aboutsummaryrefslogblamecommitdiffstats
path: root/p2p/discv5/node.go
blob: 2db7a508f00dbe3e96795b9357ceedaaf778b297 (plain) (tree)


















                                                                                  






























































                                                                           
                                                        





































































































































                                                                            













                                                     














































                                                                             
                     
                                                                
































                                                                                                
                                                                                     






















































































































                                                                                                                 
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package discv5

import (
    "crypto/ecdsa"
    "crypto/elliptic"
    "encoding/hex"
    "errors"
    "fmt"
    "math/big"
    "math/rand"
    "net"
    "net/url"
    "regexp"
    "strconv"
    "strings"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/crypto"
)

// Node represents a host on the network.
// The public fields of Node may not be modified.
type Node struct {
    IP       net.IP // len 4 for IPv4 or 16 for IPv6
    UDP, TCP uint16 // port numbers
    ID       NodeID // the node's public key

    // Network-related fields are contained in nodeNetGuts.
    // These fields are not supposed to be used off the
    // Network.loop goroutine.
    nodeNetGuts
}

// NewNode creates a new node. It is mostly meant to be used for
// testing purposes.
func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
    if ipv4 := ip.To4(); ipv4 != nil {
        ip = ipv4
    }
    return &Node{
        IP:          ip,
        UDP:         udpPort,
        TCP:         tcpPort,
        ID:          id,
        nodeNetGuts: nodeNetGuts{sha: crypto.Keccak256Hash(id[:])},
    }
}

func (n *Node) addr() *net.UDPAddr {
    return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
}

func (n *Node) setAddr(a *net.UDPAddr) {
    n.IP = a.IP
    if ipv4 := a.IP.To4(); ipv4 != nil {
        n.IP = ipv4
    }
    n.UDP = uint16(a.Port)
}

// compares the given address against the stored values.
func (n *Node) addrEqual(a *net.UDPAddr) bool {
    ip := a.IP
    if ipv4 := a.IP.To4(); ipv4 != nil {
        ip = ipv4
    }
    return n.UDP == uint16(a.Port) && n.IP.Equal(ip)
}

// Incomplete returns true for nodes with no IP address.
func (n *Node) Incomplete() bool {
    return n.IP == nil
}

// checks whether n is a valid complete node.
func (n *Node) validateComplete() error {
    if n.Incomplete() {
        return errors.New("incomplete node")
    }
    if n.UDP == 0 {
        return errors.New("missing UDP port")
    }
    if n.TCP == 0 {
        return errors.New("missing TCP port")
    }
    if n.IP.IsMulticast() || n.IP.IsUnspecified() {
        return errors.New("invalid IP (multicast/unspecified)")
    }
    _, err := n.ID.Pubkey() // validate the key (on curve, etc.)
    return err
}

// The string representation of a Node is a URL.
// Please see ParseNode for a description of the format.
func (n *Node) String() string {
    u := url.URL{Scheme: "enode"}
    if n.Incomplete() {
        u.Host = fmt.Sprintf("%x", n.ID[:])
    } else {
        addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
        u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
        u.Host = addr.String()
        if n.UDP != n.TCP {
            u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
        }
    }
    return u.String()
}

var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")

// ParseNode parses a node designator.
//
// There are two basic forms of node designators
//   - incomplete nodes, which only have the public key (node ID)
//   - complete nodes, which contain the public key and IP/Port information
//
// For incomplete nodes, the designator must look like one of these
//
//    enode://<hex node id>
//    <hex node id>
//
// For complete nodes, the node ID is encoded in the username portion
// of the URL, separated from the host by an @ sign. The hostname can
// only be given as an IP address, DNS domain names are not allowed.
// The port in the host name section is the TCP listening port. If the
// TCP and UDP (discovery) ports differ, the UDP port is specified as
// query parameter "discport".
//
// In the following example, the node URL describes
// a node with IP address 10.3.58.6, TCP listening port 30303
// and UDP discovery port 30301.
//
//    enode://<hex node id>@10.3.58.6:30303?discport=30301
func ParseNode(rawurl string) (*Node, error) {
    if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
        id, err := HexID(m[1])
        if err != nil {
            return nil, fmt.Errorf("invalid node ID (%v)", err)
        }
        return NewNode(id, nil, 0, 0), nil
    }
    return parseComplete(rawurl)
}

func parseComplete(rawurl string) (*Node, error) {
    var (
        id               NodeID
        ip               net.IP
        tcpPort, udpPort uint64
    )
    u, err := url.Parse(rawurl)
    if err != nil {
        return nil, err
    }
    if u.Scheme != "enode" {
        return nil, errors.New("invalid URL scheme, want \"enode\"")
    }
    // Parse the Node ID from the user portion.
    if u.User == nil {
        return nil, errors.New("does not contain node ID")
    }
    if id, err = HexID(u.User.String()); err != nil {
        return nil, fmt.Errorf("invalid node ID (%v)", err)
    }
    // Parse the IP address.
    host, port, err := net.SplitHostPort(u.Host)
    if err != nil {
        return nil, fmt.Errorf("invalid host: %v", err)
    }
    if ip = net.ParseIP(host); ip == nil {
        return nil, errors.New("invalid IP address")
    }
    // Ensure the IP is 4 bytes long for IPv4 addresses.
    if ipv4 := ip.To4(); ipv4 != nil {
        ip = ipv4
    }
    // Parse the port numbers.
    if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
        return nil, errors.New("invalid port")
    }
    udpPort = tcpPort
    qv := u.Query()
    if qv.Get("discport") != "" {
        udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
        if err != nil {
            return nil, errors.New("invalid discport in query")
        }
    }
    return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
}

// MustParseNode parses a node URL. It panics if the URL is not valid.
func MustParseNode(rawurl string) *Node {
    n, err := ParseNode(rawurl)
    if err != nil {
        panic("invalid node URL: " + err.Error())
    }
    return n
}

// MarshalText implements encoding.TextMarshaler.
func (n *Node) MarshalText() ([]byte, error) {
    return []byte(n.String()), nil
}

// UnmarshalText implements encoding.TextUnmarshaler.
func (n *Node) UnmarshalText(text []byte) error {
    dec, err := ParseNode(string(text))
    if err == nil {
        *n = *dec
    }
    return err
}

// type nodeQueue []*Node
//
// // pushNew adds n to the end if it is not present.
// func (nl *nodeList) appendNew(n *Node) {
//  for _, entry := range n {
//      if entry == n {
//          return
//      }
//  }
//  *nq = append(*nq, n)
// }
//
// // popRandom removes a random node. Nodes closer to
// // to the head of the beginning of the have a slightly higher probability.
// func (nl *nodeList) popRandom() *Node {
//  ix := rand.Intn(len(*nq))
//  //TODO: probability as mentioned above.
//  nl.removeIndex(ix)
// }
//
// func (nl *nodeList) removeIndex(i int) *Node {
//  slice = *nl
//  if len(*slice) <= i {
//      return nil
//  }
//  *nl = append(slice[:i], slice[i+1:]...)
// }

const nodeIDBits = 512

// NodeID is a unique identifier for each node.
// The node identifier is a marshaled elliptic curve public key.
type NodeID [nodeIDBits / 8]byte

// NodeID prints as a long hexadecimal number.
func (n NodeID) String() string {
    return fmt.Sprintf("%x", n[:])
}

// The Go syntax representation of a NodeID is a call to HexID.
func (n NodeID) GoString() string {
    return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
}

// HexID converts a hex string to a NodeID.
// The string may be prefixed with 0x.
func HexID(in string) (NodeID, error) {
    var id NodeID
    b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
    if err != nil {
        return id, err
    } else if len(b) != len(id) {
        return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
    }
    copy(id[:], b)
    return id, nil
}

// MustHexID converts a hex string to a NodeID.
// It panics if the string is not a valid NodeID.
func MustHexID(in string) NodeID {
    id, err := HexID(in)
    if err != nil {
        panic(err)
    }
    return id
}

// PubkeyID returns a marshaled representation of the given public key.
func PubkeyID(pub *ecdsa.PublicKey) NodeID {
    var id NodeID
    pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
    if len(pbytes)-1 != len(id) {
        panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
    }
    copy(id[:], pbytes[1:])
    return id
}

// Pubkey returns the public key represented by the node ID.
// It returns an error if the ID is not a point on the curve.
func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) {
    p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
    half := len(id) / 2
    p.X.SetBytes(id[:half])
    p.Y.SetBytes(id[half:])
    if !p.Curve.IsOnCurve(p.X, p.Y) {
        return nil, errors.New("id is invalid secp256k1 curve point")
    }
    return p, nil
}

func (id NodeID) mustPubkey() ecdsa.PublicKey {
    pk, err := id.Pubkey()
    if err != nil {
        panic(err)
    }
    return *pk
}

// recoverNodeID computes the public key used to sign the
// given hash from the signature.
func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
    pubkey, err := crypto.Ecrecover(hash, sig)
    if err != nil {
        return id, err
    }
    if len(pubkey)-1 != len(id) {
        return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
    }
    for i := range id {
        id[i] = pubkey[i+1]
    }
    return id, nil
}

// distcmp compares the distances a->target and b->target.
// Returns -1 if a is closer to target, 1 if b is closer to target
// and 0 if they are equal.
func distcmp(target, a, b common.Hash) int {
    for i := range target {
        da := a[i] ^ target[i]
        db := b[i] ^ target[i]
        if da > db {
            return 1
        } else if da < db {
            return -1
        }
    }
    return 0
}

// table of leading zero counts for bytes [0..255]
var lzcount = [256]int{
    8, 7, 6, 6, 5, 5, 5, 5,
    4, 4, 4, 4, 4, 4, 4, 4,
    3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 3, 3, 3, 3,
    2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
}

// logdist returns the logarithmic distance between a and b, log2(a ^ b).
func logdist(a, b common.Hash) int {
    lz := 0
    for i := range a {
        x := a[i] ^ b[i]
        if x == 0 {
            lz += 8
        } else {
            lz += lzcount[x]
            break
        }
    }
    return len(a)*8 - lz
}

// hashAtDistance returns a random hash such that logdist(a, b) == n
func hashAtDistance(a common.Hash, n int) (b common.Hash) {
    if n == 0 {
        return a
    }
    // flip bit at position n, fill the rest with random bits
    b = a
    pos := len(a) - n/8 - 1
    bit := byte(0x01) << (byte(n%8) - 1)
    if bit == 0 {
        pos++
        bit = 0x80
    }
    b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
    for i := pos + 1; i < len(a); i++ {
        b[i] = byte(rand.Intn(255))
    }
    return b
}