
+func (self *PyramidChunker) Join(key Key, chunkC chan *Chunk) LazySectionReader {
+ return &LazyChunkReader{
+ key: key,
+ chunkC: chunkC,
+ chunkSize: self.chunkSize,
+ branches: self.branches,
+ hashSize: self.hashSize,
+ }
+}
- chunks := (size + self.chunkSize - 1) / self.chunkSize
- depth := int(math.Ceil(math.Log(float64(chunks))/math.Log(float64(self.branches)))) + 1
+func (self *PyramidChunker) incrementWorkerCount() {
+ self.workerLock.Lock()
+ defer self.workerLock.Unlock()
+ self.workerCount += 1
+}
- results := Tree{
- Chunks: chunks,
- Levels: make([]map[int64]*Node, depth),
+func (self *PyramidChunker) getWorkerCount() int64 {
+ self.workerLock.Lock()
+ defer self.workerLock.Unlock()
+ return self.workerCount
+}
+
+func (self *PyramidChunker) decrementWorkerCount() {
+ self.workerLock.Lock()
+ defer self.workerLock.Unlock()
+ self.workerCount -= 1
+}
+
+func (self *PyramidChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, storageWG, processorWG *sync.WaitGroup) (Key, error) {
+ jobC := make(chan *chunkJob, 2*ChunkProcessors)
+ wg := &sync.WaitGroup{}
+ errC := make(chan error)
+ quitC := make(chan bool)
+ rootKey := make([]byte, self.hashSize)
+ chunkLevel := make([][]*TreeEntry, self.branches)
+
+ wg.Add(1)
+ go self.prepareChunks(false, chunkLevel, data, rootKey, quitC, wg, jobC, processorWG, chunkC, errC, storageWG)
+
+ // closes internal error channel if all subprocesses in the workgroup finished
+ go func() {
+
+ // waiting for all chunks to finish
+ wg.Wait()
+
+ // if storage waitgroup is non-nil, we wait for storage to finish too
+ if storageWG != nil {
+ storageWG.Wait()
+ }
+ //We close errC here because this is passed down to 8 parallel routines underneath.
+ // if a error happens in one of them.. that particular routine raises error...
+ // once they all complete successfully, the control comes back and we can safely close this here.
+ close(errC)
+ }()
+
+ defer close(quitC)
+
+ select {
+ case err := <-errC:
+ if err != nil {
+ return nil, err
+ }
+ case <-time.NewTimer(splitTimeout).C:
}
- for i := 0; i < depth; i++ {
- results.Levels[i] = make(map[int64]*Node)
+ return rootKey, nil
+
+}
+
+func (self *PyramidChunker) Append(key Key, data io.Reader, chunkC chan *Chunk, storageWG, processorWG *sync.WaitGroup) (Key, error) {
+ quitC := make(chan bool)
+ rootKey := make([]byte, self.hashSize)
+ chunkLevel := make([][]*TreeEntry, self.branches)
+
+ // Load the right most unfinished tree chunks in every level
+ self.loadTree(chunkLevel, key, chunkC, quitC)
+
+ jobC := make(chan *chunkJob, 2*ChunkProcessors)
+ wg := &sync.WaitGroup{}
+ errC := make(chan error)
+
+ wg.Add(1)
+ go self.prepareChunks(true, chunkLevel, data, rootKey, quitC, wg, jobC, processorWG, chunkC, errC, storageWG)
+
+ // closes internal error channel if all subprocesses in the workgroup finished
+ go func() {
+
+ // waiting for all chunks to finish
+ wg.Wait()
+
+ // if storage waitgroup is non-nil, we wait for storage to finish too
+ if storageWG != nil {
+ storageWG.Wait()
+ }
+ close(errC)
+ }()
+
+ defer close(quitC)
+
+ select {
+ case err := <-errC:
+ if err != nil {
+ return nil, err
+ }
+ case <-time.NewTimer(splitTimeout).C:
}
- // Create a pool of workers to crunch through the file
- tasks := make(chan *Task, 2*processors)
- pend := new(sync.WaitGroup)
- abortC := make(chan bool)
- for i := 0; i < processors; i++ {
- pend.Add(1)
- go self.processor(pend, swg, tasks, chunkC, &results)
+ return rootKey, nil
+
+}
+
+func (self *PyramidChunker) processor(id int64, jobC chan *chunkJob, chunkC chan *Chunk, errC chan error, quitC chan bool, swg, wwg *sync.WaitGroup) {
+ defer self.decrementWorkerCount()
+
+ hasher := self.hashFunc()
+ if wwg != nil {
+ defer wwg.Done()
}
- // Feed the chunks into the task pool
- read := 0
- for index := 0; ; index++ {
- buffer := make([]byte, self.chunkSize+8)
- n, err := data.Read(buffer[8:])
- read += n
- last := int64(read) == size || err == io.ErrUnexpectedEOF || err == io.EOF
- if err != nil && !last {
- close(abortC)
- break
- }
- binary.LittleEndian.PutUint64(buffer[:8], uint64(n))
- pend.Add(1)
+ for {
select {
- case tasks <- &Task{Index: int64(index), Size: uint64(n), Data: buffer[:n+8], Last: last}:
- case <-abortC:
- return nil, err
+
+ case job, ok := <-jobC:
+ if !ok {
+ return
+ }
+ self.processChunk(id, hasher, job, chunkC, swg)
+ case <-quitC:
+ return
}
- if last {
- break
+ }
+}
+
+func (self *PyramidChunker) processChunk(id int64, hasher SwarmHash, job *chunkJob, chunkC chan *Chunk, swg *sync.WaitGroup) {
+ hasher.ResetWithLength(job.chunk[:8]) // 8 bytes of length
+ hasher.Write(job.chunk[8:]) // minus 8 []byte length
+ h := hasher.Sum(nil)
+
+ newChunk := &Chunk{
+ Key: h,
+ SData: job.chunk,
+ Size: job.size,
+ wg: swg,
+ }
+
+ // report hash of this chunk one level up (keys corresponds to the proper subslice of the parent chunk)
+ copy(job.key, h)
+
+ // send off new chunk to storage
+ if chunkC != nil {
+ if swg != nil {
+ swg.Add(1)
}
}
- // Wait for the workers and return
- close(tasks)
- pend.Wait()
+ job.parentWg.Done()
- key := results.Levels[0][0].Children[0][:]
- return key, nil
+ if chunkC != nil {
+ chunkC <- newChunk
+ }
}
-func (self *PyramidChunker) processor(pend, swg *sync.WaitGroup, tasks chan *Task, chunkC chan *Chunk, results *Tree) {
- defer pend.Done()
+func (self *PyramidChunker) loadTree(chunkLevel [][]*TreeEntry, key Key, chunkC chan *Chunk, quitC chan bool) error {
+ // Get the root chunk to get the total size
+ chunk := retrieve(key, chunkC, quitC)
+ if chunk == nil {
+ return errLoadingTreeRootChunk
+ }
- // Start processing leaf chunks ad infinitum
- hasher := self.hashFunc()
- for task := range tasks {
- depth, pow := len(results.Levels)-1, self.branches
- size := task.Size
- data := task.Data
- var node *Node
- for depth >= 0 {
- // New chunk received, reset the hasher and start processing
- hasher.Reset()
- if node == nil { // Leaf node, hash the data chunk
- hasher.Write(task.Data)
- } else { // Internal node, hash the children
- size = node.Size
- data = make([]byte, hasher.Size()*len(node.Children)+8)
- binary.LittleEndian.PutUint64(data[:8], size)
-
- hasher.Write(data[:8])
- for i, hash := range node.Children {
- copy(data[i*hasher.Size()+8:], hash[:])
- hasher.Write(hash[:])
+ //if data size is less than a chunk... add a parent with update as pending
+ if chunk.Size <= self.chunkSize {
+ newEntry := &TreeEntry{
+ level: 0,
+ branchCount: 1,
+ subtreeSize: uint64(chunk.Size),
+ chunk: make([]byte, self.chunkSize+8),
+ key: make([]byte, self.hashSize),
+ index: 0,
+ updatePending: true,
+ }
+ copy(newEntry.chunk[8:], chunk.Key)
+ chunkLevel[0] = append(chunkLevel[0], newEntry)
+ return nil
+ }
+
+ var treeSize int64
+ var depth int
+ treeSize = self.chunkSize
+ for ; treeSize < chunk.Size; treeSize *= self.branches {
+ depth++
+ }
+
+ // Add the root chunk entry
+ branchCount := int64(len(chunk.SData)-8) / self.hashSize
+ newEntry := &TreeEntry{
+ level: int(depth - 1),
+ branchCount: branchCount,
+ subtreeSize: uint64(chunk.Size),
+ chunk: chunk.SData,
+ key: key,
+ index: 0,
+ updatePending: true,
+ }
+ chunkLevel[depth-1] = append(chunkLevel[depth-1], newEntry)
+
+ // Add the rest of the tree
+ for lvl := (depth - 1); lvl >= 1; lvl-- {
+
+ //TODO(jmozah): instead of loading finished branches and then trim in the end,
+ //avoid loading them in the first place
+ for _, ent := range chunkLevel[lvl] {
+ branchCount = int64(len(ent.chunk)-8) / self.hashSize
+ for i := int64(0); i < branchCount; i++ {
+ key := ent.chunk[8+(i*self.hashSize) : 8+((i+1)*self.hashSize)]
+ newChunk := retrieve(key, chunkC, quitC)
+ if newChunk == nil {
+ return errLoadingTreeChunk
}
- }
- hash := hasher.Sum(nil)
- last := task.Last || (node != nil) && node.Last
- // Insert the subresult into the memoization tree
- results.Lock.Lock()
- if node = results.Levels[depth][task.Index/pow]; node == nil {
- // Figure out the pending tasks
- pending := self.branches
- if task.Index/pow == results.Chunks/pow {
- pending = (results.Chunks + pow/self.branches - 1) / (pow / self.branches) % self.branches
+ bewBranchCount := int64(len(newChunk.SData)-8) / self.hashSize
+ newEntry := &TreeEntry{
+ level: int(lvl - 1),
+ branchCount: bewBranchCount,
+ subtreeSize: uint64(newChunk.Size),
+ chunk: newChunk.SData,
+ key: key,
+ index: 0,
+ updatePending: true,
}
- node = &Node{pending, 0, make([]common.Hash, pending), last}
- results.Levels[depth][task.Index/pow] = node
+ chunkLevel[lvl-1] = append(chunkLevel[lvl-1], newEntry)
+
}
- node.Pending--
- i := task.Index / (pow / self.branches) % self.branches
- if last {
- node.Last = true
+
+ // We need to get only the right most unfinished branch.. so trim all finished branches
+ if int64(len(chunkLevel[lvl-1])) >= self.branches {
+ chunkLevel[lvl-1] = nil
}
- copy(node.Children[i][:], hash)
- node.Size += size
- left := node.Pending
- if chunkC != nil {
- if swg != nil {
- swg.Add(1)
- }
+ }
+ }
+
+ return nil
+}
+
+func (self *PyramidChunker) prepareChunks(isAppend bool, chunkLevel [][]*TreeEntry, data io.Reader, rootKey []byte, quitC chan bool, wg *sync.WaitGroup, jobC chan *chunkJob, processorWG *sync.WaitGroup, chunkC chan *Chunk, errC chan error, storageWG *sync.WaitGroup) {
+ defer wg.Done()
+
+ chunkWG := &sync.WaitGroup{}
+ totalDataSize := 0
- chunkC <- &Chunk{Key: hash, SData: data, wg: swg}
- // TODO: consider selecting on self.quitC to avoid blocking forever on shutdown
+ // processorWG keeps track of workers spawned for hashing chunks
+ if processorWG != nil {
+ processorWG.Add(1)
+ }
+
+ self.incrementWorkerCount()
+ go self.processor(self.workerCount, jobC, chunkC, errC, quitC, storageWG, processorWG)
+
+ parent := NewTreeEntry(self)
+ var unFinishedChunk *Chunk
+
+ if isAppend == true && len(chunkLevel[0]) != 0 {
+
+ lastIndex := len(chunkLevel[0]) - 1
+ ent := chunkLevel[0][lastIndex]
+
+ if ent.branchCount < self.branches {
+ parent = &TreeEntry{
+ level: 0,
+ branchCount: ent.branchCount,
+ subtreeSize: ent.subtreeSize,
+ chunk: ent.chunk,
+ key: ent.key,
+ index: lastIndex,
+ updatePending: true,
}
- if depth+1 < len(results.Levels) {
- delete(results.Levels[depth+1], task.Index/(pow/self.branches))
+
+ lastBranch := parent.branchCount - 1
+ lastKey := parent.chunk[8+lastBranch*self.hashSize : 8+(lastBranch+1)*self.hashSize]
+
+ unFinishedChunk = retrieve(lastKey, chunkC, quitC)
+ if unFinishedChunk.Size < self.chunkSize {
+
+ parent.subtreeSize = parent.subtreeSize - uint64(unFinishedChunk.Size)
+ parent.branchCount = parent.branchCount - 1
+ } else {
+ unFinishedChunk = nil
}
+ }
+ }
- results.Lock.Unlock()
- // If there's more work to be done, leave for others
- if left > 0 {
+ for index := 0; ; index++ {
+
+ var n int
+ var err error
+ chunkData := make([]byte, self.chunkSize+8)
+ if unFinishedChunk != nil {
+ copy(chunkData, unFinishedChunk.SData)
+ n, err = data.Read(chunkData[8+unFinishedChunk.Size:])
+ n += int(unFinishedChunk.Size)
+ unFinishedChunk = nil
+ } else {
+ n, err = data.Read(chunkData[8:])
+ }
+
+ totalDataSize += n
+ if err != nil {
+ if err == io.EOF || err == io.ErrUnexpectedEOF {
+ if parent.branchCount == 1 {
+ // Data is exactly one chunk.. pick the last chunk key as root
+ chunkWG.Wait()
+ lastChunksKey := parent.chunk[8 : 8+self.hashSize]
+ copy(rootKey, lastChunksKey)
+ break
+ }
+ } else {
+ close(quitC)
break
}
- // We're the last ones in this batch, merge the children together
- depth--
- pow *= self.branches
}
- pend.Done()
+
+ // Data ended in chunk boundry.. just signal to start bulding tree
+ if n == 0 {
+ self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, true, rootKey)
+ break
+ } else {
+
+ pkey := self.enqueueDataChunk(chunkData, uint64(n), parent, chunkWG, jobC, quitC)
+
+ // update tree related parent data structures
+ parent.subtreeSize += uint64(n)
+ parent.branchCount++
+
+ // Data got exhausted... signal to send any parent tree related chunks
+ if int64(n) < self.chunkSize {
+
+ // only one data chunk .. so dont add any parent chunk
+ if parent.branchCount <= 1 {
+ chunkWG.Wait()
+ copy(rootKey, pkey)
+ break
+ }
+
+ self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, true, rootKey)
+ break
+ }
+
+ if parent.branchCount == self.branches {
+ self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, false, rootKey)
+ parent = NewTreeEntry(self)
+ }
+
+ }
+
+ workers := self.getWorkerCount()
+ if int64(len(jobC)) > workers && workers < ChunkProcessors {
+ if processorWG != nil {
+ processorWG.Add(1)
+ }
+ self.incrementWorkerCount()
+ go self.processor(self.workerCount, jobC, chunkC, errC, quitC, storageWG, processorWG)
+ }
+
+ }
+
+}
+
+func (self *PyramidChunker) buildTree(isAppend bool, chunkLevel [][]*TreeEntry, ent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool, last bool, rootKey []byte) {
+ chunkWG.Wait()
+ self.enqueueTreeChunk(chunkLevel, ent, chunkWG, jobC, quitC, last)
+
+ compress := false
+ endLvl := self.branches
+ for lvl := int64(0); lvl < self.branches; lvl++ {
+ lvlCount := int64(len(chunkLevel[lvl]))
+ if lvlCount >= self.branches {
+ endLvl = lvl + 1
+ compress = true
+ break
+ }
+ }
+
+ if compress == false && last == false {
+ return
+ }
+
+ // Wait for all the keys to be processed before compressing the tree
+ chunkWG.Wait()
+
+ for lvl := int64(ent.level); lvl < endLvl; lvl++ {
+
+ lvlCount := int64(len(chunkLevel[lvl]))
+ if lvlCount == 1 && last == true {
+ copy(rootKey, chunkLevel[lvl][0].key)
+ return
+ }
+
+ for startCount := int64(0); startCount < lvlCount; startCount += self.branches {
+
+ endCount := startCount + self.branches
+ if endCount > lvlCount {
+ endCount = lvlCount
+ }
+
+ var nextLvlCount int64
+ var tempEntry *TreeEntry
+ if len(chunkLevel[lvl+1]) > 0 {
+ nextLvlCount = int64(len(chunkLevel[lvl+1]) - 1)
+ tempEntry = chunkLevel[lvl+1][nextLvlCount]
+ }
+ if isAppend == true && tempEntry != nil && tempEntry.updatePending == true {
+ updateEntry := &TreeEntry{
+ level: int(lvl + 1),
+ branchCount: 0,
+ subtreeSize: 0,
+ chunk: make([]byte, self.chunkSize+8),
+ key: make([]byte, self.hashSize),
+ index: int(nextLvlCount),
+ updatePending: true,
+ }
+ for index := int64(0); index < lvlCount; index++ {
+ updateEntry.branchCount++
+ updateEntry.subtreeSize += chunkLevel[lvl][index].subtreeSize
+ copy(updateEntry.chunk[8+(index*self.hashSize):8+((index+1)*self.hashSize)], chunkLevel[lvl][index].key[:self.hashSize])
+ }
+
+ self.enqueueTreeChunk(chunkLevel, updateEntry, chunkWG, jobC, quitC, last)
+
+ } else {
+
+ noOfBranches := endCount - startCount
+ newEntry := &TreeEntry{
+ level: int(lvl + 1),
+ branchCount: noOfBranches,
+ subtreeSize: 0,
+ chunk: make([]byte, (noOfBranches*self.hashSize)+8),
+ key: make([]byte, self.hashSize),
+ index: int(nextLvlCount),
+ updatePending: false,
+ }
+
+ index := int64(0)
+ for i := startCount; i < endCount; i++ {
+ entry := chunkLevel[lvl][i]
+ newEntry.subtreeSize += entry.subtreeSize
+ copy(newEntry.chunk[8+(index*self.hashSize):8+((index+1)*self.hashSize)], entry.key[:self.hashSize])
+ index++
+ }
+
+ self.enqueueTreeChunk(chunkLevel, newEntry, chunkWG, jobC, quitC, last)
+
+ }
+
+ }
+
+ if isAppend == false {
+ chunkWG.Wait()
+ if compress == true {
+ chunkLevel[lvl] = nil
+ }
+ }
}
+
}
+
+func (self *PyramidChunker) enqueueTreeChunk(chunkLevel [][]*TreeEntry, ent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool, last bool) {
+ if ent != nil {
+
+ // wait for data chunks to get over before processing the tree chunk
+ if last == true {
+ chunkWG.Wait()
+ }
+
+ binary.LittleEndian.PutUint64(ent.chunk[:8], ent.subtreeSize)
+ ent.key = make([]byte, self.hashSize)
+ chunkWG.Add(1)
+ select {
+ case jobC <- &chunkJob{ent.key, ent.chunk[:ent.branchCount*self.hashSize+8], int64(ent.subtreeSize), chunkWG, TreeChunk, 0}:
+ case <-quitC:
+ }
+
+ // Update or append based on weather it is a new entry or being reused
+ if ent.updatePending == true {
+ chunkWG.Wait()
+ chunkLevel[ent.level][ent.index] = ent
+ } else {
+ chunkLevel[ent.level] = append(chunkLevel[ent.level], ent)
+ }
+
+ }
+}
+
+func (self *PyramidChunker) enqueueDataChunk(chunkData []byte, size uint64, parent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool) Key {
+ binary.LittleEndian.PutUint64(chunkData[:8], size)
+ pkey := parent.chunk[8+parent.branchCount*self.hashSize : 8+(parent.branchCount+1)*self.hashSize]
+
+ chunkWG.Add(1)
+ select {
+ case jobC <- &chunkJob{pkey, chunkData[:size+8], int64(size), chunkWG, DataChunk, -1}:
+ case <-quitC:
+ }
+
+ return pkey
+
+} \ No newline at end of file