diff options
author | obscuren <geffobscura@gmail.com> | 2015-02-13 22:35:54 +0800 |
---|---|---|
committer | obscuren <geffobscura@gmail.com> | 2015-02-13 22:35:54 +0800 |
commit | 76fa75b39439e6c8c83ebc03fb32aa615227cc44 (patch) | |
tree | 9b755296ae96dd5e4ced28d6de4d5abfdeb33915 /p2p/crypto.go | |
parent | 75d164037fb9bbf75def7c5501727fd634ef124f (diff) | |
parent | 32a9c0ca809508c1648b8f44f3e09725af7a80d3 (diff) | |
download | go-tangerine-76fa75b39439e6c8c83ebc03fb32aa615227cc44.tar go-tangerine-76fa75b39439e6c8c83ebc03fb32aa615227cc44.tar.gz go-tangerine-76fa75b39439e6c8c83ebc03fb32aa615227cc44.tar.bz2 go-tangerine-76fa75b39439e6c8c83ebc03fb32aa615227cc44.tar.lz go-tangerine-76fa75b39439e6c8c83ebc03fb32aa615227cc44.tar.xz go-tangerine-76fa75b39439e6c8c83ebc03fb32aa615227cc44.tar.zst go-tangerine-76fa75b39439e6c8c83ebc03fb32aa615227cc44.zip |
wip
Diffstat (limited to 'p2p/crypto.go')
-rw-r--r-- | p2p/crypto.go | 363 |
1 files changed, 363 insertions, 0 deletions
diff --git a/p2p/crypto.go b/p2p/crypto.go new file mode 100644 index 000000000..2692d708c --- /dev/null +++ b/p2p/crypto.go @@ -0,0 +1,363 @@ +package p2p + +import ( + // "binary" + "crypto/ecdsa" + "crypto/rand" + "fmt" + "io" + + "github.com/ethereum/go-ethereum/crypto" + "github.com/ethereum/go-ethereum/crypto/secp256k1" + ethlogger "github.com/ethereum/go-ethereum/logger" + "github.com/ethereum/go-ethereum/p2p/discover" + "github.com/obscuren/ecies" +) + +var clogger = ethlogger.NewLogger("CRYPTOID") + +const ( + sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 + sigLen = 65 // elliptic S256 + pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte + shaLen = 32 // hash length (for nonce etc) + + authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 + authRespLen = pubLen + shaLen + 1 + + eciesBytes = 65 + 16 + 32 + iHSLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake + rHSLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake +) + +type hexkey []byte + +func (self hexkey) String() string { + return fmt.Sprintf("(%d) %x", len(self), []byte(self)) +} + +func encHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, dial *discover.Node) ( + remoteID discover.NodeID, + sessionToken []byte, + err error, +) { + if dial == nil { + var remotePubkey []byte + sessionToken, remotePubkey, err = inboundEncHandshake(conn, prv, nil) + copy(remoteID[:], remotePubkey) + } else { + remoteID = dial.ID + sessionToken, err = outboundEncHandshake(conn, prv, remoteID[:], nil) + } + return remoteID, sessionToken, err +} + +// outboundEncHandshake negotiates a session token on conn. +// it should be called on the dialing side of the connection. +// +// privateKey is the local client's private key +// remotePublicKey is the remote peer's node ID +// sessionToken is the token from a previous session with this node. +func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) ( + newSessionToken []byte, + err error, +) { + auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken) + if err != nil { + return nil, err + } + if sessionToken != nil { + clogger.Debugf("session-token: %v", hexkey(sessionToken)) + } + + clogger.Debugf("initiator-nonce: %v", hexkey(initNonce)) + clogger.Debugf("initiator-random-private-key: %v", hexkey(crypto.FromECDSA(randomPrivKey))) + randomPublicKeyS, _ := exportPublicKey(&randomPrivKey.PublicKey) + clogger.Debugf("initiator-random-public-key: %v", hexkey(randomPublicKeyS)) + if _, err = conn.Write(auth); err != nil { + return nil, err + } + clogger.Debugf("initiator handshake: %v", hexkey(auth)) + + response := make([]byte, rHSLen) + if _, err = io.ReadFull(conn, response); err != nil { + return nil, err + } + recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey) + if err != nil { + return nil, err + } + + clogger.Debugf("receiver-nonce: %v", hexkey(recNonce)) + remoteRandomPubKeyS, _ := exportPublicKey(remoteRandomPubKey) + clogger.Debugf("receiver-random-public-key: %v", hexkey(remoteRandomPubKeyS)) + return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey) +} + +// authMsg creates the initiator handshake. +func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) ( + auth, initNonce []byte, + randomPrvKey *ecdsa.PrivateKey, + err error, +) { + // session init, common to both parties + remotePubKey, err := importPublicKey(remotePubKeyS) + if err != nil { + return + } + + var tokenFlag byte // = 0x00 + if sessionToken == nil { + // no session token found means we need to generate shared secret. + // ecies shared secret is used as initial session token for new peers + // generate shared key from prv and remote pubkey + if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil { + return + } + // tokenFlag = 0x00 // redundant + } else { + // for known peers, we use stored token from the previous session + tokenFlag = 0x01 + } + + //E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0) + // E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1) + // allocate msgLen long message, + var msg []byte = make([]byte, authMsgLen) + initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1] + if _, err = rand.Read(initNonce); err != nil { + return + } + // create known message + // ecdh-shared-secret^nonce for new peers + // token^nonce for old peers + var sharedSecret = xor(sessionToken, initNonce) + + // generate random keypair to use for signing + if randomPrvKey, err = crypto.GenerateKey(); err != nil { + return + } + // sign shared secret (message known to both parties): shared-secret + var signature []byte + // signature = sign(ecdhe-random, shared-secret) + // uses secp256k1.Sign + if signature, err = crypto.Sign(sharedSecret, randomPrvKey); err != nil { + return + } + + // message + // signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0 + copy(msg, signature) // copy signed-shared-secret + // H(ecdhe-random-pubk) + var randomPubKey64 []byte + if randomPubKey64, err = exportPublicKey(&randomPrvKey.PublicKey); err != nil { + return + } + var pubKey64 []byte + if pubKey64, err = exportPublicKey(&prvKey.PublicKey); err != nil { + return + } + copy(msg[sigLen:sigLen+shaLen], crypto.Sha3(randomPubKey64)) + // pubkey copied to the correct segment. + copy(msg[sigLen+shaLen:sigLen+shaLen+pubLen], pubKey64) + // nonce is already in the slice + // stick tokenFlag byte to the end + msg[authMsgLen-1] = tokenFlag + + // encrypt using remote-pubk + // auth = eciesEncrypt(remote-pubk, msg) + if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil { + return + } + return +} + +// completeHandshake is called when the initiator receives an +// authentication response (aka receiver handshake). It completes the +// handshake by reading off parameters the remote peer provides needed +// to set up the secure session. +func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) ( + respNonce []byte, + remoteRandomPubKey *ecdsa.PublicKey, + tokenFlag bool, + err error, +) { + var msg []byte + // they prove that msg is meant for me, + // I prove I possess private key if i can read it + if msg, err = crypto.Decrypt(prvKey, auth); err != nil { + return + } + + respNonce = msg[pubLen : pubLen+shaLen] + var remoteRandomPubKeyS = msg[:pubLen] + if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil { + return + } + if msg[authRespLen-1] == 0x01 { + tokenFlag = true + } + return +} + +// inboundEncHandshake negotiates a session token on conn. +// it should be called on the listening side of the connection. +// +// privateKey is the local client's private key +// sessionToken is the token from a previous session with this node. +func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) ( + token, remotePubKey []byte, + err error, +) { + // we are listening connection. we are responders in the + // handshake. Extract info from the authentication. The initiator + // starts by sending us a handshake that we need to respond to. so + // we read auth message first, then respond. + auth := make([]byte, iHSLen) + if _, err := io.ReadFull(conn, auth); err != nil { + return nil, nil, err + } + response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey) + if err != nil { + return nil, nil, err + } + clogger.Debugf("receiver-nonce: %v", hexkey(recNonce)) + clogger.Debugf("receiver-random-priv-key: %v", hexkey(crypto.FromECDSA(randomPrivKey))) + if _, err = conn.Write(response); err != nil { + return nil, nil, err + } + clogger.Debugf("receiver handshake:\n%v", hexkey(response)) + token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey) + return token, remotePubKey, err +} + +// authResp is called by peer if it accepted (but not +// initiated) the connection from the remote. It is passed the initiator +// handshake received and the session token belonging to the +// remote initiator. +// +// The first return value is the authentication response (aka receiver +// handshake) that is to be sent to the remote initiator. +func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) ( + authResp, respNonce, initNonce, remotePubKeyS []byte, + randomPrivKey *ecdsa.PrivateKey, + remoteRandomPubKey *ecdsa.PublicKey, + err error, +) { + // they prove that msg is meant for me, + // I prove I possess private key if i can read it + msg, err := crypto.Decrypt(prvKey, auth) + if err != nil { + return + } + + remotePubKeyS = msg[sigLen+shaLen : sigLen+shaLen+pubLen] + remotePubKey, _ := importPublicKey(remotePubKeyS) + + var tokenFlag byte + if sessionToken == nil { + // no session token found means we need to generate shared secret. + // ecies shared secret is used as initial session token for new peers + // generate shared key from prv and remote pubkey + if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil { + return + } + // tokenFlag = 0x00 // redundant + } else { + // for known peers, we use stored token from the previous session + tokenFlag = 0x01 + } + + // the initiator nonce is read off the end of the message + initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1] + // I prove that i own prv key (to derive shared secret, and read + // nonce off encrypted msg) and that I own shared secret they + // prove they own the private key belonging to ecdhe-random-pubk + // we can now reconstruct the signed message and recover the peers + // pubkey + var signedMsg = xor(sessionToken, initNonce) + var remoteRandomPubKeyS []byte + if remoteRandomPubKeyS, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil { + return + } + // convert to ECDSA standard + if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil { + return + } + + // now we find ourselves a long task too, fill it random + var resp = make([]byte, authRespLen) + // generate shaLen long nonce + respNonce = resp[pubLen : pubLen+shaLen] + if _, err = rand.Read(respNonce); err != nil { + return + } + // generate random keypair for session + if randomPrivKey, err = crypto.GenerateKey(); err != nil { + return + } + // responder auth message + // E(remote-pubk, ecdhe-random-pubk || nonce || 0x0) + var randomPubKeyS []byte + if randomPubKeyS, err = exportPublicKey(&randomPrivKey.PublicKey); err != nil { + return + } + copy(resp[:pubLen], randomPubKeyS) + // nonce is already in the slice + resp[authRespLen-1] = tokenFlag + + // encrypt using remote-pubk + // auth = eciesEncrypt(remote-pubk, msg) + // why not encrypt with ecdhe-random-remote + if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil { + return + } + return +} + +// newSession is called after the handshake is completed. The +// arguments are values negotiated in the handshake. The return value +// is a new session Token to be remembered for the next time we +// connect with this peer. +func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) { + // 3) Now we can trust ecdhe-random-pubk to derive new keys + //ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk) + pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey) + dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen) + if err != nil { + return nil, err + } + sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce)) + sessionToken := crypto.Sha3(sharedSecret) + return sessionToken, nil +} + +// importPublicKey unmarshals 512 bit public keys. +func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) { + var pubKey65 []byte + switch len(pubKey) { + case 64: + // add 'uncompressed key' flag + pubKey65 = append([]byte{0x04}, pubKey...) + case 65: + pubKey65 = pubKey + default: + return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) + } + return crypto.ToECDSAPub(pubKey65), nil +} + +func exportPublicKey(pubKeyEC *ecdsa.PublicKey) (pubKey []byte, err error) { + if pubKeyEC == nil { + return nil, fmt.Errorf("no ECDSA public key given") + } + return crypto.FromECDSAPub(pubKeyEC)[1:], nil +} + +func xor(one, other []byte) (xor []byte) { + xor = make([]byte, len(one)) + for i := 0; i < len(one); i++ { + xor[i] = one[i] ^ other[i] + } + return xor +} |