package p2p
import (
"bufio"
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"net"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/rlp"
)
// parameters for frameRW
const (
// maximum time allowed for reading a message header.
// this is effectively the amount of time a connection can be idle.
frameReadTimeout = 1 * time.Minute
// maximum time allowed for reading the payload data of a message.
// this is shorter than (and distinct from) frameReadTimeout because
// the connection is not considered idle while a message is transferred.
// this also limits the payload size of messages to how much the connection
// can transfer within the timeout.
payloadReadTimeout = 5 * time.Second
// maximum amount of time allowed for writing a complete message.
msgWriteTimeout = 5 * time.Second
// messages smaller than this many bytes will be read at
// once before passing them to a protocol. this increases
// concurrency in the processing.
wholePayloadSize = 64 * 1024
)
// Msg defines the structure of a p2p message.
//
// Note that a Msg can only be sent once since the Payload reader is
// consumed during sending. It is not possible to create a Msg and
// send it any number of times. If you want to reuse an encoded
// structure, encode the payload into a byte array and create a
// separate Msg with a bytes.Reader as Payload for each send.
type Msg struct {
Code uint64
Size uint32 // size of the paylod
Payload io.Reader
}
// NewMsg creates an RLP-encoded message with the given code.
func NewMsg(code uint64, params ...interface{}) Msg {
buf := new(bytes.Buffer)
for _, p := range params {
buf.Write(ethutil.Encode(p))
}
return Msg{Code: code, Size: uint32(buf.Len()), Payload: buf}
}
func encodePayload(params ...interface{}) []byte {
buf := new(bytes.Buffer)
for _, p := range params {
buf.Write(ethutil.Encode(p))
}
return buf.Bytes()
}
// Decode parse the RLP content of a message into
// the given value, which must be a pointer.
//
// For the decoding rules, please see package rlp.
func (msg Msg) Decode(val interface{}) error {
s := rlp.NewListStream(msg.Payload, uint64(msg.Size))
if err := s.Decode(val); err != nil {
return newPeerError(errInvalidMsg, "(code %#x) (size %d) %v", msg.Code, msg.Size, err)
}
return nil
}
func (msg Msg) String() string {
return fmt.Sprintf("msg #%v (%v bytes)", msg.Code, msg.Size)
}
// Discard reads any remaining payload data into a black hole.
func (msg Msg) Discard() error {
_, err := io.Copy(ioutil.Discard, msg.Payload)
return err
}
type MsgReader interface {
ReadMsg() (Msg, error)
}
type MsgWriter interface {
// WriteMsg sends a message. It will block until the message's
// Payload has been consumed by the other end.
//
// Note that messages can be sent only once because their
// payload reader is drained.
WriteMsg(Msg) error
}
// MsgReadWriter provides reading and writing of encoded messages.
// Implementations should ensure that ReadMsg and WriteMsg can be
// called simultaneously from multiple goroutines.
type MsgReadWriter interface {
MsgReader
MsgWriter
}
// EncodeMsg writes an RLP-encoded message with the given code and
// data elements.
func EncodeMsg(w MsgWriter, code uint64, data ...interface{}) error {
return w.WriteMsg(NewMsg(code, data...))
}
// lockedRW wraps a MsgReadWriter with locks around
// ReadMsg and WriteMsg.
type lockedRW struct {
rmu, wmu sync.Mutex
wrapped MsgReadWriter
}
func (rw *lockedRW) ReadMsg() (Msg, error) {
rw.rmu.Lock()
defer rw.rmu.Unlock()
return rw.wrapped.ReadMsg()
}
func (rw *lockedRW) WriteMsg(msg Msg) error {
rw.wmu.Lock()
defer rw.wmu.Unlock()
return rw.wrapped.WriteMsg(msg)
}
// frameRW is a MsgReadWriter that reads and writes devp2p message frames.
// As required by the interface, ReadMsg and WriteMsg can be called from
// multiple goroutines.
type frameRW struct {
net.Conn // make Conn methods available. be careful.
bufconn *bufio.ReadWriter
// this channel is used to 'lend' bufconn to a caller of ReadMsg
// until the message payload has been consumed. the channel
// receives a value when EOF is reached on the payload, unblocking
// a pending call to ReadMsg.
rsync chan struct{}
// this mutex guards writes to bufconn.
writeMu sync.Mutex
}
func newFrameRW(conn net.Conn, timeout time.Duration) *frameRW {
rsync := make(chan struct{}, 1)
rsync <- struct{}{}
return &frameRW{
Conn: conn,
bufconn: bufio.NewReadWriter(bufio.NewReader(conn), bufio.NewWriter(conn)),
rsync: rsync,
}
}
var magicToken = []byte{34, 64, 8, 145}
func (rw *frameRW) WriteMsg(msg Msg) error {
rw.writeMu.Lock()
defer rw.writeMu.Unlock()
rw.SetWriteDeadline(time.Now().Add(msgWriteTimeout))
if err := writeMsg(rw.bufconn, msg); err != nil {
return err
}
return rw.bufconn.Flush()
}
func writeMsg(w io.Writer, msg Msg) error {
// TODO: handle case when Size + len(code) + len(listhdr) overflows uint32
code := ethutil.Encode(uint32(msg.Code))
listhdr := makeListHeader(msg.Size + uint32(len(code)))
payloadLen := uint32(len(listhdr)) + uint32(len(code)) + msg.Size
start := make([]byte, 8)
copy(start, magicToken)
binary.BigEndian.PutUint32(start[4:], payloadLen)
for _, b := range [][]byte{start, listhdr, code} {
if _, err := w.Write(b); err != nil {
return err
}
}
_, err := io.CopyN(w, msg.Payload, int64(msg.Size))
return err
}
func makeListHeader(length uint32) []byte {
if length < 56 {
return []byte{byte(length + 0xc0)}
}
enc := big.NewInt(int64(length)).Bytes()
lenb := byte(len(enc)) + 0xf7
return append([]byte{lenb}, enc...)
}
func (rw *frameRW) ReadMsg() (msg Msg, err error) {
<-rw.rsync // wait until bufconn is ours
rw.SetReadDeadline(time.Now().Add(frameReadTimeout))
// read magic and payload size
start := make([]byte, 8)
if _, err = io.ReadFull(rw.bufconn, start); err != nil {
return msg, err
}
if !bytes.HasPrefix(start, magicToken) {
return msg, fmt.Errorf("bad magic token %x", start[:4])
}
size := binary.BigEndian.Uint32(start[4:])
// decode start of RLP message to get the message code
posr := &postrack{rw.bufconn, 0}
s := rlp.NewStream(posr)
if _, err := s.List(); err != nil {
return msg, err
}
msg.Code, err = s.Uint()
if err != nil {
return msg, err
}
msg.Size = size - posr.p
rw.SetReadDeadline(time.Now().Add(payloadReadTimeout))
if msg.Size <= wholePayloadSize {
// msg is small, read all of it and move on to the next message.
pbuf := make([]byte, msg.Size)
if _, err := io.ReadFull(rw.bufconn, pbuf); err != nil {
return msg, err
}
rw.rsync <- struct{}{} // bufconn is available again
msg.Payload = bytes.NewReader(pbuf)
} else {
// lend bufconn to the caller until it has
// consumed the payload. eofSignal will send a value
// on rw.rsync when EOF is reached.
pr := &eofSignal{rw.bufconn, msg.Size, rw.rsync}
msg.Payload = pr
}
return msg, nil
}
// postrack wraps an rlp.ByteReader with a position counter.
type postrack struct {
r rlp.ByteReader
p uint32
}
func (r *postrack) Read(buf []byte) (int, error) {
n, err := r.r.Read(buf)
r.p += uint32(n)
return n, err
}
func (r *postrack) ReadByte() (byte, error) {
b, err := r.r.ReadByte()
if err == nil {
r.p++
}
return b, err
}
// eofSignal wraps a reader with eof signaling. the eof channel is
// closed when the wrapped reader returns an error or when count bytes
// have been read.
type eofSignal struct {
wrapped io.Reader
count uint32 // number of bytes left
eof chan<- struct{}
}
// note: when using eofSignal to detect whether a message payload
// has been read, Read might not be called for zero sized messages.
func (r *eofSignal) Read(buf []byte) (int, error) {
if r.count == 0 {
if r.eof != nil {
r.eof <- struct{}{}
r.eof = nil
}
return 0, io.EOF
}
max := len(buf)
if int(r.count) < len(buf) {
max = int(r.count)
}
n, err := r.wrapped.Read(buf[:max])
r.count -= uint32(n)
if (err != nil || r.count == 0) && r.eof != nil {
r.eof <- struct{}{} // tell Peer that msg has been consumed
r.eof = nil
}
return n, err
}
// MsgPipe creates a message pipe. Reads on one end are matched
// with writes on the other. The pipe is full-duplex, both ends
// implement MsgReadWriter.
func MsgPipe() (*MsgPipeRW, *MsgPipeRW) {
var (
c1, c2 = make(chan Msg), make(chan Msg)
closing = make(chan struct{})
closed = new(int32)
rw1 = &MsgPipeRW{c1, c2, closing, closed}
rw2 = &MsgPipeRW{c2, c1, closing, closed}
)
return rw1, rw2
}
// ErrPipeClosed is returned from pipe operations after the
// pipe has been closed.
var ErrPipeClosed = errors.New("p2p: read or write on closed message pipe")
// MsgPipeRW is an endpoint of a MsgReadWriter pipe.
type MsgPipeRW struct {
w chan<- Msg
r <-chan Msg
closing chan struct{}
closed *int32
}
// WriteMsg sends a messsage on the pipe.
// It blocks until the receiver has consumed the message payload.
func (p *MsgPipeRW) WriteMsg(msg Msg) error {
if atomic.LoadInt32(p.closed) == 0 {
consumed := make(chan struct{}, 1)
msg.Payload = &eofSignal{msg.Payload, msg.Size, consumed}
select {
case p.w <- msg:
if msg.Size > 0 {
// wait for payload read or discard
<-consumed
}
return nil
case <-p.closing:
}
}
return ErrPipeClosed
}
// ReadMsg returns a message sent on the other end of the pipe.
func (p *MsgPipeRW) ReadMsg() (Msg, error) {
if atomic.LoadInt32(p.closed) == 0 {
select {
case msg := <-p.r:
return msg, nil
case <-p.closing:
}
}
return Msg{}, ErrPipeClosed
}
// Close unblocks any pending ReadMsg and WriteMsg calls on both ends
// of the pipe. They will return ErrPipeClosed. Note that Close does
// not interrupt any reads from a message payload.
func (p *MsgPipeRW) Close() error {
if atomic.AddInt32(p.closed, 1) != 1 {
// someone else is already closing
atomic.StoreInt32(p.closed, 1) // avoid overflow
return nil
}
close(p.closing)
return nil
}