package vm
import (
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/state"
)
type Vm struct {
env Environment
logTy byte
logStr string
err error
// For logging
debug bool
BreakPoints []int64
Stepping bool
Fn string
Recoverable bool
}
func New(env Environment) *Vm {
lt := LogTyPretty
return &Vm{debug: Debug, env: env, logTy: lt, Recoverable: true}
}
func (self *Vm) Run(me, caller ContextRef, code []byte, value, gas, price *big.Int, callData []byte) (ret []byte, err error) {
self.env.SetDepth(self.env.Depth() + 1)
context := NewContext(caller, me, code, gas, price)
self.Printf("(%d) (%x) %x (code=%d) gas: %v (d) %x", self.env.Depth(), caller.Address()[:4], context.Address(), len(code), context.Gas, callData).Endl()
if self.Recoverable {
// Recover from any require exception
defer func() {
if r := recover(); r != nil {
self.Printf(" %v", r).Endl()
context.UseGas(context.Gas)
ret = context.Return(nil)
err = fmt.Errorf("%v", r)
}
}()
}
if p := Precompiled[string(me.Address())]; p != nil {
return self.RunPrecompiled(p, callData, context)
}
var (
op OpCode
destinations = analyseJumpDests(context.Code)
mem = NewMemory()
stack = newStack()
pc uint64 = 0
step = 0
statedb = self.env.State()
jump = func(from uint64, to *big.Int) {
p := to.Uint64()
nop := context.GetOp(p)
if !destinations.Has(p) {
panic(fmt.Sprintf("invalid jump destination (%v) %v", nop, p))
}
self.Printf(" ~> %v", to)
pc = to.Uint64()
self.Endl()
}
)
// Don't bother with the execution if there's no code.
if len(code) == 0 {
return context.Return(nil), nil
}
for {
// The base for all big integer arithmetic
base := new(big.Int)
step++
// Get the memory location of pc
op = context.GetOp(pc)
self.Printf("(pc) %-3d -o- %-14s (m) %-4d (s) %-4d ", pc, op.String(), mem.Len(), stack.len())
newMemSize, gas := self.calculateGasAndSize(context, caller, op, statedb, mem, stack)
self.Printf("(g) %-3v (%v)", gas, context.Gas)
if !context.UseGas(gas) {
self.Endl()
tmp := new(big.Int).Set(context.Gas)
context.UseGas(context.Gas)
return context.Return(nil), OOG(gas, tmp)
}
mem.Resize(newMemSize.Uint64())
switch op {
// 0x20 range
case ADD:
x, y := stack.pop(), stack.pop()
self.Printf(" %v + %v", y, x)
base.Add(x, y)
U256(base)
self.Printf(" = %v", base)
// pop result back on the stack
stack.push(base)
case SUB:
x, y := stack.pop(), stack.pop()
self.Printf(" %v - %v", y, x)
base.Sub(x, y)
U256(base)
self.Printf(" = %v", base)
// pop result back on the stack
stack.push(base)
case MUL:
x, y := stack.pop(), stack.pop()
self.Printf(" %v * %v", y, x)
base.Mul(x, y)
U256(base)
self.Printf(" = %v", base)
// pop result back on the stack
stack.push(base)
case DIV:
x, y := stack.pop(), stack.pop()
self.Printf(" %v / %v", x, y)
if y.Cmp(ethutil.Big0) != 0 {
base.Div(x, y)
}
U256(base)
self.Printf(" = %v", base)
// pop result back on the stack
stack.push(base)
case SDIV:
x, y := S256(stack.pop()), S256(stack.pop())
self.Printf(" %v / %v", x, y)
if y.Cmp(ethutil.Big0) == 0 {
base.Set(ethutil.Big0)
} else {
n := new(big.Int)
if new(big.Int).Mul(x, y).Cmp(ethutil.Big0) < 0 {
n.SetInt64(-1)
} else {
n.SetInt64(1)
}
base.Div(x.Abs(x), y.Abs(y)).Mul(base, n)
U256(base)
}
self.Printf(" = %v", base)
stack.push(base)
case MOD:
x, y := stack.pop(), stack.pop()
self.Printf(" %v %% %v", x, y)
if y.Cmp(ethutil.Big0) == 0 {
base.Set(ethutil.Big0)
} else {
base.Mod(x, y)
}
U256(base)
self.Printf(" = %v", base)
stack.push(base)
case SMOD:
x, y := S256(stack.pop()), S256(stack.pop())
self.Printf(" %v %% %v", x, y)
if y.Cmp(ethutil.Big0) == 0 {
base.Set(ethutil.Big0)
} else {
n := new(big.Int)
if x.Cmp(ethutil.Big0) < 0 {
n.SetInt64(-1)
} else {
n.SetInt64(1)
}
base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n)
U256(base)
}
self.Printf(" = %v", base)
stack.push(base)
case EXP:
x, y := stack.pop(), stack.pop()
self.Printf(" %v ** %v", x, y)
base.Exp(x, y, Pow256)
U256(base)
self.Printf(" = %v", base)
stack.push(base)
case SIGNEXTEND:
back := stack.pop().Uint64()
if back < 31 {
bit := uint(back*8 + 7)
num := stack.pop()
mask := new(big.Int).Lsh(ethutil.Big1, bit)
mask.Sub(mask, ethutil.Big1)
if ethutil.BitTest(num, int(bit)) {
num.Or(num, mask.Not(mask))
} else {
num.And(num, mask)
}
num = U256(num)
self.Printf(" = %v", num)
stack.push(num)
}
case NOT:
stack.push(U256(new(big.Int).Not(stack.pop())))
//base.Sub(Pow256, stack.pop()).Sub(base, ethutil.Big1)
//base = U256(base)
//stack.push(base)
case LT:
x, y := stack.pop(), stack.pop()
self.Printf(" %v < %v", x, y)
// x < y
if x.Cmp(y) < 0 {
stack.push(ethutil.BigTrue)
} else {
stack.push(ethutil.BigFalse)
}
case GT:
x, y := stack.pop(), stack.pop()
self.Printf(" %v > %v", x, y)
// x > y
if x.Cmp(y) > 0 {
stack.push(ethutil.BigTrue)
} else {
stack.push(ethutil.BigFalse)
}
case SLT:
x, y := S256(stack.pop()), S256(stack.pop())
self.Printf(" %v < %v", x, y)
// x < y
if x.Cmp(S256(y)) < 0 {
stack.push(ethutil.BigTrue)
} else {
stack.push(ethutil.BigFalse)
}
case SGT:
x, y := S256(stack.pop()), S256(stack.pop())
self.Printf(" %v > %v", x, y)
// x > y
if x.Cmp(y) > 0 {
stack.push(ethutil.BigTrue)
} else {
stack.push(ethutil.BigFalse)
}
case EQ:
x, y := stack.pop(), stack.pop()
self.Printf(" %v == %v", y, x)
// x == y
if x.Cmp(y) == 0 {
stack.push(ethutil.BigTrue)
} else {
stack.push(ethutil.BigFalse)
}
case ISZERO:
x := stack.pop()
if x.Cmp(ethutil.BigFalse) > 0 {
stack.push(ethutil.BigFalse)
} else {
stack.push(ethutil.BigTrue)
}
// 0x10 range
case AND:
x, y := stack.pop(), stack.pop()
self.Printf(" %v & %v", y, x)
stack.push(base.And(x, y))
case OR:
x, y := stack.pop(), stack.pop()
self.Printf(" %v | %v", x, y)
stack.push(base.Or(x, y))
case XOR:
x, y := stack.pop(), stack.pop()
self.Printf(" %v ^ %v", x, y)
stack.push(base.Xor(x, y))
case BYTE:
th, val := stack.pop(), stack.pop()
if th.Cmp(big.NewInt(32)) < 0 {
byt := big.NewInt(int64(ethutil.LeftPadBytes(val.Bytes(), 32)[th.Int64()]))
base.Set(byt)
} else {
base.Set(ethutil.BigFalse)
}
self.Printf(" => 0x%x", base.Bytes())
stack.push(base)
case ADDMOD:
x := stack.pop()
y := stack.pop()
z := stack.pop()
if z.Cmp(Zero) > 0 {
add := U256(new(big.Int).Add(x, y))
base.Mod(add, z)
base = U256(base)
}
self.Printf(" %v + %v %% %v = %v", x, y, z, base)
stack.push(base)
case MULMOD:
x := stack.pop()
y := stack.pop()
z := stack.pop()
mul := new(big.Int).Mul(x, y)
if len(z.Bytes()) > 0 { // NOT 0x0
base.Mod(mul, z)
U256(base)
}
self.Printf(" %v + %v %% %v = %v", x, y, z, base)
stack.push(base)
// 0x20 range
case SHA3:
size, offset := stack.pop(), stack.pop()
data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64()))
stack.push(ethutil.BigD(data))
self.Printf(" => (%v) %x", size, data)
// 0x30 range
case ADDRESS:
stack.push(ethutil.BigD(context.Address()))
self.Printf(" => %x", context.Address())
case BALANCE:
addr := stack.pop().Bytes()
var balance *big.Int
if statedb.GetStateObject(addr) != nil {
balance = statedb.GetBalance(addr)
} else {
balance = base
}
stack.push(balance)
self.Printf(" => %v (%x)", balance, addr)
case ORIGIN:
origin := self.env.Origin()
stack.push(ethutil.BigD(origin))
self.Printf(" => %x", origin)
case CALLER:
caller := context.caller.Address()
stack.push(ethutil.BigD(caller))
self.Printf(" => %x", caller)
case CALLVALUE:
stack.push(value)
self.Printf(" => %v", value)
case CALLDATALOAD:
var (
offset = stack.pop()
data = make([]byte, 32)
lenData = big.NewInt(int64(len(callData)))
)
if lenData.Cmp(offset) >= 0 {
length := new(big.Int).Add(offset, ethutil.Big32)
length = ethutil.BigMin(length, lenData)
copy(data, callData[offset.Int64():length.Int64()])
}
self.Printf(" => 0x%x", data)
stack.push(ethutil.BigD(data))
case CALLDATASIZE:
l := int64(len(callData))
stack.push(big.NewInt(l))
self.Printf(" => %d", l)
case CALLDATACOPY:
var (
size = uint64(len(callData))
mOff = stack.pop().Uint64()
cOff = stack.pop().Uint64()
l = stack.pop().Uint64()
)
if cOff > size {
cOff = 0
l = 0
} else if cOff+l > size {
l = 0
}
code := callData[cOff : cOff+l]
mem.Set(mOff, l, code)
self.Printf(" => [%v, %v, %v] %x", mOff, cOff, l, callData[cOff:cOff+l])
case CODESIZE, EXTCODESIZE:
var code []byte
if op == EXTCODESIZE {
addr := stack.pop().Bytes()
code = statedb.GetCode(addr)
} else {
code = context.Code
}
l := big.NewInt(int64(len(code)))
stack.push(l)
self.Printf(" => %d", l)
case CODECOPY, EXTCODECOPY:
var code []byte
if op == EXTCODECOPY {
code = statedb.GetCode(stack.pop().Bytes())
} else {
code = context.Code
}
context := NewContext(nil, nil, code, ethutil.Big0, ethutil.Big0)
var (
mOff = stack.pop().Uint64()
cOff = stack.pop().Uint64()
l = stack.pop().Uint64()
)
codeCopy := context.GetCode(cOff, l)
mem.Set(mOff, l, codeCopy)
self.Printf(" => [%v, %v, %v] %x", mOff, cOff, l, codeCopy)
case GASPRICE:
stack.push(context.Price)
self.Printf(" => %x", context.Price)
// 0x40 range
case BLOCKHASH:
num := stack.pop()
n := new(big.Int).Sub(self.env.BlockNumber(), ethutil.Big257)
if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 {
stack.push(ethutil.BigD(self.env.GetHash(num.Uint64())))
} else {
stack.push(ethutil.Big0)
}
self.Printf(" => 0x%x", stack.peek().Bytes())
case COINBASE:
coinbase := self.env.Coinbase()
stack.push(ethutil.BigD(coinbase))
self.Printf(" => 0x%x", coinbase)
case TIMESTAMP:
time := self.env.Time()
stack.push(big.NewInt(time))
self.Printf(" => 0x%x", time)
case NUMBER:
number := self.env.BlockNumber()
stack.push(U256(number))
self.Printf(" => 0x%x", number.Bytes())
case DIFFICULTY:
difficulty := self.env.Difficulty()
stack.push(difficulty)
self.Printf(" => 0x%x", difficulty.Bytes())
case GASLIMIT:
self.Printf(" => %v", self.env.GasLimit())
stack.push(self.env.GasLimit())
// 0x50 range
case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32:
a := uint64(op - PUSH1 + 1)
byts := context.GetRangeValue(pc+1, a)
// push value to stack
stack.push(ethutil.BigD(byts))
pc += a
step += int(op) - int(PUSH1) + 1
self.Printf(" => 0x%x", byts)
case POP:
stack.pop()
case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
n := int(op - DUP1 + 1)
stack.dup(n)
self.Printf(" => [%d] 0x%x", n, stack.peek().Bytes())
case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
n := int(op - SWAP1 + 2)
stack.swap(n)
self.Printf(" => [%d]", n)
case LOG0, LOG1, LOG2, LOG3, LOG4:
n := int(op - LOG0)
topics := make([][]byte, n)
mStart, mSize := stack.pop(), stack.pop()
for i := 0; i < n; i++ {
topics[i] = ethutil.LeftPadBytes(stack.pop().Bytes(), 32)
}
data := mem.Get(mStart.Int64(), mSize.Int64())
log := &Log{context.Address(), topics, data, self.env.BlockNumber().Uint64()}
self.env.AddLog(log)
self.Printf(" => %v", log)
case MLOAD:
offset := stack.pop()
val := ethutil.BigD(mem.Get(offset.Int64(), 32))
stack.push(val)
self.Printf(" => 0x%x", val.Bytes())
case MSTORE: // Store the value at stack top-1 in to memory at location stack top
// pop value of the stack
mStart, val := stack.pop(), stack.pop()
mem.Set(mStart.Uint64(), 32, ethutil.BigToBytes(val, 256))
self.Printf(" => 0x%x", val)
case MSTORE8:
off, val := stack.pop(), stack.pop()
mem.store[off.Int64()] = byte(val.Int64() & 0xff)
self.Printf(" => [%v] 0x%x", off, val)
case SLOAD:
loc := stack.pop()
val := ethutil.BigD(statedb.GetState(context.Address(), loc.Bytes()))
stack.push(val)
self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes())
case SSTORE:
loc, val := stack.pop(), stack.pop()
statedb.SetState(context.Address(), loc.Bytes(), val)
self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes())
case JUMP:
jump(pc, stack.pop())
continue
case JUMPI:
pos, cond := stack.pop(), stack.pop()
if cond.Cmp(ethutil.BigTrue) >= 0 {
jump(pc, pos)
continue
}
self.Printf(" ~> false")
case JUMPDEST:
case PC:
stack.push(big.NewInt(int64(pc)))
case MSIZE:
stack.push(big.NewInt(int64(mem.Len())))
case GAS:
stack.push(context.Gas)
self.Printf(" => %x", context.Gas)
// 0x60 range
case CREATE:
var (
value = stack.pop()
offset, size = stack.pop(), stack.pop()
input = mem.Get(offset.Int64(), size.Int64())
gas = new(big.Int).Set(context.Gas)
addr []byte
)
self.Endl()
context.UseGas(context.Gas)
ret, suberr, ref := self.env.Create(context, nil, input, gas, price, value)
if suberr != nil {
stack.push(ethutil.BigFalse)
self.Printf(" (*) 0x0 %v", suberr)
} else {
// gas < len(ret) * CreateDataGas == NO_CODE
dataGas := big.NewInt(int64(len(ret)))
dataGas.Mul(dataGas, GasCreateByte)
if context.UseGas(dataGas) {
ref.SetCode(ret)
}
addr = ref.Address()
stack.push(ethutil.BigD(addr))
}
case CALL, CALLCODE:
gas := stack.pop()
// pop gas and value of the stack.
addr, value := stack.pop(), stack.pop()
value = U256(value)
// pop input size and offset
inOffset, inSize := stack.pop(), stack.pop()
// pop return size and offset
retOffset, retSize := stack.pop(), stack.pop()
address := ethutil.Address(addr.Bytes())
self.Printf(" => %x", address).Endl()
// Get the arguments from the memory
args := mem.Get(inOffset.Int64(), inSize.Int64())
if len(value.Bytes()) > 0 {
gas.Add(gas, GasStipend)
}
var (
ret []byte
err error
)
if op == CALLCODE {
ret, err = self.env.CallCode(context, address, args, gas, price, value)
} else {
ret, err = self.env.Call(context, address, args, gas, price, value)
}
if err != nil {
stack.push(ethutil.BigFalse)
self.Printf("%v").Endl()
} else {
stack.push(ethutil.BigTrue)
mem.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
self.Printf("resume %x (%v)", context.Address(), context.Gas)
case RETURN:
offset, size := stack.pop(), stack.pop()
ret := mem.Get(offset.Int64(), size.Int64())
self.Printf(" => [%v, %v] (%d) 0x%x", offset, size, len(ret), ret).Endl()
return context.Return(ret), nil
case SUICIDE:
receiver := statedb.GetOrNewStateObject(stack.pop().Bytes())
balance := statedb.GetBalance(context.Address())
self.Printf(" => (%x) %v", receiver.Address()[:4], balance)
receiver.AddBalance(balance)
statedb.Delete(context.Address())
fallthrough
case STOP: // Stop the context
self.Endl()
return context.Return(nil), nil
default:
self.Printf("(pc) %-3v Invalid opcode %x\n", pc, op).Endl()
panic(fmt.Errorf("Invalid opcode %x", op))
}
pc++
self.Endl()
}
}
func (self *Vm) calculateGasAndSize(context *Context, caller ContextRef, op OpCode, statedb *state.StateDB, mem *Memory, stack *stack) (*big.Int, *big.Int) {
var (
gas = new(big.Int)
newMemSize *big.Int = new(big.Int)
)
baseCheck(op, stack, gas)
// stack Check, memory resize & gas phase
switch op {
case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32:
gas.Set(GasFastestStep)
case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
n := int(op - SWAP1 + 2)
stack.require(n)
gas.Set(GasFastestStep)
case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
n := int(op - DUP1 + 1)
stack.require(n)
gas.Set(GasFastestStep)
case LOG0, LOG1, LOG2, LOG3, LOG4:
n := int(op - LOG0)
stack.require(n + 2)
mSize, mStart := stack.data[stack.len()-2], stack.data[stack.len()-1]
gas.Add(gas, GasLogBase)
gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(n)), GasLogTopic))
gas.Add(gas, new(big.Int).Mul(mSize, GasLogByte))
newMemSize = calcMemSize(mStart, mSize)
case EXP:
gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(len(stack.data[stack.len()-2].Bytes()))), GasExpByte))
case SSTORE:
stack.require(2)
var g *big.Int
y, x := stack.data[stack.len()-2], stack.data[stack.len()-1]
val := statedb.GetState(context.Address(), x.Bytes())
if len(val) == 0 && len(y.Bytes()) > 0 {
// 0 => non 0
g = GasStorageAdd
} else if len(val) > 0 && len(y.Bytes()) == 0 {
statedb.Refund(self.env.Origin(), RefundStorage)
g = GasStorageMod
} else {
// non 0 => non 0 (or 0 => 0)
g = GasStorageMod
}
gas.Set(g)
case SUICIDE:
if !statedb.IsDeleted(context.Address()) {
statedb.Refund(self.env.Origin(), RefundSuicide)
}
case MLOAD:
newMemSize = calcMemSize(stack.peek(), u256(32))
case MSTORE8:
newMemSize = calcMemSize(stack.peek(), u256(1))
case MSTORE:
newMemSize = calcMemSize(stack.peek(), u256(32))
case RETURN:
newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])
case SHA3:
newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])
words := toWordSize(stack.data[stack.len()-2])
gas.Add(gas, words.Mul(words, GasSha3Word))
case CALLDATACOPY:
newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])
words := toWordSize(stack.data[stack.len()-3])
gas.Add(gas, words.Mul(words, GasCopyWord))
case CODECOPY:
newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])
words := toWordSize(stack.data[stack.len()-3])
gas.Add(gas, words.Mul(words, GasCopyWord))
case EXTCODECOPY:
newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-4])
words := toWordSize(stack.data[stack.len()-4])
gas.Add(gas, words.Mul(words, GasCopyWord))
case CREATE:
newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-3])
case CALL, CALLCODE:
gas.Add(gas, stack.data[stack.len()-1])
if op == CALL {
if self.env.State().GetStateObject(stack.data[stack.len()-2].Bytes()) == nil {
gas.Add(gas, GasCallNewAccount)
}
}
if len(stack.data[stack.len()-3].Bytes()) > 0 {
gas.Add(gas, GasCallValueTransfer)
}
x := calcMemSize(stack.data[stack.len()-6], stack.data[stack.len()-7])
y := calcMemSize(stack.data[stack.len()-4], stack.data[stack.len()-5])
newMemSize = ethutil.BigMax(x, y)
}
if newMemSize.Cmp(ethutil.Big0) > 0 {
newMemSizeWords := toWordSize(newMemSize)
newMemSize.Mul(newMemSizeWords, u256(32))
if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 {
oldSize := toWordSize(big.NewInt(int64(mem.Len())))
pow := new(big.Int).Exp(oldSize, ethutil.Big2, Zero)
linCoef := new(big.Int).Mul(oldSize, GasMemWord)
quadCoef := new(big.Int).Div(pow, GasQuadCoeffDenom)
oldTotalFee := new(big.Int).Add(linCoef, quadCoef)
pow.Exp(newMemSizeWords, ethutil.Big2, Zero)
linCoef = new(big.Int).Mul(newMemSizeWords, GasMemWord)
quadCoef = new(big.Int).Div(pow, GasQuadCoeffDenom)
newTotalFee := new(big.Int).Add(linCoef, quadCoef)
gas.Add(gas, new(big.Int).Sub(newTotalFee, oldTotalFee))
}
}
return newMemSize, gas
}
func (self *Vm) RunPrecompiled(p *PrecompiledAccount, callData []byte, context *Context) (ret []byte, err error) {
gas := p.Gas(len(callData))
if context.UseGas(gas) {
ret = p.Call(callData)
self.Printf("NATIVE_FUNC => %x", ret)
self.Endl()
return context.Return(ret), nil
} else {
self.Printf("NATIVE_FUNC => failed").Endl()
tmp := new(big.Int).Set(context.Gas)
panic(OOG(gas, tmp).Error())
}
}
func (self *Vm) Printf(format string, v ...interface{}) VirtualMachine {
if self.debug {
if self.logTy == LogTyPretty {
self.logStr += fmt.Sprintf(format, v...)
}
}
return self
}
func (self *Vm) Endl() VirtualMachine {
if self.debug {
if self.logTy == LogTyPretty {
vmlogger.Infoln(self.logStr)
self.logStr = ""
}
}
return self
}
func (self *Vm) Env() Environment {
return self.env
}