diff options
author | Felix Lange <fjl@users.noreply.github.com> | 2017-05-25 04:28:22 +0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-05-25 04:28:22 +0800 |
commit | 261b3e235160d30cc7176e02fd0a43f2b60409c6 (patch) | |
tree | 9d3eb6eec9fc2d30badba7bc6824560bcb317132 /crypto | |
parent | 344f25fb3ec26818c673a5b68b21b527759d7499 (diff) | |
parent | 11cf5b7eadb7fcfa56a0cb98ec4ebbddce00f4c0 (diff) | |
download | go-tangerine-261b3e235160d30cc7176e02fd0a43f2b60409c6.tar go-tangerine-261b3e235160d30cc7176e02fd0a43f2b60409c6.tar.gz go-tangerine-261b3e235160d30cc7176e02fd0a43f2b60409c6.tar.bz2 go-tangerine-261b3e235160d30cc7176e02fd0a43f2b60409c6.tar.lz go-tangerine-261b3e235160d30cc7176e02fd0a43f2b60409c6.tar.xz go-tangerine-261b3e235160d30cc7176e02fd0a43f2b60409c6.tar.zst go-tangerine-261b3e235160d30cc7176e02fd0a43f2b60409c6.zip |
Merge pull request #14336 from obscuren/metropolis-preparation
consensus, core/*, params: metropolis preparation refactor
Diffstat (limited to 'crypto')
-rw-r--r-- | crypto/bn256/bn256.go | 428 | ||||
-rw-r--r-- | crypto/bn256/bn256_test.go | 304 | ||||
-rw-r--r-- | crypto/bn256/constants.go | 44 | ||||
-rw-r--r-- | crypto/bn256/curve.go | 278 | ||||
-rw-r--r-- | crypto/bn256/example_test.go | 43 | ||||
-rw-r--r-- | crypto/bn256/gfp12.go | 200 | ||||
-rw-r--r-- | crypto/bn256/gfp2.go | 227 | ||||
-rw-r--r-- | crypto/bn256/gfp6.go | 296 | ||||
-rw-r--r-- | crypto/bn256/main_test.go | 71 | ||||
-rw-r--r-- | crypto/bn256/optate.go | 398 | ||||
-rw-r--r-- | crypto/bn256/twist.go | 249 |
11 files changed, 2538 insertions, 0 deletions
diff --git a/crypto/bn256/bn256.go b/crypto/bn256/bn256.go new file mode 100644 index 000000000..92418369b --- /dev/null +++ b/crypto/bn256/bn256.go @@ -0,0 +1,428 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package bn256 implements a particular bilinear group at the 128-bit security level. +// +// Bilinear groups are the basis of many of the new cryptographic protocols +// that have been proposed over the past decade. They consist of a triplet of +// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ +// (where gₓ is a generator of the respective group). That function is called +// a pairing function. +// +// This package specifically implements the Optimal Ate pairing over a 256-bit +// Barreto-Naehrig curve as described in +// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible +// with the implementation described in that paper. +package bn256 + +import ( + "crypto/rand" + "io" + "math/big" +) + +// BUG(agl): this implementation is not constant time. +// TODO(agl): keep GF(p²) elements in Mongomery form. + +// G1 is an abstract cyclic group. The zero value is suitable for use as the +// output of an operation, but cannot be used as an input. +type G1 struct { + p *curvePoint +} + +// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r. +func RandomG1(r io.Reader) (*big.Int, *G1, error) { + var k *big.Int + var err error + + for { + k, err = rand.Int(r, Order) + if err != nil { + return nil, nil, err + } + if k.Sign() > 0 { + break + } + } + + return k, new(G1).ScalarBaseMult(k), nil +} + +func (g *G1) String() string { + return "bn256.G1" + g.p.String() +} + +// CurvePoints returns p's curve points in big integer +func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) { + return e.p.x, e.p.y, e.p.z, e.p.t +} + +// ScalarBaseMult sets e to g*k where g is the generator of the group and +// then returns e. +func (e *G1) ScalarBaseMult(k *big.Int) *G1 { + if e.p == nil { + e.p = newCurvePoint(nil) + } + e.p.Mul(curveGen, k, new(bnPool)) + return e +} + +// ScalarMult sets e to a*k and then returns e. +func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 { + if e.p == nil { + e.p = newCurvePoint(nil) + } + e.p.Mul(a.p, k, new(bnPool)) + return e +} + +// Add sets e to a+b and then returns e. +// BUG(agl): this function is not complete: a==b fails. +func (e *G1) Add(a, b *G1) *G1 { + if e.p == nil { + e.p = newCurvePoint(nil) + } + e.p.Add(a.p, b.p, new(bnPool)) + return e +} + +// Neg sets e to -a and then returns e. +func (e *G1) Neg(a *G1) *G1 { + if e.p == nil { + e.p = newCurvePoint(nil) + } + e.p.Negative(a.p) + return e +} + +// Marshal converts n to a byte slice. +func (n *G1) Marshal() []byte { + n.p.MakeAffine(nil) + + xBytes := new(big.Int).Mod(n.p.x, P).Bytes() + yBytes := new(big.Int).Mod(n.p.y, P).Bytes() + + // Each value is a 256-bit number. + const numBytes = 256 / 8 + + ret := make([]byte, numBytes*2) + copy(ret[1*numBytes-len(xBytes):], xBytes) + copy(ret[2*numBytes-len(yBytes):], yBytes) + + return ret +} + +// Unmarshal sets e to the result of converting the output of Marshal back into +// a group element and then returns e. +func (e *G1) Unmarshal(m []byte) (*G1, bool) { + // Each value is a 256-bit number. + const numBytes = 256 / 8 + + if len(m) != 2*numBytes { + return nil, false + } + + if e.p == nil { + e.p = newCurvePoint(nil) + } + + e.p.x.SetBytes(m[0*numBytes : 1*numBytes]) + e.p.y.SetBytes(m[1*numBytes : 2*numBytes]) + + if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 { + // This is the point at infinity. + e.p.y.SetInt64(1) + e.p.z.SetInt64(0) + e.p.t.SetInt64(0) + } else { + e.p.z.SetInt64(1) + e.p.t.SetInt64(1) + + if !e.p.IsOnCurve() { + return nil, false + } + } + + return e, true +} + +// G2 is an abstract cyclic group. The zero value is suitable for use as the +// output of an operation, but cannot be used as an input. +type G2 struct { + p *twistPoint +} + +// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r. +func RandomG2(r io.Reader) (*big.Int, *G2, error) { + var k *big.Int + var err error + + for { + k, err = rand.Int(r, Order) + if err != nil { + return nil, nil, err + } + if k.Sign() > 0 { + break + } + } + + return k, new(G2).ScalarBaseMult(k), nil +} + +func (g *G2) String() string { + return "bn256.G2" + g.p.String() +} + +// CurvePoints returns the curve points of p which includes the real +// and imaginary parts of the curve point. +func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) { + return e.p.x, e.p.y, e.p.z, e.p.t +} + +// ScalarBaseMult sets e to g*k where g is the generator of the group and +// then returns out. +func (e *G2) ScalarBaseMult(k *big.Int) *G2 { + if e.p == nil { + e.p = newTwistPoint(nil) + } + e.p.Mul(twistGen, k, new(bnPool)) + return e +} + +// ScalarMult sets e to a*k and then returns e. +func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 { + if e.p == nil { + e.p = newTwistPoint(nil) + } + e.p.Mul(a.p, k, new(bnPool)) + return e +} + +// Add sets e to a+b and then returns e. +// BUG(agl): this function is not complete: a==b fails. +func (e *G2) Add(a, b *G2) *G2 { + if e.p == nil { + e.p = newTwistPoint(nil) + } + e.p.Add(a.p, b.p, new(bnPool)) + return e +} + +// Marshal converts n into a byte slice. +func (n *G2) Marshal() []byte { + n.p.MakeAffine(nil) + + xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes() + xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes() + yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes() + yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes() + + // Each value is a 256-bit number. + const numBytes = 256 / 8 + + ret := make([]byte, numBytes*4) + copy(ret[1*numBytes-len(xxBytes):], xxBytes) + copy(ret[2*numBytes-len(xyBytes):], xyBytes) + copy(ret[3*numBytes-len(yxBytes):], yxBytes) + copy(ret[4*numBytes-len(yyBytes):], yyBytes) + + return ret +} + +// Unmarshal sets e to the result of converting the output of Marshal back into +// a group element and then returns e. +func (e *G2) Unmarshal(m []byte) (*G2, bool) { + // Each value is a 256-bit number. + const numBytes = 256 / 8 + + if len(m) != 4*numBytes { + return nil, false + } + + if e.p == nil { + e.p = newTwistPoint(nil) + } + + e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes]) + e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes]) + e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes]) + e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes]) + + if e.p.x.x.Sign() == 0 && + e.p.x.y.Sign() == 0 && + e.p.y.x.Sign() == 0 && + e.p.y.y.Sign() == 0 { + // This is the point at infinity. + e.p.y.SetOne() + e.p.z.SetZero() + e.p.t.SetZero() + } else { + e.p.z.SetOne() + e.p.t.SetOne() + + if !e.p.IsOnCurve() { + return nil, false + } + } + + return e, true +} + +// GT is an abstract cyclic group. The zero value is suitable for use as the +// output of an operation, but cannot be used as an input. +type GT struct { + p *gfP12 +} + +func (g *GT) String() string { + return "bn256.GT" + g.p.String() +} + +// ScalarMult sets e to a*k and then returns e. +func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { + if e.p == nil { + e.p = newGFp12(nil) + } + e.p.Exp(a.p, k, new(bnPool)) + return e +} + +// Add sets e to a+b and then returns e. +func (e *GT) Add(a, b *GT) *GT { + if e.p == nil { + e.p = newGFp12(nil) + } + e.p.Mul(a.p, b.p, new(bnPool)) + return e +} + +// Neg sets e to -a and then returns e. +func (e *GT) Neg(a *GT) *GT { + if e.p == nil { + e.p = newGFp12(nil) + } + e.p.Invert(a.p, new(bnPool)) + return e +} + +// Marshal converts n into a byte slice. +func (n *GT) Marshal() []byte { + n.p.Minimal() + + xxxBytes := n.p.x.x.x.Bytes() + xxyBytes := n.p.x.x.y.Bytes() + xyxBytes := n.p.x.y.x.Bytes() + xyyBytes := n.p.x.y.y.Bytes() + xzxBytes := n.p.x.z.x.Bytes() + xzyBytes := n.p.x.z.y.Bytes() + yxxBytes := n.p.y.x.x.Bytes() + yxyBytes := n.p.y.x.y.Bytes() + yyxBytes := n.p.y.y.x.Bytes() + yyyBytes := n.p.y.y.y.Bytes() + yzxBytes := n.p.y.z.x.Bytes() + yzyBytes := n.p.y.z.y.Bytes() + + // Each value is a 256-bit number. + const numBytes = 256 / 8 + + ret := make([]byte, numBytes*12) + copy(ret[1*numBytes-len(xxxBytes):], xxxBytes) + copy(ret[2*numBytes-len(xxyBytes):], xxyBytes) + copy(ret[3*numBytes-len(xyxBytes):], xyxBytes) + copy(ret[4*numBytes-len(xyyBytes):], xyyBytes) + copy(ret[5*numBytes-len(xzxBytes):], xzxBytes) + copy(ret[6*numBytes-len(xzyBytes):], xzyBytes) + copy(ret[7*numBytes-len(yxxBytes):], yxxBytes) + copy(ret[8*numBytes-len(yxyBytes):], yxyBytes) + copy(ret[9*numBytes-len(yyxBytes):], yyxBytes) + copy(ret[10*numBytes-len(yyyBytes):], yyyBytes) + copy(ret[11*numBytes-len(yzxBytes):], yzxBytes) + copy(ret[12*numBytes-len(yzyBytes):], yzyBytes) + + return ret +} + +// Unmarshal sets e to the result of converting the output of Marshal back into +// a group element and then returns e. +func (e *GT) Unmarshal(m []byte) (*GT, bool) { + // Each value is a 256-bit number. + const numBytes = 256 / 8 + + if len(m) != 12*numBytes { + return nil, false + } + + if e.p == nil { + e.p = newGFp12(nil) + } + + e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes]) + e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes]) + e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes]) + e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes]) + e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes]) + e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes]) + e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes]) + e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes]) + e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes]) + e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes]) + e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes]) + e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes]) + + return e, true +} + +// Pair calculates an Optimal Ate pairing. +func Pair(g1 *G1, g2 *G2) *GT { + return >{optimalAte(g2.p, g1.p, new(bnPool))} +} + +func PairingCheck(a []*G1, b []*G2) bool { + pool := new(bnPool) + e := newGFp12(pool) + e.SetOne() + for i := 0; i < len(a); i++ { + new_e := miller(b[i].p, a[i].p, pool) + e.Mul(e, new_e, pool) + } + ret := finalExponentiation(e, pool) + e.Put(pool) + return ret.IsOne() +} + +// bnPool implements a tiny cache of *big.Int objects that's used to reduce the +// number of allocations made during processing. +type bnPool struct { + bns []*big.Int + count int +} + +func (pool *bnPool) Get() *big.Int { + if pool == nil { + return new(big.Int) + } + + pool.count++ + l := len(pool.bns) + if l == 0 { + return new(big.Int) + } + + bn := pool.bns[l-1] + pool.bns = pool.bns[:l-1] + return bn +} + +func (pool *bnPool) Put(bn *big.Int) { + if pool == nil { + return + } + pool.bns = append(pool.bns, bn) + pool.count-- +} + +func (pool *bnPool) Count() int { + return pool.count +} diff --git a/crypto/bn256/bn256_test.go b/crypto/bn256/bn256_test.go new file mode 100644 index 000000000..866065d0c --- /dev/null +++ b/crypto/bn256/bn256_test.go @@ -0,0 +1,304 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +import ( + "bytes" + "crypto/rand" + "math/big" + "testing" +) + +func TestGFp2Invert(t *testing.T) { + pool := new(bnPool) + + a := newGFp2(pool) + a.x.SetString("23423492374", 10) + a.y.SetString("12934872398472394827398470", 10) + + inv := newGFp2(pool) + inv.Invert(a, pool) + + b := newGFp2(pool).Mul(inv, a, pool) + if b.x.Int64() != 0 || b.y.Int64() != 1 { + t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y) + } + + a.Put(pool) + b.Put(pool) + inv.Put(pool) + + if c := pool.Count(); c > 0 { + t.Errorf("Pool count non-zero: %d\n", c) + } +} + +func isZero(n *big.Int) bool { + return new(big.Int).Mod(n, P).Int64() == 0 +} + +func isOne(n *big.Int) bool { + return new(big.Int).Mod(n, P).Int64() == 1 +} + +func TestGFp6Invert(t *testing.T) { + pool := new(bnPool) + + a := newGFp6(pool) + a.x.x.SetString("239487238491", 10) + a.x.y.SetString("2356249827341", 10) + a.y.x.SetString("082659782", 10) + a.y.y.SetString("182703523765", 10) + a.z.x.SetString("978236549263", 10) + a.z.y.SetString("64893242", 10) + + inv := newGFp6(pool) + inv.Invert(a, pool) + + b := newGFp6(pool).Mul(inv, a, pool) + if !isZero(b.x.x) || + !isZero(b.x.y) || + !isZero(b.y.x) || + !isZero(b.y.y) || + !isZero(b.z.x) || + !isOne(b.z.y) { + t.Fatalf("bad result for a^-1*a: %s", b) + } + + a.Put(pool) + b.Put(pool) + inv.Put(pool) + + if c := pool.Count(); c > 0 { + t.Errorf("Pool count non-zero: %d\n", c) + } +} + +func TestGFp12Invert(t *testing.T) { + pool := new(bnPool) + + a := newGFp12(pool) + a.x.x.x.SetString("239846234862342323958623", 10) + a.x.x.y.SetString("2359862352529835623", 10) + a.x.y.x.SetString("928836523", 10) + a.x.y.y.SetString("9856234", 10) + a.x.z.x.SetString("235635286", 10) + a.x.z.y.SetString("5628392833", 10) + a.y.x.x.SetString("252936598265329856238956532167968", 10) + a.y.x.y.SetString("23596239865236954178968", 10) + a.y.y.x.SetString("95421692834", 10) + a.y.y.y.SetString("236548", 10) + a.y.z.x.SetString("924523", 10) + a.y.z.y.SetString("12954623", 10) + + inv := newGFp12(pool) + inv.Invert(a, pool) + + b := newGFp12(pool).Mul(inv, a, pool) + if !isZero(b.x.x.x) || + !isZero(b.x.x.y) || + !isZero(b.x.y.x) || + !isZero(b.x.y.y) || + !isZero(b.x.z.x) || + !isZero(b.x.z.y) || + !isZero(b.y.x.x) || + !isZero(b.y.x.y) || + !isZero(b.y.y.x) || + !isZero(b.y.y.y) || + !isZero(b.y.z.x) || + !isOne(b.y.z.y) { + t.Fatalf("bad result for a^-1*a: %s", b) + } + + a.Put(pool) + b.Put(pool) + inv.Put(pool) + + if c := pool.Count(); c > 0 { + t.Errorf("Pool count non-zero: %d\n", c) + } +} + +func TestCurveImpl(t *testing.T) { + pool := new(bnPool) + + g := &curvePoint{ + pool.Get().SetInt64(1), + pool.Get().SetInt64(-2), + pool.Get().SetInt64(1), + pool.Get().SetInt64(0), + } + + x := pool.Get().SetInt64(32498273234) + X := newCurvePoint(pool).Mul(g, x, pool) + + y := pool.Get().SetInt64(98732423523) + Y := newCurvePoint(pool).Mul(g, y, pool) + + s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool) + s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool) + + if s1.x.Cmp(s2.x) != 0 || + s2.x.Cmp(s1.x) != 0 { + t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y) + } + + pool.Put(x) + X.Put(pool) + pool.Put(y) + Y.Put(pool) + s1.Put(pool) + s2.Put(pool) + g.Put(pool) + + if c := pool.Count(); c > 0 { + t.Errorf("Pool count non-zero: %d\n", c) + } +} + +func TestOrderG1(t *testing.T) { + g := new(G1).ScalarBaseMult(Order) + if !g.p.IsInfinity() { + t.Error("G1 has incorrect order") + } + + one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1)) + g.Add(g, one) + g.p.MakeAffine(nil) + if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 { + t.Errorf("1+0 != 1 in G1") + } +} + +func TestOrderG2(t *testing.T) { + g := new(G2).ScalarBaseMult(Order) + if !g.p.IsInfinity() { + t.Error("G2 has incorrect order") + } + + one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1)) + g.Add(g, one) + g.p.MakeAffine(nil) + if g.p.x.x.Cmp(one.p.x.x) != 0 || + g.p.x.y.Cmp(one.p.x.y) != 0 || + g.p.y.x.Cmp(one.p.y.x) != 0 || + g.p.y.y.Cmp(one.p.y.y) != 0 { + t.Errorf("1+0 != 1 in G2") + } +} + +func TestOrderGT(t *testing.T) { + gt := Pair(&G1{curveGen}, &G2{twistGen}) + g := new(GT).ScalarMult(gt, Order) + if !g.p.IsOne() { + t.Error("GT has incorrect order") + } +} + +func TestBilinearity(t *testing.T) { + for i := 0; i < 2; i++ { + a, p1, _ := RandomG1(rand.Reader) + b, p2, _ := RandomG2(rand.Reader) + e1 := Pair(p1, p2) + + e2 := Pair(&G1{curveGen}, &G2{twistGen}) + e2.ScalarMult(e2, a) + e2.ScalarMult(e2, b) + + minusE2 := new(GT).Neg(e2) + e1.Add(e1, minusE2) + + if !e1.p.IsOne() { + t.Fatalf("bad pairing result: %s", e1) + } + } +} + +func TestG1Marshal(t *testing.T) { + g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1)) + form := g.Marshal() + _, ok := new(G1).Unmarshal(form) + if !ok { + t.Fatalf("failed to unmarshal") + } + + g.ScalarBaseMult(Order) + form = g.Marshal() + g2, ok := new(G1).Unmarshal(form) + if !ok { + t.Fatalf("failed to unmarshal ∞") + } + if !g2.p.IsInfinity() { + t.Fatalf("∞ unmarshaled incorrectly") + } +} + +func TestG2Marshal(t *testing.T) { + g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1)) + form := g.Marshal() + _, ok := new(G2).Unmarshal(form) + if !ok { + t.Fatalf("failed to unmarshal") + } + + g.ScalarBaseMult(Order) + form = g.Marshal() + g2, ok := new(G2).Unmarshal(form) + if !ok { + t.Fatalf("failed to unmarshal ∞") + } + if !g2.p.IsInfinity() { + t.Fatalf("∞ unmarshaled incorrectly") + } +} + +func TestG1Identity(t *testing.T) { + g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0)) + if !g.p.IsInfinity() { + t.Error("failure") + } +} + +func TestG2Identity(t *testing.T) { + g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0)) + if !g.p.IsInfinity() { + t.Error("failure") + } +} + +func TestTripartiteDiffieHellman(t *testing.T) { + a, _ := rand.Int(rand.Reader, Order) + b, _ := rand.Int(rand.Reader, Order) + c, _ := rand.Int(rand.Reader, Order) + + pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal()) + qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal()) + pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal()) + qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal()) + pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal()) + qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal()) + + k1 := Pair(pb, qc) + k1.ScalarMult(k1, a) + k1Bytes := k1.Marshal() + + k2 := Pair(pc, qa) + k2.ScalarMult(k2, b) + k2Bytes := k2.Marshal() + + k3 := Pair(pa, qb) + k3.ScalarMult(k3, c) + k3Bytes := k3.Marshal() + + if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) { + t.Errorf("keys didn't agree") + } +} + +func BenchmarkPairing(b *testing.B) { + for i := 0; i < b.N; i++ { + Pair(&G1{curveGen}, &G2{twistGen}) + } +} diff --git a/crypto/bn256/constants.go b/crypto/bn256/constants.go new file mode 100644 index 000000000..ab649d7f3 --- /dev/null +++ b/crypto/bn256/constants.go @@ -0,0 +1,44 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +import ( + "math/big" +) + +func bigFromBase10(s string) *big.Int { + n, _ := new(big.Int).SetString(s, 10) + return n +} + +// u is the BN parameter that determines the prime: 1868033³. +var u = bigFromBase10("4965661367192848881") + +// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1. +var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583") + +// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1. +var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617") + +// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9. +var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")} + +// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9. +var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")} + +// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9. +var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")} + +// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9. +var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616") + +// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p). +var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966") + +// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p). +var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617") + +// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9. +var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")} diff --git a/crypto/bn256/curve.go b/crypto/bn256/curve.go new file mode 100644 index 000000000..233b1f252 --- /dev/null +++ b/crypto/bn256/curve.go @@ -0,0 +1,278 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +import ( + "math/big" +) + +// curvePoint implements the elliptic curve y²=x³+3. Points are kept in +// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on +// GF(p). +type curvePoint struct { + x, y, z, t *big.Int +} + +var curveB = new(big.Int).SetInt64(3) + +// curveGen is the generator of G₁. +var curveGen = &curvePoint{ + new(big.Int).SetInt64(1), + new(big.Int).SetInt64(-2), + new(big.Int).SetInt64(1), + new(big.Int).SetInt64(1), +} + +func newCurvePoint(pool *bnPool) *curvePoint { + return &curvePoint{ + pool.Get(), + pool.Get(), + pool.Get(), + pool.Get(), + } +} + +func (c *curvePoint) String() string { + c.MakeAffine(new(bnPool)) + return "(" + c.x.String() + ", " + c.y.String() + ")" +} + +func (c *curvePoint) Put(pool *bnPool) { + pool.Put(c.x) + pool.Put(c.y) + pool.Put(c.z) + pool.Put(c.t) +} + +func (c *curvePoint) Set(a *curvePoint) { + c.x.Set(a.x) + c.y.Set(a.y) + c.z.Set(a.z) + c.t.Set(a.t) +} + +// IsOnCurve returns true iff c is on the curve where c must be in affine form. +func (c *curvePoint) IsOnCurve() bool { + yy := new(big.Int).Mul(c.y, c.y) + xxx := new(big.Int).Mul(c.x, c.x) + xxx.Mul(xxx, c.x) + yy.Sub(yy, xxx) + yy.Sub(yy, curveB) + if yy.Sign() < 0 || yy.Cmp(P) >= 0 { + yy.Mod(yy, P) + } + return yy.Sign() == 0 +} + +func (c *curvePoint) SetInfinity() { + c.z.SetInt64(0) +} + +func (c *curvePoint) IsInfinity() bool { + return c.z.Sign() == 0 +} + +func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) { + if a.IsInfinity() { + c.Set(b) + return + } + if b.IsInfinity() { + c.Set(a) + return + } + + // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 + + // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] + // by [u1:s1:z1·z2] and [u2:s2:z1·z2] + // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ + z1z1 := pool.Get().Mul(a.z, a.z) + z1z1.Mod(z1z1, P) + z2z2 := pool.Get().Mul(b.z, b.z) + z2z2.Mod(z2z2, P) + u1 := pool.Get().Mul(a.x, z2z2) + u1.Mod(u1, P) + u2 := pool.Get().Mul(b.x, z1z1) + u2.Mod(u2, P) + + t := pool.Get().Mul(b.z, z2z2) + t.Mod(t, P) + s1 := pool.Get().Mul(a.y, t) + s1.Mod(s1, P) + + t.Mul(a.z, z1z1) + t.Mod(t, P) + s2 := pool.Get().Mul(b.y, t) + s2.Mod(s2, P) + + // Compute x = (2h)²(s²-u1-u2) + // where s = (s2-s1)/(u2-u1) is the slope of the line through + // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. + // This is also: + // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) + // = r² - j - 2v + // with the notations below. + h := pool.Get().Sub(u2, u1) + xEqual := h.Sign() == 0 + + t.Add(h, h) + // i = 4h² + i := pool.Get().Mul(t, t) + i.Mod(i, P) + // j = 4h³ + j := pool.Get().Mul(h, i) + j.Mod(j, P) + + t.Sub(s2, s1) + yEqual := t.Sign() == 0 + if xEqual && yEqual { + c.Double(a, pool) + return + } + r := pool.Get().Add(t, t) + + v := pool.Get().Mul(u1, i) + v.Mod(v, P) + + // t4 = 4(s2-s1)² + t4 := pool.Get().Mul(r, r) + t4.Mod(t4, P) + t.Add(v, v) + t6 := pool.Get().Sub(t4, j) + c.x.Sub(t6, t) + + // Set y = -(2h)³(s1 + s*(x/4h²-u1)) + // This is also + // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j + t.Sub(v, c.x) // t7 + t4.Mul(s1, j) // t8 + t4.Mod(t4, P) + t6.Add(t4, t4) // t9 + t4.Mul(r, t) // t10 + t4.Mod(t4, P) + c.y.Sub(t4, t6) + + // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 + t.Add(a.z, b.z) // t11 + t4.Mul(t, t) // t12 + t4.Mod(t4, P) + t.Sub(t4, z1z1) // t13 + t4.Sub(t, z2z2) // t14 + c.z.Mul(t4, h) + c.z.Mod(c.z, P) + + pool.Put(z1z1) + pool.Put(z2z2) + pool.Put(u1) + pool.Put(u2) + pool.Put(t) + pool.Put(s1) + pool.Put(s2) + pool.Put(h) + pool.Put(i) + pool.Put(j) + pool.Put(r) + pool.Put(v) + pool.Put(t4) + pool.Put(t6) +} + +func (c *curvePoint) Double(a *curvePoint, pool *bnPool) { + // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 + A := pool.Get().Mul(a.x, a.x) + A.Mod(A, P) + B := pool.Get().Mul(a.y, a.y) + B.Mod(B, P) + C_ := pool.Get().Mul(B, B) + C_.Mod(C_, P) + + t := pool.Get().Add(a.x, B) + t2 := pool.Get().Mul(t, t) + t2.Mod(t2, P) + t.Sub(t2, A) + t2.Sub(t, C_) + d := pool.Get().Add(t2, t2) + t.Add(A, A) + e := pool.Get().Add(t, A) + f := pool.Get().Mul(e, e) + f.Mod(f, P) + + t.Add(d, d) + c.x.Sub(f, t) + + t.Add(C_, C_) + t2.Add(t, t) + t.Add(t2, t2) + c.y.Sub(d, c.x) + t2.Mul(e, c.y) + t2.Mod(t2, P) + c.y.Sub(t2, t) + + t.Mul(a.y, a.z) + t.Mod(t, P) + c.z.Add(t, t) + + pool.Put(A) + pool.Put(B) + pool.Put(C_) + pool.Put(t) + pool.Put(t2) + pool.Put(d) + pool.Put(e) + pool.Put(f) +} + +func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint { + sum := newCurvePoint(pool) + sum.SetInfinity() + t := newCurvePoint(pool) + + for i := scalar.BitLen(); i >= 0; i-- { + t.Double(sum, pool) + if scalar.Bit(i) != 0 { + sum.Add(t, a, pool) + } else { + sum.Set(t) + } + } + + c.Set(sum) + sum.Put(pool) + t.Put(pool) + return c +} + +func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint { + if words := c.z.Bits(); len(words) == 1 && words[0] == 1 { + return c + } + + zInv := pool.Get().ModInverse(c.z, P) + t := pool.Get().Mul(c.y, zInv) + t.Mod(t, P) + zInv2 := pool.Get().Mul(zInv, zInv) + zInv2.Mod(zInv2, P) + c.y.Mul(t, zInv2) + c.y.Mod(c.y, P) + t.Mul(c.x, zInv2) + t.Mod(t, P) + c.x.Set(t) + c.z.SetInt64(1) + c.t.SetInt64(1) + + pool.Put(zInv) + pool.Put(t) + pool.Put(zInv2) + + return c +} + +func (c *curvePoint) Negative(a *curvePoint) { + c.x.Set(a.x) + c.y.Neg(a.y) + c.z.Set(a.z) + c.t.SetInt64(0) +} diff --git a/crypto/bn256/example_test.go b/crypto/bn256/example_test.go new file mode 100644 index 000000000..b2d19807a --- /dev/null +++ b/crypto/bn256/example_test.go @@ -0,0 +1,43 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +import ( + "crypto/rand" +) + +func ExamplePair() { + // This implements the tripartite Diffie-Hellman algorithm from "A One + // Round Protocol for Tripartite Diffie-Hellman", A. Joux. + // http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf + + // Each of three parties, a, b and c, generate a private value. + a, _ := rand.Int(rand.Reader, Order) + b, _ := rand.Int(rand.Reader, Order) + c, _ := rand.Int(rand.Reader, Order) + + // Then each party calculates g₁ and g₂ times their private value. + pa := new(G1).ScalarBaseMult(a) + qa := new(G2).ScalarBaseMult(a) + + pb := new(G1).ScalarBaseMult(b) + qb := new(G2).ScalarBaseMult(b) + + pc := new(G1).ScalarBaseMult(c) + qc := new(G2).ScalarBaseMult(c) + + // Now each party exchanges its public values with the other two and + // all parties can calculate the shared key. + k1 := Pair(pb, qc) + k1.ScalarMult(k1, a) + + k2 := Pair(pc, qa) + k2.ScalarMult(k2, b) + + k3 := Pair(pa, qb) + k3.ScalarMult(k3, c) + + // k1, k2 and k3 will all be equal. +} diff --git a/crypto/bn256/gfp12.go b/crypto/bn256/gfp12.go new file mode 100644 index 000000000..f084eddf2 --- /dev/null +++ b/crypto/bn256/gfp12.go @@ -0,0 +1,200 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +// For details of the algorithms used, see "Multiplication and Squaring on +// Pairing-Friendly Fields, Devegili et al. +// http://eprint.iacr.org/2006/471.pdf. + +import ( + "math/big" +) + +// gfP12 implements the field of size p¹² as a quadratic extension of gfP6 +// where ω²=τ. +type gfP12 struct { + x, y *gfP6 // value is xω + y +} + +func newGFp12(pool *bnPool) *gfP12 { + return &gfP12{newGFp6(pool), newGFp6(pool)} +} + +func (e *gfP12) String() string { + return "(" + e.x.String() + "," + e.y.String() + ")" +} + +func (e *gfP12) Put(pool *bnPool) { + e.x.Put(pool) + e.y.Put(pool) +} + +func (e *gfP12) Set(a *gfP12) *gfP12 { + e.x.Set(a.x) + e.y.Set(a.y) + return e +} + +func (e *gfP12) SetZero() *gfP12 { + e.x.SetZero() + e.y.SetZero() + return e +} + +func (e *gfP12) SetOne() *gfP12 { + e.x.SetZero() + e.y.SetOne() + return e +} + +func (e *gfP12) Minimal() { + e.x.Minimal() + e.y.Minimal() +} + +func (e *gfP12) IsZero() bool { + e.Minimal() + return e.x.IsZero() && e.y.IsZero() +} + +func (e *gfP12) IsOne() bool { + e.Minimal() + return e.x.IsZero() && e.y.IsOne() +} + +func (e *gfP12) Conjugate(a *gfP12) *gfP12 { + e.x.Negative(a.x) + e.y.Set(a.y) + return a +} + +func (e *gfP12) Negative(a *gfP12) *gfP12 { + e.x.Negative(a.x) + e.y.Negative(a.y) + return e +} + +// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p +func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 { + e.x.Frobenius(a.x, pool) + e.y.Frobenius(a.y, pool) + e.x.MulScalar(e.x, xiToPMinus1Over6, pool) + return e +} + +// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p² +func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 { + e.x.FrobeniusP2(a.x) + e.x.MulGFP(e.x, xiToPSquaredMinus1Over6) + e.y.FrobeniusP2(a.y) + return e +} + +func (e *gfP12) Add(a, b *gfP12) *gfP12 { + e.x.Add(a.x, b.x) + e.y.Add(a.y, b.y) + return e +} + +func (e *gfP12) Sub(a, b *gfP12) *gfP12 { + e.x.Sub(a.x, b.x) + e.y.Sub(a.y, b.y) + return e +} + +func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 { + tx := newGFp6(pool) + tx.Mul(a.x, b.y, pool) + t := newGFp6(pool) + t.Mul(b.x, a.y, pool) + tx.Add(tx, t) + + ty := newGFp6(pool) + ty.Mul(a.y, b.y, pool) + t.Mul(a.x, b.x, pool) + t.MulTau(t, pool) + e.y.Add(ty, t) + e.x.Set(tx) + + tx.Put(pool) + ty.Put(pool) + t.Put(pool) + return e +} + +func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 { + e.x.Mul(e.x, b, pool) + e.y.Mul(e.y, b, pool) + return e +} + +func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 { + sum := newGFp12(pool) + sum.SetOne() + t := newGFp12(pool) + + for i := power.BitLen() - 1; i >= 0; i-- { + t.Square(sum, pool) + if power.Bit(i) != 0 { + sum.Mul(t, a, pool) + } else { + sum.Set(t) + } + } + + c.Set(sum) + + sum.Put(pool) + t.Put(pool) + + return c +} + +func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 { + // Complex squaring algorithm + v0 := newGFp6(pool) + v0.Mul(a.x, a.y, pool) + + t := newGFp6(pool) + t.MulTau(a.x, pool) + t.Add(a.y, t) + ty := newGFp6(pool) + ty.Add(a.x, a.y) + ty.Mul(ty, t, pool) + ty.Sub(ty, v0) + t.MulTau(v0, pool) + ty.Sub(ty, t) + + e.y.Set(ty) + e.x.Double(v0) + + v0.Put(pool) + t.Put(pool) + ty.Put(pool) + + return e +} + +func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 { + // See "Implementing cryptographic pairings", M. Scott, section 3.2. + // ftp://136.206.11.249/pub/crypto/pairings.pdf + t1 := newGFp6(pool) + t2 := newGFp6(pool) + + t1.Square(a.x, pool) + t2.Square(a.y, pool) + t1.MulTau(t1, pool) + t1.Sub(t2, t1) + t2.Invert(t1, pool) + + e.x.Negative(a.x) + e.y.Set(a.y) + e.MulScalar(e, t2, pool) + + t1.Put(pool) + t2.Put(pool) + + return e +} diff --git a/crypto/bn256/gfp2.go b/crypto/bn256/gfp2.go new file mode 100644 index 000000000..3981f6cb4 --- /dev/null +++ b/crypto/bn256/gfp2.go @@ -0,0 +1,227 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +// For details of the algorithms used, see "Multiplication and Squaring on +// Pairing-Friendly Fields, Devegili et al. +// http://eprint.iacr.org/2006/471.pdf. + +import ( + "math/big" +) + +// gfP2 implements a field of size p² as a quadratic extension of the base +// field where i²=-1. +type gfP2 struct { + x, y *big.Int // value is xi+y. +} + +func newGFp2(pool *bnPool) *gfP2 { + return &gfP2{pool.Get(), pool.Get()} +} + +func (e *gfP2) String() string { + x := new(big.Int).Mod(e.x, P) + y := new(big.Int).Mod(e.y, P) + return "(" + x.String() + "," + y.String() + ")" +} + +func (e *gfP2) Put(pool *bnPool) { + pool.Put(e.x) + pool.Put(e.y) +} + +func (e *gfP2) Set(a *gfP2) *gfP2 { + e.x.Set(a.x) + e.y.Set(a.y) + return e +} + +func (e *gfP2) SetZero() *gfP2 { + e.x.SetInt64(0) + e.y.SetInt64(0) + return e +} + +func (e *gfP2) SetOne() *gfP2 { + e.x.SetInt64(0) + e.y.SetInt64(1) + return e +} + +func (e *gfP2) Minimal() { + if e.x.Sign() < 0 || e.x.Cmp(P) >= 0 { + e.x.Mod(e.x, P) + } + if e.y.Sign() < 0 || e.y.Cmp(P) >= 0 { + e.y.Mod(e.y, P) + } +} + +func (e *gfP2) IsZero() bool { + return e.x.Sign() == 0 && e.y.Sign() == 0 +} + +func (e *gfP2) IsOne() bool { + if e.x.Sign() != 0 { + return false + } + words := e.y.Bits() + return len(words) == 1 && words[0] == 1 +} + +func (e *gfP2) Conjugate(a *gfP2) *gfP2 { + e.y.Set(a.y) + e.x.Neg(a.x) + return e +} + +func (e *gfP2) Negative(a *gfP2) *gfP2 { + e.x.Neg(a.x) + e.y.Neg(a.y) + return e +} + +func (e *gfP2) Add(a, b *gfP2) *gfP2 { + e.x.Add(a.x, b.x) + e.y.Add(a.y, b.y) + return e +} + +func (e *gfP2) Sub(a, b *gfP2) *gfP2 { + e.x.Sub(a.x, b.x) + e.y.Sub(a.y, b.y) + return e +} + +func (e *gfP2) Double(a *gfP2) *gfP2 { + e.x.Lsh(a.x, 1) + e.y.Lsh(a.y, 1) + return e +} + +func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 { + sum := newGFp2(pool) + sum.SetOne() + t := newGFp2(pool) + + for i := power.BitLen() - 1; i >= 0; i-- { + t.Square(sum, pool) + if power.Bit(i) != 0 { + sum.Mul(t, a, pool) + } else { + sum.Set(t) + } + } + + c.Set(sum) + + sum.Put(pool) + t.Put(pool) + + return c +} + +// See "Multiplication and Squaring in Pairing-Friendly Fields", +// http://eprint.iacr.org/2006/471.pdf +func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 { + tx := pool.Get().Mul(a.x, b.y) + t := pool.Get().Mul(b.x, a.y) + tx.Add(tx, t) + tx.Mod(tx, P) + + ty := pool.Get().Mul(a.y, b.y) + t.Mul(a.x, b.x) + ty.Sub(ty, t) + e.y.Mod(ty, P) + e.x.Set(tx) + + pool.Put(tx) + pool.Put(ty) + pool.Put(t) + + return e +} + +func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 { + e.x.Mul(a.x, b) + e.y.Mul(a.y, b) + return e +} + +// MulXi sets e=ξa where ξ=i+9 and then returns e. +func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 { + // (xi+y)(i+3) = (9x+y)i+(9y-x) + tx := pool.Get().Lsh(a.x, 3) + tx.Add(tx, a.x) + tx.Add(tx, a.y) + + ty := pool.Get().Lsh(a.y, 3) + ty.Add(ty, a.y) + ty.Sub(ty, a.x) + + e.x.Set(tx) + e.y.Set(ty) + + pool.Put(tx) + pool.Put(ty) + + return e +} + +func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 { + // Complex squaring algorithm: + // (xi+b)² = (x+y)(y-x) + 2*i*x*y + t1 := pool.Get().Sub(a.y, a.x) + t2 := pool.Get().Add(a.x, a.y) + ty := pool.Get().Mul(t1, t2) + ty.Mod(ty, P) + + t1.Mul(a.x, a.y) + t1.Lsh(t1, 1) + + e.x.Mod(t1, P) + e.y.Set(ty) + + pool.Put(t1) + pool.Put(t2) + pool.Put(ty) + + return e +} + +func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 { + // See "Implementing cryptographic pairings", M. Scott, section 3.2. + // ftp://136.206.11.249/pub/crypto/pairings.pdf + t := pool.Get() + t.Mul(a.y, a.y) + t2 := pool.Get() + t2.Mul(a.x, a.x) + t.Add(t, t2) + + inv := pool.Get() + inv.ModInverse(t, P) + + e.x.Neg(a.x) + e.x.Mul(e.x, inv) + e.x.Mod(e.x, P) + + e.y.Mul(a.y, inv) + e.y.Mod(e.y, P) + + pool.Put(t) + pool.Put(t2) + pool.Put(inv) + + return e +} + +func (e *gfP2) Real() *big.Int { + return e.x +} + +func (e *gfP2) Imag() *big.Int { + return e.y +} diff --git a/crypto/bn256/gfp6.go b/crypto/bn256/gfp6.go new file mode 100644 index 000000000..218856617 --- /dev/null +++ b/crypto/bn256/gfp6.go @@ -0,0 +1,296 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +// For details of the algorithms used, see "Multiplication and Squaring on +// Pairing-Friendly Fields, Devegili et al. +// http://eprint.iacr.org/2006/471.pdf. + +import ( + "math/big" +) + +// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ +// and ξ=i+9. +type gfP6 struct { + x, y, z *gfP2 // value is xτ² + yτ + z +} + +func newGFp6(pool *bnPool) *gfP6 { + return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)} +} + +func (e *gfP6) String() string { + return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")" +} + +func (e *gfP6) Put(pool *bnPool) { + e.x.Put(pool) + e.y.Put(pool) + e.z.Put(pool) +} + +func (e *gfP6) Set(a *gfP6) *gfP6 { + e.x.Set(a.x) + e.y.Set(a.y) + e.z.Set(a.z) + return e +} + +func (e *gfP6) SetZero() *gfP6 { + e.x.SetZero() + e.y.SetZero() + e.z.SetZero() + return e +} + +func (e *gfP6) SetOne() *gfP6 { + e.x.SetZero() + e.y.SetZero() + e.z.SetOne() + return e +} + +func (e *gfP6) Minimal() { + e.x.Minimal() + e.y.Minimal() + e.z.Minimal() +} + +func (e *gfP6) IsZero() bool { + return e.x.IsZero() && e.y.IsZero() && e.z.IsZero() +} + +func (e *gfP6) IsOne() bool { + return e.x.IsZero() && e.y.IsZero() && e.z.IsOne() +} + +func (e *gfP6) Negative(a *gfP6) *gfP6 { + e.x.Negative(a.x) + e.y.Negative(a.y) + e.z.Negative(a.z) + return e +} + +func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 { + e.x.Conjugate(a.x) + e.y.Conjugate(a.y) + e.z.Conjugate(a.z) + + e.x.Mul(e.x, xiTo2PMinus2Over3, pool) + e.y.Mul(e.y, xiToPMinus1Over3, pool) + return e +} + +// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z +func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 { + // τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3) + e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3) + // τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3) + e.y.MulScalar(a.y, xiToPSquaredMinus1Over3) + e.z.Set(a.z) + return e +} + +func (e *gfP6) Add(a, b *gfP6) *gfP6 { + e.x.Add(a.x, b.x) + e.y.Add(a.y, b.y) + e.z.Add(a.z, b.z) + return e +} + +func (e *gfP6) Sub(a, b *gfP6) *gfP6 { + e.x.Sub(a.x, b.x) + e.y.Sub(a.y, b.y) + e.z.Sub(a.z, b.z) + return e +} + +func (e *gfP6) Double(a *gfP6) *gfP6 { + e.x.Double(a.x) + e.y.Double(a.y) + e.z.Double(a.z) + return e +} + +func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 { + // "Multiplication and Squaring on Pairing-Friendly Fields" + // Section 4, Karatsuba method. + // http://eprint.iacr.org/2006/471.pdf + + v0 := newGFp2(pool) + v0.Mul(a.z, b.z, pool) + v1 := newGFp2(pool) + v1.Mul(a.y, b.y, pool) + v2 := newGFp2(pool) + v2.Mul(a.x, b.x, pool) + + t0 := newGFp2(pool) + t0.Add(a.x, a.y) + t1 := newGFp2(pool) + t1.Add(b.x, b.y) + tz := newGFp2(pool) + tz.Mul(t0, t1, pool) + + tz.Sub(tz, v1) + tz.Sub(tz, v2) + tz.MulXi(tz, pool) + tz.Add(tz, v0) + + t0.Add(a.y, a.z) + t1.Add(b.y, b.z) + ty := newGFp2(pool) + ty.Mul(t0, t1, pool) + ty.Sub(ty, v0) + ty.Sub(ty, v1) + t0.MulXi(v2, pool) + ty.Add(ty, t0) + + t0.Add(a.x, a.z) + t1.Add(b.x, b.z) + tx := newGFp2(pool) + tx.Mul(t0, t1, pool) + tx.Sub(tx, v0) + tx.Add(tx, v1) + tx.Sub(tx, v2) + + e.x.Set(tx) + e.y.Set(ty) + e.z.Set(tz) + + t0.Put(pool) + t1.Put(pool) + tx.Put(pool) + ty.Put(pool) + tz.Put(pool) + v0.Put(pool) + v1.Put(pool) + v2.Put(pool) + return e +} + +func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 { + e.x.Mul(a.x, b, pool) + e.y.Mul(a.y, b, pool) + e.z.Mul(a.z, b, pool) + return e +} + +func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 { + e.x.MulScalar(a.x, b) + e.y.MulScalar(a.y, b) + e.z.MulScalar(a.z, b) + return e +} + +// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ +func (e *gfP6) MulTau(a *gfP6, pool *bnPool) { + tz := newGFp2(pool) + tz.MulXi(a.x, pool) + ty := newGFp2(pool) + ty.Set(a.y) + e.y.Set(a.z) + e.x.Set(ty) + e.z.Set(tz) + tz.Put(pool) + ty.Put(pool) +} + +func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 { + v0 := newGFp2(pool).Square(a.z, pool) + v1 := newGFp2(pool).Square(a.y, pool) + v2 := newGFp2(pool).Square(a.x, pool) + + c0 := newGFp2(pool).Add(a.x, a.y) + c0.Square(c0, pool) + c0.Sub(c0, v1) + c0.Sub(c0, v2) + c0.MulXi(c0, pool) + c0.Add(c0, v0) + + c1 := newGFp2(pool).Add(a.y, a.z) + c1.Square(c1, pool) + c1.Sub(c1, v0) + c1.Sub(c1, v1) + xiV2 := newGFp2(pool).MulXi(v2, pool) + c1.Add(c1, xiV2) + + c2 := newGFp2(pool).Add(a.x, a.z) + c2.Square(c2, pool) + c2.Sub(c2, v0) + c2.Add(c2, v1) + c2.Sub(c2, v2) + + e.x.Set(c2) + e.y.Set(c1) + e.z.Set(c0) + + v0.Put(pool) + v1.Put(pool) + v2.Put(pool) + c0.Put(pool) + c1.Put(pool) + c2.Put(pool) + xiV2.Put(pool) + + return e +} + +func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 { + // See "Implementing cryptographic pairings", M. Scott, section 3.2. + // ftp://136.206.11.249/pub/crypto/pairings.pdf + + // Here we can give a short explanation of how it works: let j be a cubic root of + // unity in GF(p²) so that 1+j+j²=0. + // Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z) + // = (xτ² + yτ + z)(Cτ²+Bτ+A) + // = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm). + // + // On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z) + // = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy) + // + // So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz) + t1 := newGFp2(pool) + + A := newGFp2(pool) + A.Square(a.z, pool) + t1.Mul(a.x, a.y, pool) + t1.MulXi(t1, pool) + A.Sub(A, t1) + + B := newGFp2(pool) + B.Square(a.x, pool) + B.MulXi(B, pool) + t1.Mul(a.y, a.z, pool) + B.Sub(B, t1) + + C_ := newGFp2(pool) + C_.Square(a.y, pool) + t1.Mul(a.x, a.z, pool) + C_.Sub(C_, t1) + + F := newGFp2(pool) + F.Mul(C_, a.y, pool) + F.MulXi(F, pool) + t1.Mul(A, a.z, pool) + F.Add(F, t1) + t1.Mul(B, a.x, pool) + t1.MulXi(t1, pool) + F.Add(F, t1) + + F.Invert(F, pool) + + e.x.Mul(C_, F, pool) + e.y.Mul(B, F, pool) + e.z.Mul(A, F, pool) + + t1.Put(pool) + A.Put(pool) + B.Put(pool) + C_.Put(pool) + F.Put(pool) + + return e +} diff --git a/crypto/bn256/main_test.go b/crypto/bn256/main_test.go new file mode 100644 index 000000000..0230f1b19 --- /dev/null +++ b/crypto/bn256/main_test.go @@ -0,0 +1,71 @@ +package bn256 + +import ( + "testing" + + "crypto/rand" +) + +func TestRandomG2Marshal(t *testing.T) { + for i := 0; i < 10; i++ { + n, g2, err := RandomG2(rand.Reader) + if err != nil { + t.Error(err) + continue + } + t.Logf("%d: %x\n", n, g2.Marshal()) + } +} + +func TestPairings(t *testing.T) { + a1 := new(G1).ScalarBaseMult(bigFromBase10("1")) + a2 := new(G1).ScalarBaseMult(bigFromBase10("2")) + a37 := new(G1).ScalarBaseMult(bigFromBase10("37")) + an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616")) + + b0 := new(G2).ScalarBaseMult(bigFromBase10("0")) + b1 := new(G2).ScalarBaseMult(bigFromBase10("1")) + b2 := new(G2).ScalarBaseMult(bigFromBase10("2")) + b27 := new(G2).ScalarBaseMult(bigFromBase10("27")) + b999 := new(G2).ScalarBaseMult(bigFromBase10("999")) + bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616")) + + p1 := Pair(a1, b1) + pn1 := Pair(a1, bn1) + np1 := Pair(an1, b1) + if pn1.String() != np1.String() { + t.Error("Pairing mismatch: e(a, -b) != e(-a, b)") + } + if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) { + t.Error("MultiAte check gave false negative!") + } + p0 := new(GT).Add(p1, pn1) + p0_2 := Pair(a1, b0) + if p0.String() != p0_2.String() { + t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1") + } + p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")) + if p0.String() != p0_3.String() { + t.Error("Pairing mismatch: e(a, b) has wrong order") + } + p2 := Pair(a2, b1) + p2_2 := Pair(a1, b2) + p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2")) + if p2.String() != p2_2.String() { + t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)") + } + if p2.String() != p2_3.String() { + t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2") + } + if p2.String() == p1.String() { + t.Error("Pairing is degenerate!") + } + if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) { + t.Error("MultiAte check gave false positive!") + } + p999 := Pair(a37, b27) + p999_2 := Pair(a1, b999) + if p999.String() != p999_2.String() { + t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)") + } +} diff --git a/crypto/bn256/optate.go b/crypto/bn256/optate.go new file mode 100644 index 000000000..68716b62b --- /dev/null +++ b/crypto/bn256/optate.go @@ -0,0 +1,398 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) { + // See the mixed addition algorithm from "Faster Computation of the + // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf + + B := newGFp2(pool).Mul(p.x, r.t, pool) + + D := newGFp2(pool).Add(p.y, r.z) + D.Square(D, pool) + D.Sub(D, r2) + D.Sub(D, r.t) + D.Mul(D, r.t, pool) + + H := newGFp2(pool).Sub(B, r.x) + I := newGFp2(pool).Square(H, pool) + + E := newGFp2(pool).Add(I, I) + E.Add(E, E) + + J := newGFp2(pool).Mul(H, E, pool) + + L1 := newGFp2(pool).Sub(D, r.y) + L1.Sub(L1, r.y) + + V := newGFp2(pool).Mul(r.x, E, pool) + + rOut = newTwistPoint(pool) + rOut.x.Square(L1, pool) + rOut.x.Sub(rOut.x, J) + rOut.x.Sub(rOut.x, V) + rOut.x.Sub(rOut.x, V) + + rOut.z.Add(r.z, H) + rOut.z.Square(rOut.z, pool) + rOut.z.Sub(rOut.z, r.t) + rOut.z.Sub(rOut.z, I) + + t := newGFp2(pool).Sub(V, rOut.x) + t.Mul(t, L1, pool) + t2 := newGFp2(pool).Mul(r.y, J, pool) + t2.Add(t2, t2) + rOut.y.Sub(t, t2) + + rOut.t.Square(rOut.z, pool) + + t.Add(p.y, rOut.z) + t.Square(t, pool) + t.Sub(t, r2) + t.Sub(t, rOut.t) + + t2.Mul(L1, p.x, pool) + t2.Add(t2, t2) + a = newGFp2(pool) + a.Sub(t2, t) + + c = newGFp2(pool) + c.MulScalar(rOut.z, q.y) + c.Add(c, c) + + b = newGFp2(pool) + b.SetZero() + b.Sub(b, L1) + b.MulScalar(b, q.x) + b.Add(b, b) + + B.Put(pool) + D.Put(pool) + H.Put(pool) + I.Put(pool) + E.Put(pool) + J.Put(pool) + L1.Put(pool) + V.Put(pool) + t.Put(pool) + t2.Put(pool) + + return +} + +func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) { + // See the doubling algorithm for a=0 from "Faster Computation of the + // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf + + A := newGFp2(pool).Square(r.x, pool) + B := newGFp2(pool).Square(r.y, pool) + C_ := newGFp2(pool).Square(B, pool) + + D := newGFp2(pool).Add(r.x, B) + D.Square(D, pool) + D.Sub(D, A) + D.Sub(D, C_) + D.Add(D, D) + + E := newGFp2(pool).Add(A, A) + E.Add(E, A) + + G := newGFp2(pool).Square(E, pool) + + rOut = newTwistPoint(pool) + rOut.x.Sub(G, D) + rOut.x.Sub(rOut.x, D) + + rOut.z.Add(r.y, r.z) + rOut.z.Square(rOut.z, pool) + rOut.z.Sub(rOut.z, B) + rOut.z.Sub(rOut.z, r.t) + + rOut.y.Sub(D, rOut.x) + rOut.y.Mul(rOut.y, E, pool) + t := newGFp2(pool).Add(C_, C_) + t.Add(t, t) + t.Add(t, t) + rOut.y.Sub(rOut.y, t) + + rOut.t.Square(rOut.z, pool) + + t.Mul(E, r.t, pool) + t.Add(t, t) + b = newGFp2(pool) + b.SetZero() + b.Sub(b, t) + b.MulScalar(b, q.x) + + a = newGFp2(pool) + a.Add(r.x, E) + a.Square(a, pool) + a.Sub(a, A) + a.Sub(a, G) + t.Add(B, B) + t.Add(t, t) + a.Sub(a, t) + + c = newGFp2(pool) + c.Mul(rOut.z, r.t, pool) + c.Add(c, c) + c.MulScalar(c, q.y) + + A.Put(pool) + B.Put(pool) + C_.Put(pool) + D.Put(pool) + E.Put(pool) + G.Put(pool) + t.Put(pool) + + return +} + +func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) { + a2 := newGFp6(pool) + a2.x.SetZero() + a2.y.Set(a) + a2.z.Set(b) + a2.Mul(a2, ret.x, pool) + t3 := newGFp6(pool).MulScalar(ret.y, c, pool) + + t := newGFp2(pool) + t.Add(b, c) + t2 := newGFp6(pool) + t2.x.SetZero() + t2.y.Set(a) + t2.z.Set(t) + ret.x.Add(ret.x, ret.y) + + ret.y.Set(t3) + + ret.x.Mul(ret.x, t2, pool) + ret.x.Sub(ret.x, a2) + ret.x.Sub(ret.x, ret.y) + a2.MulTau(a2, pool) + ret.y.Add(ret.y, a2) + + a2.Put(pool) + t3.Put(pool) + t2.Put(pool) + t.Put(pool) +} + +// sixuPlus2NAF is 6u+2 in non-adjacent form. +var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, + 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1, + 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, + 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1} + +// miller implements the Miller loop for calculating the Optimal Ate pairing. +// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf +func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 { + ret := newGFp12(pool) + ret.SetOne() + + aAffine := newTwistPoint(pool) + aAffine.Set(q) + aAffine.MakeAffine(pool) + + bAffine := newCurvePoint(pool) + bAffine.Set(p) + bAffine.MakeAffine(pool) + + minusA := newTwistPoint(pool) + minusA.Negative(aAffine, pool) + + r := newTwistPoint(pool) + r.Set(aAffine) + + r2 := newGFp2(pool) + r2.Square(aAffine.y, pool) + + for i := len(sixuPlus2NAF) - 1; i > 0; i-- { + a, b, c, newR := lineFunctionDouble(r, bAffine, pool) + if i != len(sixuPlus2NAF)-1 { + ret.Square(ret, pool) + } + + mulLine(ret, a, b, c, pool) + a.Put(pool) + b.Put(pool) + c.Put(pool) + r.Put(pool) + r = newR + + switch sixuPlus2NAF[i-1] { + case 1: + a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool) + case -1: + a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool) + default: + continue + } + + mulLine(ret, a, b, c, pool) + a.Put(pool) + b.Put(pool) + c.Put(pool) + r.Put(pool) + r = newR + } + + // In order to calculate Q1 we have to convert q from the sextic twist + // to the full GF(p^12) group, apply the Frobenius there, and convert + // back. + // + // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just + // x for a moment, then after applying the Frobenius, we have x̄ω^(2p) + // where x̄ is the conjugate of x. If we are going to apply the inverse + // isomorphism we need a value with a single coefficient of ω² so we + // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of + // p, 2p-2 is a multiple of six. Therefore we can rewrite as + // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the + // ω². + // + // A similar argument can be made for the y value. + + q1 := newTwistPoint(pool) + q1.x.Conjugate(aAffine.x) + q1.x.Mul(q1.x, xiToPMinus1Over3, pool) + q1.y.Conjugate(aAffine.y) + q1.y.Mul(q1.y, xiToPMinus1Over2, pool) + q1.z.SetOne() + q1.t.SetOne() + + // For Q2 we are applying the p² Frobenius. The two conjugations cancel + // out and we are left only with the factors from the isomorphism. In + // the case of x, we end up with a pure number which is why + // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We + // ignore this to end up with -Q2. + + minusQ2 := newTwistPoint(pool) + minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3) + minusQ2.y.Set(aAffine.y) + minusQ2.z.SetOne() + minusQ2.t.SetOne() + + r2.Square(q1.y, pool) + a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool) + mulLine(ret, a, b, c, pool) + a.Put(pool) + b.Put(pool) + c.Put(pool) + r.Put(pool) + r = newR + + r2.Square(minusQ2.y, pool) + a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool) + mulLine(ret, a, b, c, pool) + a.Put(pool) + b.Put(pool) + c.Put(pool) + r.Put(pool) + r = newR + + aAffine.Put(pool) + bAffine.Put(pool) + minusA.Put(pool) + r.Put(pool) + r2.Put(pool) + + return ret +} + +// finalExponentiation computes the (p¹²-1)/Order-th power of an element of +// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from +// http://cryptojedi.org/papers/dclxvi-20100714.pdf) +func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 { + t1 := newGFp12(pool) + + // This is the p^6-Frobenius + t1.x.Negative(in.x) + t1.y.Set(in.y) + + inv := newGFp12(pool) + inv.Invert(in, pool) + t1.Mul(t1, inv, pool) + + t2 := newGFp12(pool).FrobeniusP2(t1, pool) + t1.Mul(t1, t2, pool) + + fp := newGFp12(pool).Frobenius(t1, pool) + fp2 := newGFp12(pool).FrobeniusP2(t1, pool) + fp3 := newGFp12(pool).Frobenius(fp2, pool) + + fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool) + fu.Exp(t1, u, pool) + fu2.Exp(fu, u, pool) + fu3.Exp(fu2, u, pool) + + y3 := newGFp12(pool).Frobenius(fu, pool) + fu2p := newGFp12(pool).Frobenius(fu2, pool) + fu3p := newGFp12(pool).Frobenius(fu3, pool) + y2 := newGFp12(pool).FrobeniusP2(fu2, pool) + + y0 := newGFp12(pool) + y0.Mul(fp, fp2, pool) + y0.Mul(y0, fp3, pool) + + y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool) + y1.Conjugate(t1) + y5.Conjugate(fu2) + y3.Conjugate(y3) + y4.Mul(fu, fu2p, pool) + y4.Conjugate(y4) + + y6 := newGFp12(pool) + y6.Mul(fu3, fu3p, pool) + y6.Conjugate(y6) + + t0 := newGFp12(pool) + t0.Square(y6, pool) + t0.Mul(t0, y4, pool) + t0.Mul(t0, y5, pool) + t1.Mul(y3, y5, pool) + t1.Mul(t1, t0, pool) + t0.Mul(t0, y2, pool) + t1.Square(t1, pool) + t1.Mul(t1, t0, pool) + t1.Square(t1, pool) + t0.Mul(t1, y1, pool) + t1.Mul(t1, y0, pool) + t0.Square(t0, pool) + t0.Mul(t0, t1, pool) + + inv.Put(pool) + t1.Put(pool) + t2.Put(pool) + fp.Put(pool) + fp2.Put(pool) + fp3.Put(pool) + fu.Put(pool) + fu2.Put(pool) + fu3.Put(pool) + fu2p.Put(pool) + fu3p.Put(pool) + y0.Put(pool) + y1.Put(pool) + y2.Put(pool) + y3.Put(pool) + y4.Put(pool) + y5.Put(pool) + y6.Put(pool) + + return t0 +} + +func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 { + e := miller(a, b, pool) + ret := finalExponentiation(e, pool) + e.Put(pool) + + if a.IsInfinity() || b.IsInfinity() { + ret.SetOne() + } + + return ret +} diff --git a/crypto/bn256/twist.go b/crypto/bn256/twist.go new file mode 100644 index 000000000..95b966e2e --- /dev/null +++ b/crypto/bn256/twist.go @@ -0,0 +1,249 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bn256 + +import ( + "math/big" +) + +// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are +// kept in Jacobian form and t=z² when valid. The group G₂ is the set of +// n-torsion points of this curve over GF(p²) (where n = Order) +type twistPoint struct { + x, y, z, t *gfP2 +} + +var twistB = &gfP2{ + bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"), + bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"), +} + +// twistGen is the generator of group G₂. +var twistGen = &twistPoint{ + &gfP2{ + bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"), + bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"), + }, + &gfP2{ + bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"), + bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"), + }, + &gfP2{ + bigFromBase10("0"), + bigFromBase10("1"), + }, + &gfP2{ + bigFromBase10("0"), + bigFromBase10("1"), + }, +} + +func newTwistPoint(pool *bnPool) *twistPoint { + return &twistPoint{ + newGFp2(pool), + newGFp2(pool), + newGFp2(pool), + newGFp2(pool), + } +} + +func (c *twistPoint) String() string { + return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")" +} + +func (c *twistPoint) Put(pool *bnPool) { + c.x.Put(pool) + c.y.Put(pool) + c.z.Put(pool) + c.t.Put(pool) +} + +func (c *twistPoint) Set(a *twistPoint) { + c.x.Set(a.x) + c.y.Set(a.y) + c.z.Set(a.z) + c.t.Set(a.t) +} + +// IsOnCurve returns true iff c is on the curve where c must be in affine form. +func (c *twistPoint) IsOnCurve() bool { + pool := new(bnPool) + yy := newGFp2(pool).Square(c.y, pool) + xxx := newGFp2(pool).Square(c.x, pool) + xxx.Mul(xxx, c.x, pool) + yy.Sub(yy, xxx) + yy.Sub(yy, twistB) + yy.Minimal() + return yy.x.Sign() == 0 && yy.y.Sign() == 0 +} + +func (c *twistPoint) SetInfinity() { + c.z.SetZero() +} + +func (c *twistPoint) IsInfinity() bool { + return c.z.IsZero() +} + +func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) { + // For additional comments, see the same function in curve.go. + + if a.IsInfinity() { + c.Set(b) + return + } + if b.IsInfinity() { + c.Set(a) + return + } + + // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 + z1z1 := newGFp2(pool).Square(a.z, pool) + z2z2 := newGFp2(pool).Square(b.z, pool) + u1 := newGFp2(pool).Mul(a.x, z2z2, pool) + u2 := newGFp2(pool).Mul(b.x, z1z1, pool) + + t := newGFp2(pool).Mul(b.z, z2z2, pool) + s1 := newGFp2(pool).Mul(a.y, t, pool) + + t.Mul(a.z, z1z1, pool) + s2 := newGFp2(pool).Mul(b.y, t, pool) + + h := newGFp2(pool).Sub(u2, u1) + xEqual := h.IsZero() + + t.Add(h, h) + i := newGFp2(pool).Square(t, pool) + j := newGFp2(pool).Mul(h, i, pool) + + t.Sub(s2, s1) + yEqual := t.IsZero() + if xEqual && yEqual { + c.Double(a, pool) + return + } + r := newGFp2(pool).Add(t, t) + + v := newGFp2(pool).Mul(u1, i, pool) + + t4 := newGFp2(pool).Square(r, pool) + t.Add(v, v) + t6 := newGFp2(pool).Sub(t4, j) + c.x.Sub(t6, t) + + t.Sub(v, c.x) // t7 + t4.Mul(s1, j, pool) // t8 + t6.Add(t4, t4) // t9 + t4.Mul(r, t, pool) // t10 + c.y.Sub(t4, t6) + + t.Add(a.z, b.z) // t11 + t4.Square(t, pool) // t12 + t.Sub(t4, z1z1) // t13 + t4.Sub(t, z2z2) // t14 + c.z.Mul(t4, h, pool) + + z1z1.Put(pool) + z2z2.Put(pool) + u1.Put(pool) + u2.Put(pool) + t.Put(pool) + s1.Put(pool) + s2.Put(pool) + h.Put(pool) + i.Put(pool) + j.Put(pool) + r.Put(pool) + v.Put(pool) + t4.Put(pool) + t6.Put(pool) +} + +func (c *twistPoint) Double(a *twistPoint, pool *bnPool) { + // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 + A := newGFp2(pool).Square(a.x, pool) + B := newGFp2(pool).Square(a.y, pool) + C_ := newGFp2(pool).Square(B, pool) + + t := newGFp2(pool).Add(a.x, B) + t2 := newGFp2(pool).Square(t, pool) + t.Sub(t2, A) + t2.Sub(t, C_) + d := newGFp2(pool).Add(t2, t2) + t.Add(A, A) + e := newGFp2(pool).Add(t, A) + f := newGFp2(pool).Square(e, pool) + + t.Add(d, d) + c.x.Sub(f, t) + + t.Add(C_, C_) + t2.Add(t, t) + t.Add(t2, t2) + c.y.Sub(d, c.x) + t2.Mul(e, c.y, pool) + c.y.Sub(t2, t) + + t.Mul(a.y, a.z, pool) + c.z.Add(t, t) + + A.Put(pool) + B.Put(pool) + C_.Put(pool) + t.Put(pool) + t2.Put(pool) + d.Put(pool) + e.Put(pool) + f.Put(pool) +} + +func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint { + sum := newTwistPoint(pool) + sum.SetInfinity() + t := newTwistPoint(pool) + + for i := scalar.BitLen(); i >= 0; i-- { + t.Double(sum, pool) + if scalar.Bit(i) != 0 { + sum.Add(t, a, pool) + } else { + sum.Set(t) + } + } + + c.Set(sum) + sum.Put(pool) + t.Put(pool) + return c +} + +func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint { + if c.z.IsOne() { + return c + } + + zInv := newGFp2(pool).Invert(c.z, pool) + t := newGFp2(pool).Mul(c.y, zInv, pool) + zInv2 := newGFp2(pool).Square(zInv, pool) + c.y.Mul(t, zInv2, pool) + t.Mul(c.x, zInv2, pool) + c.x.Set(t) + c.z.SetOne() + c.t.SetOne() + + zInv.Put(pool) + t.Put(pool) + zInv2.Put(pool) + + return c +} + +func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) { + c.x.Set(a.x) + c.y.SetZero() + c.y.Sub(c.y, a.y) + c.z.Set(a.z) + c.t.SetZero() +} |