aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/bn256/optate.go
diff options
context:
space:
mode:
authorPéter Szilágyi <peterke@gmail.com>2018-03-05 20:33:45 +0800
committerGitHub <noreply@github.com>2018-03-05 20:33:45 +0800
commitbd6879ac518431174a490ba42f7e6e822dcb3ee1 (patch)
tree343d26a5485c7b651dd9e24cd4382c41c61b0264 /crypto/bn256/optate.go
parent223fe3f26e8ec7133ed1d7ed3d460c8fc86ef9f8 (diff)
downloadgo-tangerine-bd6879ac518431174a490ba42f7e6e822dcb3ee1.tar
go-tangerine-bd6879ac518431174a490ba42f7e6e822dcb3ee1.tar.gz
go-tangerine-bd6879ac518431174a490ba42f7e6e822dcb3ee1.tar.bz2
go-tangerine-bd6879ac518431174a490ba42f7e6e822dcb3ee1.tar.lz
go-tangerine-bd6879ac518431174a490ba42f7e6e822dcb3ee1.tar.xz
go-tangerine-bd6879ac518431174a490ba42f7e6e822dcb3ee1.tar.zst
go-tangerine-bd6879ac518431174a490ba42f7e6e822dcb3ee1.zip
core/vm, crypto/bn256: switch over to cloudflare library (#16203)
* core/vm, crypto/bn256: switch over to cloudflare library * crypto/bn256: unmarshal constraint + start pure go impl * crypto/bn256: combo cloudflare and google lib * travis: drop 386 test job
Diffstat (limited to 'crypto/bn256/optate.go')
-rw-r--r--crypto/bn256/optate.go397
1 files changed, 0 insertions, 397 deletions
diff --git a/crypto/bn256/optate.go b/crypto/bn256/optate.go
deleted file mode 100644
index 9d6957062..000000000
--- a/crypto/bn256/optate.go
+++ /dev/null
@@ -1,397 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
- // See the mixed addition algorithm from "Faster Computation of the
- // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
-
- B := newGFp2(pool).Mul(p.x, r.t, pool)
-
- D := newGFp2(pool).Add(p.y, r.z)
- D.Square(D, pool)
- D.Sub(D, r2)
- D.Sub(D, r.t)
- D.Mul(D, r.t, pool)
-
- H := newGFp2(pool).Sub(B, r.x)
- I := newGFp2(pool).Square(H, pool)
-
- E := newGFp2(pool).Add(I, I)
- E.Add(E, E)
-
- J := newGFp2(pool).Mul(H, E, pool)
-
- L1 := newGFp2(pool).Sub(D, r.y)
- L1.Sub(L1, r.y)
-
- V := newGFp2(pool).Mul(r.x, E, pool)
-
- rOut = newTwistPoint(pool)
- rOut.x.Square(L1, pool)
- rOut.x.Sub(rOut.x, J)
- rOut.x.Sub(rOut.x, V)
- rOut.x.Sub(rOut.x, V)
-
- rOut.z.Add(r.z, H)
- rOut.z.Square(rOut.z, pool)
- rOut.z.Sub(rOut.z, r.t)
- rOut.z.Sub(rOut.z, I)
-
- t := newGFp2(pool).Sub(V, rOut.x)
- t.Mul(t, L1, pool)
- t2 := newGFp2(pool).Mul(r.y, J, pool)
- t2.Add(t2, t2)
- rOut.y.Sub(t, t2)
-
- rOut.t.Square(rOut.z, pool)
-
- t.Add(p.y, rOut.z)
- t.Square(t, pool)
- t.Sub(t, r2)
- t.Sub(t, rOut.t)
-
- t2.Mul(L1, p.x, pool)
- t2.Add(t2, t2)
- a = newGFp2(pool)
- a.Sub(t2, t)
-
- c = newGFp2(pool)
- c.MulScalar(rOut.z, q.y)
- c.Add(c, c)
-
- b = newGFp2(pool)
- b.SetZero()
- b.Sub(b, L1)
- b.MulScalar(b, q.x)
- b.Add(b, b)
-
- B.Put(pool)
- D.Put(pool)
- H.Put(pool)
- I.Put(pool)
- E.Put(pool)
- J.Put(pool)
- L1.Put(pool)
- V.Put(pool)
- t.Put(pool)
- t2.Put(pool)
-
- return
-}
-
-func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
- // See the doubling algorithm for a=0 from "Faster Computation of the
- // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
-
- A := newGFp2(pool).Square(r.x, pool)
- B := newGFp2(pool).Square(r.y, pool)
- C_ := newGFp2(pool).Square(B, pool)
-
- D := newGFp2(pool).Add(r.x, B)
- D.Square(D, pool)
- D.Sub(D, A)
- D.Sub(D, C_)
- D.Add(D, D)
-
- E := newGFp2(pool).Add(A, A)
- E.Add(E, A)
-
- G := newGFp2(pool).Square(E, pool)
-
- rOut = newTwistPoint(pool)
- rOut.x.Sub(G, D)
- rOut.x.Sub(rOut.x, D)
-
- rOut.z.Add(r.y, r.z)
- rOut.z.Square(rOut.z, pool)
- rOut.z.Sub(rOut.z, B)
- rOut.z.Sub(rOut.z, r.t)
-
- rOut.y.Sub(D, rOut.x)
- rOut.y.Mul(rOut.y, E, pool)
- t := newGFp2(pool).Add(C_, C_)
- t.Add(t, t)
- t.Add(t, t)
- rOut.y.Sub(rOut.y, t)
-
- rOut.t.Square(rOut.z, pool)
-
- t.Mul(E, r.t, pool)
- t.Add(t, t)
- b = newGFp2(pool)
- b.SetZero()
- b.Sub(b, t)
- b.MulScalar(b, q.x)
-
- a = newGFp2(pool)
- a.Add(r.x, E)
- a.Square(a, pool)
- a.Sub(a, A)
- a.Sub(a, G)
- t.Add(B, B)
- t.Add(t, t)
- a.Sub(a, t)
-
- c = newGFp2(pool)
- c.Mul(rOut.z, r.t, pool)
- c.Add(c, c)
- c.MulScalar(c, q.y)
-
- A.Put(pool)
- B.Put(pool)
- C_.Put(pool)
- D.Put(pool)
- E.Put(pool)
- G.Put(pool)
- t.Put(pool)
-
- return
-}
-
-func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
- a2 := newGFp6(pool)
- a2.x.SetZero()
- a2.y.Set(a)
- a2.z.Set(b)
- a2.Mul(a2, ret.x, pool)
- t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
-
- t := newGFp2(pool)
- t.Add(b, c)
- t2 := newGFp6(pool)
- t2.x.SetZero()
- t2.y.Set(a)
- t2.z.Set(t)
- ret.x.Add(ret.x, ret.y)
-
- ret.y.Set(t3)
-
- ret.x.Mul(ret.x, t2, pool)
- ret.x.Sub(ret.x, a2)
- ret.x.Sub(ret.x, ret.y)
- a2.MulTau(a2, pool)
- ret.y.Add(ret.y, a2)
-
- a2.Put(pool)
- t3.Put(pool)
- t2.Put(pool)
- t.Put(pool)
-}
-
-// sixuPlus2NAF is 6u+2 in non-adjacent form.
-var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
- 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
- 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
- 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
-
-// miller implements the Miller loop for calculating the Optimal Ate pairing.
-// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
-func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
- ret := newGFp12(pool)
- ret.SetOne()
-
- aAffine := newTwistPoint(pool)
- aAffine.Set(q)
- aAffine.MakeAffine(pool)
-
- bAffine := newCurvePoint(pool)
- bAffine.Set(p)
- bAffine.MakeAffine(pool)
-
- minusA := newTwistPoint(pool)
- minusA.Negative(aAffine, pool)
-
- r := newTwistPoint(pool)
- r.Set(aAffine)
-
- r2 := newGFp2(pool)
- r2.Square(aAffine.y, pool)
-
- for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
- a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
- if i != len(sixuPlus2NAF)-1 {
- ret.Square(ret, pool)
- }
-
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
-
- switch sixuPlus2NAF[i-1] {
- case 1:
- a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
- case -1:
- a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
- default:
- continue
- }
-
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
- }
-
- // In order to calculate Q1 we have to convert q from the sextic twist
- // to the full GF(p^12) group, apply the Frobenius there, and convert
- // back.
- //
- // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
- // x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
- // where x̄ is the conjugate of x. If we are going to apply the inverse
- // isomorphism we need a value with a single coefficient of ω² so we
- // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
- // p, 2p-2 is a multiple of six. Therefore we can rewrite as
- // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
- // ω².
- //
- // A similar argument can be made for the y value.
-
- q1 := newTwistPoint(pool)
- q1.x.Conjugate(aAffine.x)
- q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
- q1.y.Conjugate(aAffine.y)
- q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
- q1.z.SetOne()
- q1.t.SetOne()
-
- // For Q2 we are applying the p² Frobenius. The two conjugations cancel
- // out and we are left only with the factors from the isomorphism. In
- // the case of x, we end up with a pure number which is why
- // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
- // ignore this to end up with -Q2.
-
- minusQ2 := newTwistPoint(pool)
- minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
- minusQ2.y.Set(aAffine.y)
- minusQ2.z.SetOne()
- minusQ2.t.SetOne()
-
- r2.Square(q1.y, pool)
- a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
-
- r2.Square(minusQ2.y, pool)
- a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
-
- aAffine.Put(pool)
- bAffine.Put(pool)
- minusA.Put(pool)
- r.Put(pool)
- r2.Put(pool)
-
- return ret
-}
-
-// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
-// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
-// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
-func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
- t1 := newGFp12(pool)
-
- // This is the p^6-Frobenius
- t1.x.Negative(in.x)
- t1.y.Set(in.y)
-
- inv := newGFp12(pool)
- inv.Invert(in, pool)
- t1.Mul(t1, inv, pool)
-
- t2 := newGFp12(pool).FrobeniusP2(t1, pool)
- t1.Mul(t1, t2, pool)
-
- fp := newGFp12(pool).Frobenius(t1, pool)
- fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
- fp3 := newGFp12(pool).Frobenius(fp2, pool)
-
- fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
- fu.Exp(t1, u, pool)
- fu2.Exp(fu, u, pool)
- fu3.Exp(fu2, u, pool)
-
- y3 := newGFp12(pool).Frobenius(fu, pool)
- fu2p := newGFp12(pool).Frobenius(fu2, pool)
- fu3p := newGFp12(pool).Frobenius(fu3, pool)
- y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
-
- y0 := newGFp12(pool)
- y0.Mul(fp, fp2, pool)
- y0.Mul(y0, fp3, pool)
-
- y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
- y1.Conjugate(t1)
- y5.Conjugate(fu2)
- y3.Conjugate(y3)
- y4.Mul(fu, fu2p, pool)
- y4.Conjugate(y4)
-
- y6 := newGFp12(pool)
- y6.Mul(fu3, fu3p, pool)
- y6.Conjugate(y6)
-
- t0 := newGFp12(pool)
- t0.Square(y6, pool)
- t0.Mul(t0, y4, pool)
- t0.Mul(t0, y5, pool)
- t1.Mul(y3, y5, pool)
- t1.Mul(t1, t0, pool)
- t0.Mul(t0, y2, pool)
- t1.Square(t1, pool)
- t1.Mul(t1, t0, pool)
- t1.Square(t1, pool)
- t0.Mul(t1, y1, pool)
- t1.Mul(t1, y0, pool)
- t0.Square(t0, pool)
- t0.Mul(t0, t1, pool)
-
- inv.Put(pool)
- t1.Put(pool)
- t2.Put(pool)
- fp.Put(pool)
- fp2.Put(pool)
- fp3.Put(pool)
- fu.Put(pool)
- fu2.Put(pool)
- fu3.Put(pool)
- fu2p.Put(pool)
- fu3p.Put(pool)
- y0.Put(pool)
- y1.Put(pool)
- y2.Put(pool)
- y3.Put(pool)
- y4.Put(pool)
- y5.Put(pool)
- y6.Put(pool)
-
- return t0
-}
-
-func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
- e := miller(a, b, pool)
- ret := finalExponentiation(e, pool)
- e.Put(pool)
-
- if a.IsInfinity() || b.IsInfinity() {
- ret.SetOne()
- }
- return ret
-}