diff options
author | Ricardo Catalinas Jiménez <r@untroubled.be> | 2016-02-22 06:05:00 +0800 |
---|---|---|
committer | Ricardo Catalinas Jiménez <r@untroubled.be> | 2016-02-22 06:34:34 +0800 |
commit | e4b138a5931b309805162610870df50165e61a8f (patch) | |
tree | 6f97b16fcffc263dfab7094a07288a0a28a5af6c /crypto/sha3/doc.go | |
parent | 0a1da69fac3766b48a116580295f98df93122503 (diff) | |
download | go-tangerine-e4b138a5931b309805162610870df50165e61a8f.tar go-tangerine-e4b138a5931b309805162610870df50165e61a8f.tar.gz go-tangerine-e4b138a5931b309805162610870df50165e61a8f.tar.bz2 go-tangerine-e4b138a5931b309805162610870df50165e61a8f.tar.lz go-tangerine-e4b138a5931b309805162610870df50165e61a8f.tar.xz go-tangerine-e4b138a5931b309805162610870df50165e61a8f.tar.zst go-tangerine-e4b138a5931b309805162610870df50165e61a8f.zip |
crypto/sha3: Copy latest code from "golang.org/x/crypto/sha3"
Revision: 1f22c0103821b9390939b6776727195525381532
Diffstat (limited to 'crypto/sha3/doc.go')
-rw-r--r-- | crypto/sha3/doc.go | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/crypto/sha3/doc.go b/crypto/sha3/doc.go new file mode 100644 index 000000000..a0ee3ae72 --- /dev/null +++ b/crypto/sha3/doc.go @@ -0,0 +1,66 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package sha3 implements the SHA-3 fixed-output-length hash functions and +// the SHAKE variable-output-length hash functions defined by FIPS-202. +// +// Both types of hash function use the "sponge" construction and the Keccak +// permutation. For a detailed specification see http://keccak.noekeon.org/ +// +// +// Guidance +// +// If you aren't sure what function you need, use SHAKE256 with at least 64 +// bytes of output. The SHAKE instances are faster than the SHA3 instances; +// the latter have to allocate memory to conform to the hash.Hash interface. +// +// If you need a secret-key MAC (message authentication code), prepend the +// secret key to the input, hash with SHAKE256 and read at least 32 bytes of +// output. +// +// +// Security strengths +// +// The SHA3-x (x equals 224, 256, 384, or 512) functions have a security +// strength against preimage attacks of x bits. Since they only produce "x" +// bits of output, their collision-resistance is only "x/2" bits. +// +// The SHAKE-256 and -128 functions have a generic security strength of 256 and +// 128 bits against all attacks, provided that at least 2x bits of their output +// is used. Requesting more than 64 or 32 bytes of output, respectively, does +// not increase the collision-resistance of the SHAKE functions. +// +// +// The sponge construction +// +// A sponge builds a pseudo-random function from a public pseudo-random +// permutation, by applying the permutation to a state of "rate + capacity" +// bytes, but hiding "capacity" of the bytes. +// +// A sponge starts out with a zero state. To hash an input using a sponge, up +// to "rate" bytes of the input are XORed into the sponge's state. The sponge +// is then "full" and the permutation is applied to "empty" it. This process is +// repeated until all the input has been "absorbed". The input is then padded. +// The digest is "squeezed" from the sponge in the same way, except that output +// output is copied out instead of input being XORed in. +// +// A sponge is parameterized by its generic security strength, which is equal +// to half its capacity; capacity + rate is equal to the permutation's width. +// Since the KeccakF-1600 permutation is 1600 bits (200 bytes) wide, this means +// that the security strength of a sponge instance is equal to (1600 - bitrate) / 2. +// +// +// Recommendations +// +// The SHAKE functions are recommended for most new uses. They can produce +// output of arbitrary length. SHAKE256, with an output length of at least +// 64 bytes, provides 256-bit security against all attacks. The Keccak team +// recommends it for most applications upgrading from SHA2-512. (NIST chose a +// much stronger, but much slower, sponge instance for SHA3-512.) +// +// The SHA-3 functions are "drop-in" replacements for the SHA-2 functions. +// They produce output of the same length, with the same security strengths +// against all attacks. This means, in particular, that SHA3-256 only has +// 128-bit collision resistance, because its output length is 32 bytes. +package sha3 // import "golang.org/x/crypto/sha3" |