diff options
author | Felföldi Zsolt <zsfelfoldi@gmail.com> | 2018-08-15 04:44:46 +0800 |
---|---|---|
committer | Felix Lange <fjl@users.noreply.github.com> | 2018-08-15 04:44:46 +0800 |
commit | b2ddb1fcbf77771d0693ee5a00f8ae1cd4c0f87c (patch) | |
tree | cc70e50a0aa168afdda0a7737996686ca836621b /common/mclock/simclock.go | |
parent | a1783d169732dd34aa8c7d68f411ce741c1a5015 (diff) | |
download | go-tangerine-b2ddb1fcbf77771d0693ee5a00f8ae1cd4c0f87c.tar go-tangerine-b2ddb1fcbf77771d0693ee5a00f8ae1cd4c0f87c.tar.gz go-tangerine-b2ddb1fcbf77771d0693ee5a00f8ae1cd4c0f87c.tar.bz2 go-tangerine-b2ddb1fcbf77771d0693ee5a00f8ae1cd4c0f87c.tar.lz go-tangerine-b2ddb1fcbf77771d0693ee5a00f8ae1cd4c0f87c.tar.xz go-tangerine-b2ddb1fcbf77771d0693ee5a00f8ae1cd4c0f87c.tar.zst go-tangerine-b2ddb1fcbf77771d0693ee5a00f8ae1cd4c0f87c.zip |
les: implement client connection logic (#16899)
This PR implements les.freeClientPool. It also adds a simulated clock
in common/mclock, which enables time-sensitive tests to run quickly
and still produce accurate results, and package common/prque which is
a generalised variant of prque that enables removing elements other
than the top one from the queue.
les.freeClientPool implements a client database that limits the
connection time of each client and manages accepting/rejecting
incoming connections and even kicking out some connected clients. The
pool calculates recent usage time for each known client (a value that
increases linearly when the client is connected and decreases
exponentially when not connected). Clients with lower recent usage are
preferred, unknown nodes have the highest priority. Already connected
nodes receive a small bias in their favor in order to avoid accepting
and instantly kicking out clients.
Note: the pool can use any string for client identification. Using
signature keys for that purpose would not make sense when being known
has a negative value for the client. Currently the LES protocol
manager uses IP addresses (without port address) to identify clients.
Diffstat (limited to 'common/mclock/simclock.go')
-rw-r--r-- | common/mclock/simclock.go | 129 |
1 files changed, 129 insertions, 0 deletions
diff --git a/common/mclock/simclock.go b/common/mclock/simclock.go new file mode 100644 index 000000000..e014f5615 --- /dev/null +++ b/common/mclock/simclock.go @@ -0,0 +1,129 @@ +// Copyright 2018 The go-ethereum Authors +// This file is part of the go-ethereum library. +// +// The go-ethereum library is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// The go-ethereum library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. + +package mclock + +import ( + "sync" + "time" +) + +// Simulated implements a virtual Clock for reproducible time-sensitive tests. It +// simulates a scheduler on a virtual timescale where actual processing takes zero time. +// +// The virtual clock doesn't advance on its own, call Run to advance it and execute timers. +// Since there is no way to influence the Go scheduler, testing timeout behaviour involving +// goroutines needs special care. A good way to test such timeouts is as follows: First +// perform the action that is supposed to time out. Ensure that the timer you want to test +// is created. Then run the clock until after the timeout. Finally observe the effect of +// the timeout using a channel or semaphore. +type Simulated struct { + now AbsTime + scheduled []event + mu sync.RWMutex + cond *sync.Cond +} + +type event struct { + do func() + at AbsTime +} + +// Run moves the clock by the given duration, executing all timers before that duration. +func (s *Simulated) Run(d time.Duration) { + s.mu.Lock() + defer s.mu.Unlock() + s.init() + + end := s.now + AbsTime(d) + for len(s.scheduled) > 0 { + ev := s.scheduled[0] + if ev.at > end { + break + } + s.now = ev.at + ev.do() + s.scheduled = s.scheduled[1:] + } + s.now = end +} + +func (s *Simulated) ActiveTimers() int { + s.mu.RLock() + defer s.mu.RUnlock() + + return len(s.scheduled) +} + +func (s *Simulated) WaitForTimers(n int) { + s.mu.Lock() + defer s.mu.Unlock() + s.init() + + for len(s.scheduled) < n { + s.cond.Wait() + } +} + +// Now implements Clock. +func (s *Simulated) Now() AbsTime { + s.mu.RLock() + defer s.mu.RUnlock() + + return s.now +} + +// Sleep implements Clock. +func (s *Simulated) Sleep(d time.Duration) { + <-s.After(d) +} + +// After implements Clock. +func (s *Simulated) After(d time.Duration) <-chan time.Time { + after := make(chan time.Time, 1) + s.insert(d, func() { + after <- (time.Time{}).Add(time.Duration(s.now)) + }) + return after +} + +func (s *Simulated) insert(d time.Duration, do func()) { + s.mu.Lock() + defer s.mu.Unlock() + s.init() + + at := s.now + AbsTime(d) + l, h := 0, len(s.scheduled) + ll := h + for l != h { + m := (l + h) / 2 + if at < s.scheduled[m].at { + h = m + } else { + l = m + 1 + } + } + s.scheduled = append(s.scheduled, event{}) + copy(s.scheduled[l+1:], s.scheduled[l:ll]) + s.scheduled[l] = event{do: do, at: at} + s.cond.Broadcast() +} + +func (s *Simulated) init() { + if s.cond == nil { + s.cond = sync.NewCond(&s.mu) + } +} |