aboutsummaryrefslogblamecommitdiffstats
path: root/metrics/sample_test.go
blob: d60e99c5bba7accae97a5c8861b4e41f44842035 (plain) (tree)










































































































































































































































































































































































                                                                                
package metrics

import (
    "math/rand"
    "runtime"
    "testing"
    "time"
)

// Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively
// expensive computations like Variance, the cost of copying the Sample, as
// approximated by a make and copy, is much greater than the cost of the
// computation for small samples and only slightly less for large samples.
func BenchmarkCompute1000(b *testing.B) {
    s := make([]int64, 1000)
    for i := 0; i < len(s); i++ {
        s[i] = int64(i)
    }
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        SampleVariance(s)
    }
}
func BenchmarkCompute1000000(b *testing.B) {
    s := make([]int64, 1000000)
    for i := 0; i < len(s); i++ {
        s[i] = int64(i)
    }
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        SampleVariance(s)
    }
}
func BenchmarkCopy1000(b *testing.B) {
    s := make([]int64, 1000)
    for i := 0; i < len(s); i++ {
        s[i] = int64(i)
    }
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        sCopy := make([]int64, len(s))
        copy(sCopy, s)
    }
}
func BenchmarkCopy1000000(b *testing.B) {
    s := make([]int64, 1000000)
    for i := 0; i < len(s); i++ {
        s[i] = int64(i)
    }
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        sCopy := make([]int64, len(s))
        copy(sCopy, s)
    }
}

func BenchmarkExpDecaySample257(b *testing.B) {
    benchmarkSample(b, NewExpDecaySample(257, 0.015))
}

func BenchmarkExpDecaySample514(b *testing.B) {
    benchmarkSample(b, NewExpDecaySample(514, 0.015))
}

func BenchmarkExpDecaySample1028(b *testing.B) {
    benchmarkSample(b, NewExpDecaySample(1028, 0.015))
}

func BenchmarkUniformSample257(b *testing.B) {
    benchmarkSample(b, NewUniformSample(257))
}

func BenchmarkUniformSample514(b *testing.B) {
    benchmarkSample(b, NewUniformSample(514))
}

func BenchmarkUniformSample1028(b *testing.B) {
    benchmarkSample(b, NewUniformSample(1028))
}

func TestExpDecaySample10(t *testing.T) {
    rand.Seed(1)
    s := NewExpDecaySample(100, 0.99)
    for i := 0; i < 10; i++ {
        s.Update(int64(i))
    }
    if size := s.Count(); 10 != size {
        t.Errorf("s.Count(): 10 != %v\n", size)
    }
    if size := s.Size(); 10 != size {
        t.Errorf("s.Size(): 10 != %v\n", size)
    }
    if l := len(s.Values()); 10 != l {
        t.Errorf("len(s.Values()): 10 != %v\n", l)
    }
    for _, v := range s.Values() {
        if v > 10 || v < 0 {
            t.Errorf("out of range [0, 10): %v\n", v)
        }
    }
}

func TestExpDecaySample100(t *testing.T) {
    rand.Seed(1)
    s := NewExpDecaySample(1000, 0.01)
    for i := 0; i < 100; i++ {
        s.Update(int64(i))
    }
    if size := s.Count(); 100 != size {
        t.Errorf("s.Count(): 100 != %v\n", size)
    }
    if size := s.Size(); 100 != size {
        t.Errorf("s.Size(): 100 != %v\n", size)
    }
    if l := len(s.Values()); 100 != l {
        t.Errorf("len(s.Values()): 100 != %v\n", l)
    }
    for _, v := range s.Values() {
        if v > 100 || v < 0 {
            t.Errorf("out of range [0, 100): %v\n", v)
        }
    }
}

func TestExpDecaySample1000(t *testing.T) {
    rand.Seed(1)
    s := NewExpDecaySample(100, 0.99)
    for i := 0; i < 1000; i++ {
        s.Update(int64(i))
    }
    if size := s.Count(); 1000 != size {
        t.Errorf("s.Count(): 1000 != %v\n", size)
    }
    if size := s.Size(); 100 != size {
        t.Errorf("s.Size(): 100 != %v\n", size)
    }
    if l := len(s.Values()); 100 != l {
        t.Errorf("len(s.Values()): 100 != %v\n", l)
    }
    for _, v := range s.Values() {
        if v > 1000 || v < 0 {
            t.Errorf("out of range [0, 1000): %v\n", v)
        }
    }
}

// This test makes sure that the sample's priority is not amplified by using
// nanosecond duration since start rather than second duration since start.
// The priority becomes +Inf quickly after starting if this is done,
// effectively freezing the set of samples until a rescale step happens.
func TestExpDecaySampleNanosecondRegression(t *testing.T) {
    rand.Seed(1)
    s := NewExpDecaySample(100, 0.99)
    for i := 0; i < 100; i++ {
        s.Update(10)
    }
    time.Sleep(1 * time.Millisecond)
    for i := 0; i < 100; i++ {
        s.Update(20)
    }
    v := s.Values()
    avg := float64(0)
    for i := 0; i < len(v); i++ {
        avg += float64(v[i])
    }
    avg /= float64(len(v))
    if avg > 16 || avg < 14 {
        t.Errorf("out of range [14, 16]: %v\n", avg)
    }
}

func TestExpDecaySampleRescale(t *testing.T) {
    s := NewExpDecaySample(2, 0.001).(*ExpDecaySample)
    s.update(time.Now(), 1)
    s.update(time.Now().Add(time.Hour+time.Microsecond), 1)
    for _, v := range s.values.Values() {
        if v.k == 0.0 {
            t.Fatal("v.k == 0.0")
        }
    }
}

func TestExpDecaySampleSnapshot(t *testing.T) {
    now := time.Now()
    rand.Seed(1)
    s := NewExpDecaySample(100, 0.99)
    for i := 1; i <= 10000; i++ {
        s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
    }
    snapshot := s.Snapshot()
    s.Update(1)
    testExpDecaySampleStatistics(t, snapshot)
}

func TestExpDecaySampleStatistics(t *testing.T) {
    now := time.Now()
    rand.Seed(1)
    s := NewExpDecaySample(100, 0.99)
    for i := 1; i <= 10000; i++ {
        s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
    }
    testExpDecaySampleStatistics(t, s)
}

func TestUniformSample(t *testing.T) {
    rand.Seed(1)
    s := NewUniformSample(100)
    for i := 0; i < 1000; i++ {
        s.Update(int64(i))
    }
    if size := s.Count(); 1000 != size {
        t.Errorf("s.Count(): 1000 != %v\n", size)
    }
    if size := s.Size(); 100 != size {
        t.Errorf("s.Size(): 100 != %v\n", size)
    }
    if l := len(s.Values()); 100 != l {
        t.Errorf("len(s.Values()): 100 != %v\n", l)
    }
    for _, v := range s.Values() {
        if v > 1000 || v < 0 {
            t.Errorf("out of range [0, 100): %v\n", v)
        }
    }
}

func TestUniformSampleIncludesTail(t *testing.T) {
    rand.Seed(1)
    s := NewUniformSample(100)
    max := 100
    for i := 0; i < max; i++ {
        s.Update(int64(i))
    }
    v := s.Values()
    sum := 0
    exp := (max - 1) * max / 2
    for i := 0; i < len(v); i++ {
        sum += int(v[i])
    }
    if exp != sum {
        t.Errorf("sum: %v != %v\n", exp, sum)
    }
}

func TestUniformSampleSnapshot(t *testing.T) {
    s := NewUniformSample(100)
    for i := 1; i <= 10000; i++ {
        s.Update(int64(i))
    }
    snapshot := s.Snapshot()
    s.Update(1)
    testUniformSampleStatistics(t, snapshot)
}

func TestUniformSampleStatistics(t *testing.T) {
    rand.Seed(1)
    s := NewUniformSample(100)
    for i := 1; i <= 10000; i++ {
        s.Update(int64(i))
    }
    testUniformSampleStatistics(t, s)
}

func benchmarkSample(b *testing.B, s Sample) {
    var memStats runtime.MemStats
    runtime.ReadMemStats(&memStats)
    pauseTotalNs := memStats.PauseTotalNs
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        s.Update(1)
    }
    b.StopTimer()
    runtime.GC()
    runtime.ReadMemStats(&memStats)
    b.Logf("GC cost: %d ns/op", int(memStats.PauseTotalNs-pauseTotalNs)/b.N)
}

func testExpDecaySampleStatistics(t *testing.T, s Sample) {
    if count := s.Count(); 10000 != count {
        t.Errorf("s.Count(): 10000 != %v\n", count)
    }
    if min := s.Min(); 107 != min {
        t.Errorf("s.Min(): 107 != %v\n", min)
    }
    if max := s.Max(); 10000 != max {
        t.Errorf("s.Max(): 10000 != %v\n", max)
    }
    if mean := s.Mean(); 4965.98 != mean {
        t.Errorf("s.Mean(): 4965.98 != %v\n", mean)
    }
    if stdDev := s.StdDev(); 2959.825156930727 != stdDev {
        t.Errorf("s.StdDev(): 2959.825156930727 != %v\n", stdDev)
    }
    ps := s.Percentiles([]float64{0.5, 0.75, 0.99})
    if 4615 != ps[0] {
        t.Errorf("median: 4615 != %v\n", ps[0])
    }
    if 7672 != ps[1] {
        t.Errorf("75th percentile: 7672 != %v\n", ps[1])
    }
    if 9998.99 != ps[2] {
        t.Errorf("99th percentile: 9998.99 != %v\n", ps[2])
    }
}

func testUniformSampleStatistics(t *testing.T, s Sample) {
    if count := s.Count(); 10000 != count {
        t.Errorf("s.Count(): 10000 != %v\n", count)
    }
    if min := s.Min(); 37 != min {
        t.Errorf("s.Min(): 37 != %v\n", min)
    }
    if max := s.Max(); 9989 != max {
        t.Errorf("s.Max(): 9989 != %v\n", max)
    }
    if mean := s.Mean(); 4748.14 != mean {
        t.Errorf("s.Mean(): 4748.14 != %v\n", mean)
    }
    if stdDev := s.StdDev(); 2826.684117548333 != stdDev {
        t.Errorf("s.StdDev(): 2826.684117548333 != %v\n", stdDev)
    }
    ps := s.Percentiles([]float64{0.5, 0.75, 0.99})
    if 4599 != ps[0] {
        t.Errorf("median: 4599 != %v\n", ps[0])
    }
    if 7380.5 != ps[1] {
        t.Errorf("75th percentile: 7380.5 != %v\n", ps[1])
    }
    if 9986.429999999998 != ps[2] {
        t.Errorf("99th percentile: 9986.429999999998 != %v\n", ps[2])
    }
}

// TestUniformSampleConcurrentUpdateCount would expose data race problems with
// concurrent Update and Count calls on Sample when test is called with -race
// argument
func TestUniformSampleConcurrentUpdateCount(t *testing.T) {
    if testing.Short() {
        t.Skip("skipping in short mode")
    }
    s := NewUniformSample(100)
    for i := 0; i < 100; i++ {
        s.Update(int64(i))
    }
    quit := make(chan struct{})
    go func() {
        t := time.NewTicker(10 * time.Millisecond)
        for {
            select {
            case <-t.C:
                s.Update(rand.Int63())
            case <-quit:
                t.Stop()
                return
            }
        }
    }()
    for i := 0; i < 1000; i++ {
        s.Count()
        time.Sleep(5 * time.Millisecond)
    }
    quit <- struct{}{}
}