aboutsummaryrefslogblamecommitdiffstats
path: root/les/servingqueue.go
blob: 2438fdfe3c9c4bdc14c0749bf3220ba7d992b4eb (plain) (tree)




































































































































































































































































                                                                                            
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package les

import (
    "sync"

    "github.com/ethereum/go-ethereum/common/mclock"
    "github.com/ethereum/go-ethereum/common/prque"
)

// servingQueue allows running tasks in a limited number of threads and puts the
// waiting tasks in a priority queue
type servingQueue struct {
    tokenCh                 chan runToken
    queueAddCh, queueBestCh chan *servingTask
    stopThreadCh, quit      chan struct{}
    setThreadsCh            chan int

    wg          sync.WaitGroup
    threadCount int          // number of currently running threads
    queue       *prque.Prque // priority queue for waiting or suspended tasks
    best        *servingTask // the highest priority task (not included in the queue)
    suspendBias int64        // priority bias against suspending an already running task
}

// servingTask represents a request serving task. Tasks can be implemented to
// run in multiple steps, allowing the serving queue to suspend execution between
// steps if higher priority tasks are entered. The creator of the task should
// set the following fields:
//
// - priority: greater value means higher priority; values can wrap around the int64 range
// - run: execute a single step; return true if finished
// - after: executed after run finishes or returns an error, receives the total serving time
type servingTask struct {
    sq          *servingQueue
    servingTime uint64
    priority    int64
    biasAdded   bool
    token       runToken
    tokenCh     chan runToken
}

// runToken received by servingTask.start allows the task to run. Closing the
// channel by servingTask.stop signals the thread controller to allow a new task
// to start running.
type runToken chan struct{}

// start blocks until the task can start and returns true if it is allowed to run.
// Returning false means that the task should be cancelled.
func (t *servingTask) start() bool {
    select {
    case t.token = <-t.sq.tokenCh:
    default:
        t.tokenCh = make(chan runToken, 1)
        select {
        case t.sq.queueAddCh <- t:
        case <-t.sq.quit:
            return false
        }
        select {
        case t.token = <-t.tokenCh:
        case <-t.sq.quit:
            return false
        }
    }
    if t.token == nil {
        return false
    }
    t.servingTime -= uint64(mclock.Now())
    return true
}

// done signals the thread controller about the task being finished and returns
// the total serving time of the task in nanoseconds.
func (t *servingTask) done() uint64 {
    t.servingTime += uint64(mclock.Now())
    close(t.token)
    return t.servingTime
}

// waitOrStop can be called during the execution of the task. It blocks if there
// is a higher priority task waiting (a bias is applied in favor of the currently
// running task). Returning true means that the execution can be resumed. False
// means the task should be cancelled.
func (t *servingTask) waitOrStop() bool {
    t.done()
    if !t.biasAdded {
        t.priority += t.sq.suspendBias
        t.biasAdded = true
    }
    return t.start()
}

// newServingQueue returns a new servingQueue
func newServingQueue(suspendBias int64) *servingQueue {
    sq := &servingQueue{
        queue:        prque.New(nil),
        suspendBias:  suspendBias,
        tokenCh:      make(chan runToken),
        queueAddCh:   make(chan *servingTask, 100),
        queueBestCh:  make(chan *servingTask),
        stopThreadCh: make(chan struct{}),
        quit:         make(chan struct{}),
        setThreadsCh: make(chan int, 10),
    }
    sq.wg.Add(2)
    go sq.queueLoop()
    go sq.threadCountLoop()
    return sq
}

// newTask creates a new task with the given priority
func (sq *servingQueue) newTask(priority int64) *servingTask {
    return &servingTask{
        sq:       sq,
        priority: priority,
    }
}

// threadController is started in multiple goroutines and controls the execution
// of tasks. The number of active thread controllers equals the allowed number of
// concurrently running threads. It tries to fetch the highest priority queued
// task first. If there are no queued tasks waiting then it can directly catch
// run tokens from the token channel and allow the corresponding tasks to run
// without entering the priority queue.
func (sq *servingQueue) threadController() {
    for {
        token := make(runToken)
        select {
        case best := <-sq.queueBestCh:
            best.tokenCh <- token
        default:
            select {
            case best := <-sq.queueBestCh:
                best.tokenCh <- token
            case sq.tokenCh <- token:
            case <-sq.stopThreadCh:
                sq.wg.Done()
                return
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        }
        <-token
        select {
        case <-sq.stopThreadCh:
            sq.wg.Done()
            return
        case <-sq.quit:
            sq.wg.Done()
            return
        default:
        }
    }
}

// addTask inserts a task into the priority queue
func (sq *servingQueue) addTask(task *servingTask) {
    if sq.best == nil {
        sq.best = task
    } else if task.priority > sq.best.priority {
        sq.queue.Push(sq.best, sq.best.priority)
        sq.best = task
        return
    } else {
        sq.queue.Push(task, task.priority)
    }
}

// queueLoop is an event loop running in a goroutine. It receives tasks from queueAddCh
// and always tries to send the highest priority task to queueBestCh. Successfully sent
// tasks are removed from the queue.
func (sq *servingQueue) queueLoop() {
    for {
        if sq.best != nil {
            select {
            case task := <-sq.queueAddCh:
                sq.addTask(task)
            case sq.queueBestCh <- sq.best:
                if sq.queue.Size() == 0 {
                    sq.best = nil
                } else {
                    sq.best, _ = sq.queue.PopItem().(*servingTask)
                }
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        } else {
            select {
            case task := <-sq.queueAddCh:
                sq.addTask(task)
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        }
    }
}

// threadCountLoop is an event loop running in a goroutine. It adjusts the number
// of active thread controller goroutines.
func (sq *servingQueue) threadCountLoop() {
    var threadCountTarget int
    for {
        for threadCountTarget > sq.threadCount {
            sq.wg.Add(1)
            go sq.threadController()
            sq.threadCount++
        }
        if threadCountTarget < sq.threadCount {
            select {
            case threadCountTarget = <-sq.setThreadsCh:
            case sq.stopThreadCh <- struct{}{}:
                sq.threadCount--
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        } else {
            select {
            case threadCountTarget = <-sq.setThreadsCh:
            case <-sq.quit:
                sq.wg.Done()
                return
            }
        }
    }
}

// setThreads sets the allowed processing thread count, suspending tasks as soon as
// possible if necessary.
func (sq *servingQueue) setThreads(threadCount int) {
    select {
    case sq.setThreadsCh <- threadCount:
    case <-sq.quit:
        return
    }
}

// stop stops task processing as soon as possible and shuts down the serving queue.
func (sq *servingQueue) stop() {
    close(sq.quit)
    sq.wg.Wait()
}