// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package miner
import (
"fmt"
"math/big"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/pow"
"gopkg.in/fatih/set.v0"
)
var jsonlogger = logger.NewJsonLogger()
const (
resultQueueSize = 10
miningLogAtDepth = 5
)
// Agent can register themself with the worker
type Agent interface {
Work() chan<- *Work
SetReturnCh(chan<- *Result)
Stop()
Start()
GetHashRate() int64
}
type uint64RingBuffer struct {
ints []uint64 //array of all integers in buffer
next int //where is the next insertion? assert 0 <= next < len(ints)
}
// environment is the workers current environment and holds
// all of the current state information
type Work struct {
config *core.ChainConfig
state *state.StateDB // apply state changes here
ancestors *set.Set // ancestor set (used for checking uncle parent validity)
family *set.Set // family set (used for checking uncle invalidity)
uncles *set.Set // uncle set
remove *set.Set // tx which will be removed
tcount int // tx count in cycle
ignoredTransactors *set.Set
lowGasTransactors *set.Set
ownedAccounts *set.Set
lowGasTxs types.Transactions
localMinedBlocks *uint64RingBuffer // the most recent block numbers that were mined locally (used to check block inclusion)
Block *types.Block // the new block
header *types.Header
txs []*types.Transaction
receipts []*types.Receipt
createdAt time.Time
}
type Result struct {
Work *Work
Block *types.Block
}
// worker is the main object which takes care of applying messages to the new state
type worker struct {
config *core.ChainConfig
mu sync.Mutex
agents map[Agent]struct{}
recv chan *Result
mux *event.TypeMux
quit chan struct{}
pow pow.PoW
eth core.Backend
chain *core.BlockChain
proc core.Validator
chainDb ethdb.Database
coinbase common.Address
gasPrice *big.Int
extra []byte
currentMu sync.Mutex
current *Work
uncleMu sync.Mutex
possibleUncles map[common.Hash]*types.Block
txQueueMu sync.Mutex
txQueue map[common.Hash]*types.Transaction
// atomic status counters
mining int32
atWork int32
fullValidation bool
}
func newWorker(config *core.ChainConfig, coinbase common.Address, eth core.Backend) *worker {
worker := &worker{
config: config,
eth: eth,
mux: eth.EventMux(),
chainDb: eth.ChainDb(),
recv: make(chan *Result, resultQueueSize),
gasPrice: new(big.Int),
chain: eth.BlockChain(),
proc: eth.BlockChain().Validator(),
possibleUncles: make(map[common.Hash]*types.Block),
coinbase: coinbase,
txQueue: make(map[common.Hash]*types.Transaction),
quit: make(chan struct{}),
agents: make(map[Agent]struct{}),
fullValidation: false,
}
go worker.update()
go worker.wait()
worker.commitNewWork()
return worker
}
func (self *worker) setEtherbase(addr common.Address) {
self.mu.Lock()
defer self.mu.Unlock()
self.coinbase = addr
}
func (self *worker) pending() (*types.Block, *state.StateDB) {
self.currentMu.Lock()
defer self.currentMu.Unlock()
if atomic.LoadInt32(&self.mining) == 0 {
return types.NewBlock(
self.current.header,
self.current.txs,
nil,
self.current.receipts,
), self.current.state
}
return self.current.Block, self.current.state
}
func (self *worker) start() {
self.mu.Lock()
defer self.mu.Unlock()
atomic.StoreInt32(&self.mining, 1)
// spin up agents
for agent := range self.agents {
agent.Start()
}
}
func (self *worker) stop() {
self.mu.Lock()
defer self.mu.Unlock()
if atomic.LoadInt32(&self.mining) == 1 {
// Stop all agents.
for agent := range self.agents {
agent.Stop()
// Remove CPU agents.
if _, ok := agent.(*CpuAgent); ok {
delete(self.agents, agent)
}
}
}
atomic.StoreInt32(&self.mining, 0)
atomic.StoreInt32(&self.atWork, 0)
}
func (self *worker) register(agent Agent) {
self.mu.Lock()
defer self.mu.Unlock()
self.agents[agent] = struct{}{}
agent.SetReturnCh(self.recv)
}
func (self *worker) unregister(agent Agent) {
self.mu.Lock()
defer self.mu.Unlock()
delete(self.agents, agent)
agent.Stop()
}
func (self *worker) update() {
eventSub := self.mux.Subscribe(core.ChainHeadEvent{}, core.ChainSideEvent{}, core.TxPreEvent{})
defer eventSub.Unsubscribe()
eventCh := eventSub.Chan()
for {
select {
case event, ok := <-eventCh:
if !ok {
// Event subscription closed, set the channel to nil to stop spinning
eventCh = nil
continue
}
// A real event arrived, process interesting content
switch ev := event.Data.(type) {
case core.ChainHeadEvent:
self.commitNewWork()
case core.ChainSideEvent:
self.uncleMu.Lock()
self.possibleUncles[ev.Block.Hash()] = ev.Block
self.uncleMu.Unlock()
case core.TxPreEvent:
// Apply transaction to the pending state if we're not mining
if atomic.LoadInt32(&self.mining) == 0 {
self.currentMu.Lock()
self.current.commitTransactions(self.mux, types.Transactions{ev.Tx}, self.gasPrice, self.chain)
self.currentMu.Unlock()
}
}
case <-self.quit:
return
}
}
}
func newLocalMinedBlock(blockNumber uint64, prevMinedBlocks *uint64RingBuffer) (minedBlocks *uint64RingBuffer) {
if prevMinedBlocks == nil {
minedBlocks = &uint64RingBuffer{next: 0, ints: make([]uint64, miningLogAtDepth+1)}
} else {
minedBlocks = prevMinedBlocks
}
minedBlocks.ints[minedBlocks.next] = blockNumber
minedBlocks.next = (minedBlocks.next + 1) % len(minedBlocks.ints)
return minedBlocks
}
func (self *worker) wait() {
for {
for result := range self.recv {
atomic.AddInt32(&self.atWork, -1)
if result == nil {
continue
}
block := result.Block
work := result.Work
if self.fullValidation {
if _, err := self.chain.InsertChain(types.Blocks{block}); err != nil {
glog.V(logger.Error).Infoln("mining err", err)
continue
}
go self.mux.Post(core.NewMinedBlockEvent{block})
} else {
work.state.Commit()
parent := self.chain.GetBlock(block.ParentHash())
if parent == nil {
glog.V(logger.Error).Infoln("Invalid block found during mining")
continue
}
auxValidator := self.eth.BlockChain().AuxValidator()
if err := core.ValidateHeader(self.config, auxValidator, block.Header(), parent.Header(), true, false); err != nil && err != core.BlockFutureErr {
glog.V(logger.Error).Infoln("Invalid header on mined block:", err)
continue
}
stat, err := self.chain.WriteBlock(block)
if err != nil {
glog.V(logger.Error).Infoln("error writing block to chain", err)
continue
}
// update block hash since it is now available and not when the receipt/log of individual transactions were created
for _, r := range work.receipts {
for _, l := range r.Logs {
l.BlockHash = block.Hash()
}
}
for _, log := range work.state.Logs() {
log.BlockHash = block.Hash()
}
// check if canon block and write transactions
if stat == core.CanonStatTy {
// This puts transactions in a extra db for rpc
core.WriteTransactions(self.chainDb, block)
// store the receipts
core.WriteReceipts(self.chainDb, work.receipts)
// Write map map bloom filters
core.WriteMipmapBloom(self.chainDb, block.NumberU64(), work.receipts)
}
// broadcast before waiting for validation
go func(block *types.Block, logs vm.Logs, receipts []*types.Receipt) {
self.mux.Post(core.NewMinedBlockEvent{block})
self.mux.Post(core.ChainEvent{block, block.Hash(), logs})
if stat == core.CanonStatTy {
self.mux.Post(core.ChainHeadEvent{block})
self.mux.Post(logs)
}
if err := core.WriteBlockReceipts(self.chainDb, block.Hash(), receipts); err != nil {
glog.V(logger.Warn).Infoln("error writing block receipts:", err)
}
}(block, work.state.Logs(), work.receipts)
}
// check staleness and display confirmation
var stale, confirm string
canonBlock := self.chain.GetBlockByNumber(block.NumberU64())
if canonBlock != nil && canonBlock.Hash() != block.Hash() {
stale = "stale "
} else {
confirm = "Wait 5 blocks for confirmation"
work.localMinedBlocks = newLocalMinedBlock(block.Number().Uint64(), work.localMinedBlocks)
}
glog.V(logger.Info).Infof("🔨 Mined %sblock (#%v / %x). %s", stale, block.Number(), block.Hash().Bytes()[:4], confirm)
self.commitNewWork()
}
}
}
func (self *worker) push(work *Work) {
if atomic.LoadInt32(&self.mining) == 1 {
if core.Canary(work.state) {
glog.Infoln("Toxicity levels rising to deadly levels. Your canary has died. You can go back or continue down the mineshaft --more--")
glog.Infoln("You turn back and abort mining")
return
}
// push new work to agents
for agent := range self.agents {
atomic.AddInt32(&self.atWork, 1)
if agent.Work() != nil {
agent.Work() <- work
}
}
}
}
// makeCurrent creates a new environment for the current cycle.
func (self *worker) makeCurrent(parent *types.Block, header *types.Header) error {
state, err := state.New(parent.Root(), self.eth.ChainDb())
if err != nil {
return err
}
work := &Work{
config: self.config,
state: state,
ancestors: set.New(),
family: set.New(),
uncles: set.New(),
header: header,
createdAt: time.Now(),
}
// when 08 is processed ancestors contain 07 (quick block)
for _, ancestor := range self.chain.GetBlocksFromHash(parent.Hash(), 7) {
for _, uncle := range ancestor.Uncles() {
work.family.Add(uncle.Hash())
}
work.family.Add(ancestor.Hash())
work.ancestors.Add(ancestor.Hash())
}
accounts, _ := self.eth.AccountManager().Accounts()
// Keep track of transactions which return errors so they can be removed
work.remove = set.New()
work.tcount = 0
work.ignoredTransactors = set.New()
work.lowGasTransactors = set.New()
work.ownedAccounts = accountAddressesSet(accounts)
if self.current != nil {
work.localMinedBlocks = self.current.localMinedBlocks
}
self.current = work
return nil
}
func (w *worker) setGasPrice(p *big.Int) {
w.mu.Lock()
defer w.mu.Unlock()
// calculate the minimal gas price the miner accepts when sorting out transactions.
const pct = int64(90)
w.gasPrice = gasprice(p, pct)
w.mux.Post(core.GasPriceChanged{w.gasPrice})
}
func (self *worker) isBlockLocallyMined(current *Work, deepBlockNum uint64) bool {
//Did this instance mine a block at {deepBlockNum} ?
var isLocal = false
for idx, blockNum := range current.localMinedBlocks.ints {
if deepBlockNum == blockNum {
isLocal = true
current.localMinedBlocks.ints[idx] = 0 //prevent showing duplicate logs
break
}
}
//Short-circuit on false, because the previous and following tests must both be true
if !isLocal {
return false
}
//Does the block at {deepBlockNum} send earnings to my coinbase?
var block = self.chain.GetBlockByNumber(deepBlockNum)
return block != nil && block.Coinbase() == self.coinbase
}
func (self *worker) logLocalMinedBlocks(current, previous *Work) {
if previous != nil && current.localMinedBlocks != nil {
nextBlockNum := current.Block.NumberU64()
for checkBlockNum := previous.Block.NumberU64(); checkBlockNum < nextBlockNum; checkBlockNum++ {
inspectBlockNum := checkBlockNum - miningLogAtDepth
if self.isBlockLocallyMined(current, inspectBlockNum) {
glog.V(logger.Info).Infof("🔨 🔗 Mined %d blocks back: block #%v", miningLogAtDepth, inspectBlockNum)
}
}
}
}
func (self *worker) commitNewWork() {
self.mu.Lock()
defer self.mu.Unlock()
self.uncleMu.Lock()
defer self.uncleMu.Unlock()
self.currentMu.Lock()
defer self.currentMu.Unlock()
tstart := time.Now()
parent := self.chain.CurrentBlock()
tstamp := tstart.Unix()
if parent.Time().Cmp(new(big.Int).SetInt64(tstamp)) >= 0 {
tstamp = parent.Time().Int64() + 1
}
// this will ensure we're not going off too far in the future
if now := time.Now().Unix(); tstamp > now+4 {
wait := time.Duration(tstamp-now) * time.Second
glog.V(logger.Info).Infoln("We are too far in the future. Waiting for", wait)
time.Sleep(wait)
}
num := parent.Number()
header := &types.Header{
ParentHash: parent.Hash(),
Number: num.Add(num, common.Big1),
Difficulty: core.CalcDifficulty(self.config, uint64(tstamp), parent.Time().Uint64(), parent.Number(), parent.Difficulty()),
GasLimit: core.CalcGasLimit(parent),
GasUsed: new(big.Int),
Coinbase: self.coinbase,
Extra: self.extra,
Time: big.NewInt(tstamp),
}
previous := self.current
// Could potentially happen if starting to mine in an odd state.
err := self.makeCurrent(parent, header)
if err != nil {
glog.V(logger.Info).Infoln("Could not create new env for mining, retrying on next block.")
return
}
work := self.current
/* //approach 1
transactions := self.eth.TxPool().GetTransactions()
sort.Sort(types.TxByNonce(transactions))
*/
//approach 2
transactions := self.eth.TxPool().GetTransactions()
types.SortByPriceAndNonce(transactions)
/* // approach 3
// commit transactions for this run.
txPerOwner := make(map[common.Address]types.Transactions)
// Sort transactions by owner
for _, tx := range self.eth.TxPool().GetTransactions() {
from, _ := tx.From() // we can ignore the sender error
txPerOwner[from] = append(txPerOwner[from], tx)
}
var (
singleTxOwner types.Transactions
multiTxOwner types.Transactions
)
// Categorise transactions by
// 1. 1 owner tx per block
// 2. multi txs owner per block
for _, txs := range txPerOwner {
if len(txs) == 1 {
singleTxOwner = append(singleTxOwner, txs[0])
} else {
multiTxOwner = append(multiTxOwner, txs...)
}
}
sort.Sort(types.TxByPrice(singleTxOwner))
sort.Sort(types.TxByNonce(multiTxOwner))
transactions := append(singleTxOwner, multiTxOwner...)
*/
work.commitTransactions(self.mux, transactions, self.gasPrice, self.chain)
self.eth.TxPool().RemoveTransactions(work.lowGasTxs)
// compute uncles for the new block.
var (
uncles []*types.Header
badUncles []common.Hash
)
for hash, uncle := range self.possibleUncles {
if len(uncles) == 2 {
break
}
if err := self.commitUncle(work, uncle.Header()); err != nil {
if glog.V(logger.Ridiculousness) {
glog.V(logger.Detail).Infof("Bad uncle found and will be removed (%x)\n", hash[:4])
glog.V(logger.Detail).Infoln(uncle)
}
badUncles = append(badUncles, hash)
} else {
glog.V(logger.Debug).Infof("commiting %x as uncle\n", hash[:4])
uncles = append(uncles, uncle.Header())
}
}
for _, hash := range badUncles {
delete(self.possibleUncles, hash)
}
if atomic.LoadInt32(&self.mining) == 1 {
// commit state root after all state transitions.
core.AccumulateRewards(work.state, header, uncles)
header.Root = work.state.IntermediateRoot()
}
// create the new block whose nonce will be mined.
work.Block = types.NewBlock(header, work.txs, uncles, work.receipts)
// We only care about logging if we're actually mining.
if atomic.LoadInt32(&self.mining) == 1 {
glog.V(logger.Info).Infof("commit new work on block %v with %d txs & %d uncles. Took %v\n", work.Block.Number(), work.tcount, len(uncles), time.Since(tstart))
self.logLocalMinedBlocks(work, previous)
}
self.push(work)
}
func (self *worker) commitUncle(work *Work, uncle *types.Header) error {
hash := uncle.Hash()
if work.uncles.Has(hash) {
return core.UncleError("Uncle not unique")
}
if !work.ancestors.Has(uncle.ParentHash) {
return core.UncleError(fmt.Sprintf("Uncle's parent unknown (%x)", uncle.ParentHash[0:4]))
}
if work.family.Has(hash) {
return core.UncleError(fmt.Sprintf("Uncle already in family (%x)", hash))
}
work.uncles.Add(uncle.Hash())
return nil
}
func (env *Work) commitTransactions(mux *event.TypeMux, transactions types.Transactions, gasPrice *big.Int, bc *core.BlockChain) {
gp := new(core.GasPool).AddGas(env.header.GasLimit)
var coalescedLogs vm.Logs
for _, tx := range transactions {
// Error may be ignored here. The error has already been checked
// during transaction acceptance is the transaction pool.
from, _ := tx.From()
// Check if it falls within margin. Txs from owned accounts are always processed.
if tx.GasPrice().Cmp(gasPrice) < 0 && !env.ownedAccounts.Has(from) {
// ignore the transaction and transactor. We ignore the transactor
// because nonce will fail after ignoring this transaction so there's
// no point
env.lowGasTransactors.Add(from)
glog.V(logger.Info).Infof("transaction(%x) below gas price (tx=%v ask=%v). All sequential txs from this address(%x) will be ignored\n", tx.Hash().Bytes()[:4], common.CurrencyToString(tx.GasPrice()), common.CurrencyToString(gasPrice), from[:4])
}
// Continue with the next transaction if the transaction sender is included in
// the low gas tx set. This will also remove the tx and all sequential transaction
// from this transactor
if env.lowGasTransactors.Has(from) {
// add tx to the low gas set. This will be removed at the end of the run
// owned accounts are ignored
if !env.ownedAccounts.Has(from) {
env.lowGasTxs = append(env.lowGasTxs, tx)
}
continue
}
// Move on to the next transaction when the transactor is in ignored transactions set
// This may occur when a transaction hits the gas limit. When a gas limit is hit and
// the transaction is processed (that could potentially be included in the block) it
// will throw a nonce error because the previous transaction hasn't been processed.
// Therefor we need to ignore any transaction after the ignored one.
if env.ignoredTransactors.Has(from) {
continue
}
env.state.StartRecord(tx.Hash(), common.Hash{}, 0)
err, logs := env.commitTransaction(tx, bc, gp)
switch {
case core.IsGasLimitErr(err):
// ignore the transactor so no nonce errors will be thrown for this account
// next time the worker is run, they'll be picked up again.
env.ignoredTransactors.Add(from)
glog.V(logger.Detail).Infof("Gas limit reached for (%x) in this block. Continue to try smaller txs\n", from[:4])
case err != nil:
env.remove.Add(tx.Hash())
if glog.V(logger.Detail) {
glog.Infof("TX (%x) failed, will be removed: %v\n", tx.Hash().Bytes()[:4], err)
}
default:
env.tcount++
coalescedLogs = append(coalescedLogs, logs...)
}
}
if len(coalescedLogs) > 0 || env.tcount > 0 {
go func(logs vm.Logs, tcount int) {
if len(logs) > 0 {
mux.Post(core.PendingLogsEvent{Logs: logs})
}
if tcount > 0 {
mux.Post(core.PendingStateEvent{})
}
}(coalescedLogs, env.tcount)
}
}
func (env *Work) commitTransaction(tx *types.Transaction, bc *core.BlockChain, gp *core.GasPool) (error, vm.Logs) {
snap := env.state.Copy()
// this is a bit of a hack to force jit for the miners
config := env.config.VmConfig
if !(config.EnableJit && config.ForceJit) {
config.EnableJit = false
}
config.ForceJit = false // disable forcing jit
receipt, logs, _, err := core.ApplyTransaction(env.config, bc, gp, env.state, env.header, tx, env.header.GasUsed, config)
if err != nil {
env.state.Set(snap)
return err, nil
}
env.txs = append(env.txs, tx)
env.receipts = append(env.receipts, receipt)
return nil, logs
}
// TODO: remove or use
func (self *worker) HashRate() int64 {
return 0
}
// gasprice calculates a reduced gas price based on the pct
// XXX Use big.Rat?
func gasprice(price *big.Int, pct int64) *big.Int {
p := new(big.Int).Set(price)
p.Div(p, big.NewInt(100))
p.Mul(p, big.NewInt(pct))
return p
}
func accountAddressesSet(accounts []accounts.Account) *set.Set {
accountSet := set.New()
for _, account := range accounts {
accountSet.Add(account.Address)
}
return accountSet
}