aboutsummaryrefslogblamecommitdiffstats
path: root/whisper/whisperv5/message.go
blob: f3812b1d8ad6635737dd0a30a14ef4ccd1ad6621 (plain) (tree)



































































































































                                                                                                            
                                  












































































                                                                                               

                                                                                   
         
 






































































































































































                                                                                                                   
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Contains the Whisper protocol Message element. For formal details please see
// the specs at https://github.com/ethereum/wiki/wiki/Whisper-PoC-1-Protocol-Spec#messages.
// todo: fix the spec link, and move it to doc.go

package whisperv5

import (
    "crypto/aes"
    "crypto/cipher"
    "crypto/ecdsa"
    crand "crypto/rand"
    "crypto/sha256"
    "errors"
    "fmt"
    mrand "math/rand"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/crypto"
    "github.com/ethereum/go-ethereum/logger"
    "github.com/ethereum/go-ethereum/logger/glog"
    "golang.org/x/crypto/pbkdf2"
)

// Options specifies the exact way a message should be wrapped into an Envelope.
type MessageParams struct {
    TTL      uint32
    Src      *ecdsa.PrivateKey
    Dst      *ecdsa.PublicKey
    KeySym   []byte
    Topic    TopicType
    WorkTime uint32
    PoW      float64
    Payload  []byte
    Padding  []byte
}

// SentMessage represents an end-user data packet to transmit through the
// Whisper protocol. These are wrapped into Envelopes that need not be
// understood by intermediate nodes, just forwarded.
type SentMessage struct {
    Raw []byte
}

// ReceivedMessage represents a data packet to be received through the
// Whisper protocol.
type ReceivedMessage struct {
    Raw []byte

    Payload   []byte
    Padding   []byte
    Signature []byte

    PoW   float64          // Proof of work as described in the Whisper spec
    Sent  uint32           // Time when the message was posted into the network
    TTL   uint32           // Maximum time to live allowed for the message
    Src   *ecdsa.PublicKey // Message recipient (identity used to decode the message)
    Dst   *ecdsa.PublicKey // Message recipient (identity used to decode the message)
    Topic TopicType

    SymKeyHash      common.Hash // The Keccak256Hash of the key, associated with the Topic
    EnvelopeHash    common.Hash // Message envelope hash to act as a unique id
    EnvelopeVersion uint64
}

func isMessageSigned(flags byte) bool {
    return (flags & signatureFlag) != 0
}

func (msg *ReceivedMessage) isSymmetricEncryption() bool {
    return msg.SymKeyHash != common.Hash{}
}

func (msg *ReceivedMessage) isAsymmetricEncryption() bool {
    return msg.Dst != nil
}

func DeriveOneTimeKey(key []byte, salt []byte, version uint64) ([]byte, error) {
    if version == 0 {
        derivedKey := pbkdf2.Key(key, salt, 8, aesKeyLength, sha256.New)
        return derivedKey, nil
    } else {
        return nil, unknownVersionError(version)
    }
}

// NewMessage creates and initializes a non-signed, non-encrypted Whisper message.
func NewSentMessage(params *MessageParams) *SentMessage {
    msg := SentMessage{}
    msg.Raw = make([]byte, 1, len(params.Payload)+len(params.Payload)+signatureLength+padSizeLimitUpper)
    msg.Raw[0] = 0 // set all the flags to zero
    msg.appendPadding(params)
    msg.Raw = append(msg.Raw, params.Payload...)
    return &msg
}

// appendPadding appends the pseudorandom padding bytes and sets the padding flag.
// The last byte contains the size of padding (thus, its size must not exceed 256).
func (msg *SentMessage) appendPadding(params *MessageParams) {
    total := len(params.Payload) + 1
    if params.Src != nil {
        total += signatureLength
    }
    padChunk := padSizeLimitUpper
    if total <= padSizeLimitLower {
        padChunk = padSizeLimitLower
    }
    odd := total % padChunk
    if odd > 0 {
        padSize := padChunk - odd
        if padSize > 255 {
            // this algorithm is only valid if padSizeLimitUpper <= 256.
            // if padSizeLimitUpper will ever change, please fix the algorithm
            // (for more information see ReceivedMessage.extractPadding() function).
            panic("please fix the padding algorithm before releasing new version")
        }
        buf := make([]byte, padSize)
        randomize(buf[1:])
        buf[0] = byte(padSize)
        if params.Padding != nil {
            copy(buf[1:], params.Padding)
        }
        msg.Raw = append(msg.Raw, buf...)
        msg.Raw[0] |= byte(0x1) // number of bytes indicating the padding size
    }
}

// sign calculates and sets the cryptographic signature for the message,
// also setting the sign flag.
func (msg *SentMessage) sign(key *ecdsa.PrivateKey) error {
    if isMessageSigned(msg.Raw[0]) {
        // this should not happen, but no reason to panic
        glog.V(logger.Error).Infof("Trying to sign a message which was already signed")
        return nil
    }

    msg.Raw[0] |= signatureFlag
    hash := crypto.Keccak256(msg.Raw)
    signature, err := crypto.Sign(hash, key)
    if err != nil {
        msg.Raw[0] &= ^signatureFlag // clear the flag
        return err
    }
    msg.Raw = append(msg.Raw, signature...)
    return nil
}

// encryptAsymmetric encrypts a message with a public key.
func (msg *SentMessage) encryptAsymmetric(key *ecdsa.PublicKey) error {
    if !ValidatePublicKey(key) {
        return fmt.Errorf("Invalid public key provided for asymmetric encryption")
    }
    encrypted, err := crypto.Encrypt(key, msg.Raw)
    if err == nil {
        msg.Raw = encrypted
    }
    return err
}

// encryptSymmetric encrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *SentMessage) encryptSymmetric(key []byte) (salt []byte, nonce []byte, err error) {
    if !validateSymmetricKey(key) {
        return nil, nil, errors.New("invalid key provided for symmetric encryption")
    }

    salt = make([]byte, saltLength)
    _, err = crand.Read(salt)
    if err != nil {
        return nil, nil, err
    } else if !validateSymmetricKey(salt) {
        return nil, nil, errors.New("crypto/rand failed to generate salt")
    }

    derivedKey, err := DeriveOneTimeKey(key, salt, EnvelopeVersion)
    if err != nil {
        return nil, nil, err
    }
    if !validateSymmetricKey(derivedKey) {
        return nil, nil, errors.New("failed to derive one-time key")
    }
    block, err := aes.NewCipher(derivedKey)
    if err != nil {
        return nil, nil, err
    }
    aesgcm, err := cipher.NewGCM(block)
    if err != nil {
        return nil, nil, err
    }

    // never use more than 2^32 random nonces with a given key
    nonce = make([]byte, aesgcm.NonceSize())
    _, err = crand.Read(nonce)
    if err != nil {
        return nil, nil, err
    } else if !validateSymmetricKey(nonce) {
        return nil, nil, errors.New("crypto/rand failed to generate nonce")
    }

    msg.Raw = aesgcm.Seal(nil, nonce, msg.Raw, nil)
    return salt, nonce, nil
}

// Wrap bundles the message into an Envelope to transmit over the network.
//
// pow (Proof Of Work) controls how much time to spend on hashing the message,
// inherently controlling its priority through the network (smaller hash, bigger
// priority).
//
// The user can control the amount of identity, privacy and encryption through
// the options parameter as follows:
//   - options.From == nil && options.To == nil: anonymous broadcast
//   - options.From != nil && options.To == nil: signed broadcast (known sender)
//   - options.From == nil && options.To != nil: encrypted anonymous message
//   - options.From != nil && options.To != nil: encrypted signed message
func (msg *SentMessage) Wrap(options *MessageParams) (envelope *Envelope, err error) {
    if options.TTL == 0 {
        options.TTL = DefaultTTL
    }
    if options.Src != nil {
        err = msg.sign(options.Src)
        if err != nil {
            return nil, err
        }
    }
    if len(msg.Raw) > MaxMessageLength {
        glog.V(logger.Error).Infof("Message size must not exceed %d bytes", MaxMessageLength)
        return nil, errors.New("Oversized message")
    }
    var salt, nonce []byte
    if options.Dst != nil {
        err = msg.encryptAsymmetric(options.Dst)
    } else if options.KeySym != nil {
        salt, nonce, err = msg.encryptSymmetric(options.KeySym)
    } else {
        err = errors.New("Unable to encrypt the message: neither Dst nor Key")
    }

    if err != nil {
        return nil, err
    }

    envelope = NewEnvelope(options.TTL, options.Topic, salt, nonce, msg)
    envelope.Seal(options)
    return envelope, nil
}

// decryptSymmetric decrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *ReceivedMessage) decryptSymmetric(key []byte, salt []byte, nonce []byte) error {
    derivedKey, err := DeriveOneTimeKey(key, salt, msg.EnvelopeVersion)
    if err != nil {
        return err
    }

    block, err := aes.NewCipher(derivedKey)
    if err != nil {
        return err
    }
    aesgcm, err := cipher.NewGCM(block)
    if err != nil {
        return err
    }
    if len(nonce) != aesgcm.NonceSize() {
        info := fmt.Sprintf("Wrong AES nonce size - want: %d, got: %d", len(nonce), aesgcm.NonceSize())
        glog.V(logger.Error).Infof(info)
        return errors.New(info)
    }
    decrypted, err := aesgcm.Open(nil, nonce, msg.Raw, nil)
    if err != nil {
        return err
    }
    msg.Raw = decrypted
    return nil
}

// decryptAsymmetric decrypts an encrypted payload with a private key.
func (msg *ReceivedMessage) decryptAsymmetric(key *ecdsa.PrivateKey) error {
    decrypted, err := crypto.Decrypt(key, msg.Raw)
    if err == nil {
        msg.Raw = decrypted
    }
    return err
}

// Validate checks the validity and extracts the fields in case of success
func (msg *ReceivedMessage) Validate() bool {
    end := len(msg.Raw)
    if end < 1 {
        return false
    }

    if isMessageSigned(msg.Raw[0]) {
        end -= signatureLength
        if end <= 1 {
            return false
        }
        msg.Signature = msg.Raw[end:]
        msg.Src = msg.SigToPubKey()
        if msg.Src == nil {
            return false
        }
    }

    padSize, ok := msg.extractPadding(end)
    if !ok {
        return false
    }

    msg.Payload = msg.Raw[1+padSize : end]
    return true
}

// extractPadding extracts the padding from raw message.
// although we don't support sending messages with padding size
// exceeding 255 bytes, such messages are perfectly valid, and
// can be successfully decrypted.
func (msg *ReceivedMessage) extractPadding(end int) (int, bool) {
    paddingSize := 0
    sz := int(msg.Raw[0] & paddingMask) // number of bytes containing the entire size of padding, could be zero
    if sz != 0 {
        paddingSize = int(bytesToIntLittleEndian(msg.Raw[1 : 1+sz]))
        if paddingSize < sz || paddingSize+1 > end {
            return 0, false
        }
        msg.Padding = msg.Raw[1+sz : 1+paddingSize]
    }
    return paddingSize, true
}

// Recover retrieves the public key of the message signer.
func (msg *ReceivedMessage) SigToPubKey() *ecdsa.PublicKey {
    defer func() { recover() }() // in case of invalid signature

    pub, err := crypto.SigToPub(msg.hash(), msg.Signature)
    if err != nil {
        glog.V(logger.Error).Infof("Could not get public key from signature: %v", err)
        return nil
    }
    return pub
}

// hash calculates the SHA3 checksum of the message flags, payload and padding.
func (msg *ReceivedMessage) hash() []byte {
    if isMessageSigned(msg.Raw[0]) {
        sz := len(msg.Raw) - signatureLength
        return crypto.Keccak256(msg.Raw[:sz])
    }
    return crypto.Keccak256(msg.Raw)
}

// rand.Rand provides a Read method in Go 1.7 and later,
// but we can't use it yet.
func randomize(b []byte) {
    cnt := 0
    val := mrand.Int63()
    for n := 0; n < len(b); n++ {
        b[n] = byte(val)
        val >>= 8
        cnt++
        if cnt >= 7 {
            cnt = 0
            val = mrand.Int63()
        }
    }
}